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Abstract: Human Proteome Project (HPP) presents a systematic characterization of the protein
landscape under different conditions using several complementary-omic techniques (LC-MS/MS
proteomics, affinity proteomics, transcriptomics, etc.). In the present study, using a B-cell lym-
phoma cell line as a model, comprehensive integration of RNA-Seq transcriptomics, MS/MS, and
antibody-based affinity proteomics (combined with size-exclusion chromatography) (SEC-MAP)
were performed to uncover correlations that could provide insights into protein dynamics at the
intracellular level. Here, 5672 unique proteins were systematically identified by MS/MS analysis
and subcellular protein extraction strategies (neXtProt release 2020-21, MS/MS data are available
via ProteomeXchange with identifier PXD003939). Moreover, RNA deep sequencing analysis of this
lymphoma B-cell line identified 19,518 expressed genes and 5707 protein coding genes (mapped to
neXtProt). Among these data sets, 162 relevant proteins (targeted by 206 antibodies) were systemat-
ically analyzed by the SEC-MAP approach, providing information about PTMs, isoforms, protein
complexes, and subcellular localization. Finally, a bioinformatic pipeline has been designed and
developed for orthogonal integration of these high-content proteomics and transcriptomics datasets,
which might be useful for comprehensive and global characterization of intracellular protein profiles.

Keywords: affinity-based proteomics; human proteome project; LC-MS/MS; transcriptomics;
size-exclusion-chromatography (SEC)

1. Introduction

Increased understanding of the events taking place during intracellular signaling has
revealed a highly dynamic protein landscape for eukaryotic cells, especially in pathological
settings (such as cancer, neurodegenerative, auto-immune diseases, etc.,) [1–3]. Most of the
subcellular signaling pathways are led by protein complexes, which are constantly being
formed and resolved. Furthermore, proteins are shuttling between different subcellular
localizations to execute the expected and/or programmed biological processes according
to the needs and requirements of the cell. These fluctuations could produce re-wiring
of signaling networks for enabling phenotypic changes required for the adaptation to
microenvironmental or external perturbations and/or stimuli [4–6]. Given these temporal
and spatial variabilities, high-throughput biochemical methods are required to deepen
the knowledge on the interacting biomolecules across subcellular localizations during
the response to external stimulus, drug administration, and drug resistance mechanisms,
etc., [1,2,4,6,7].
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Bearing this in mind, the recent advances in next-generation sequencing (NGS) and
high-resolution mass spectrometry (MS/MS) have opened up strategies methodologically
which provide novel insights useful for understanding the complexity of intracellular
processes [8,9]. Among other parameters in protein functionality, subcellular localization is
one of the main determinants for a particular protein’s intracellular dynamics and the final
function; however, a global view of subcellular proteome organization remains relatively
unknown, and it is currently studied by multipronged proteomics approaches. Despite
some multiple integrations that have been recently performed (based on MS/MS and RNA-
Seq, among others), there remains a huge interest in revealing the presence of proteoforms,
multiprotein complexes, changes in transcript-protein, etc., [10–13]. Historically, subcellular
localization of proteins has been determined by conventional biochemical approaches
(mostly by targeting individual proteins); e.g., cell fractionation coupled with Western blot.
Although additional development of large-scale GFP fusion protein-based [14], antibody-
based assays [15,16], protein-metabolite interactions [17], Sequential Window Acquisition
of All Theoretical Mass Spectra (SWATH-MS) characterization [18] has increased our
knowledge of protein subcellular localization, these methods are labor-intensive, making
them highly challenging and difficult to implement for high-content characterization in
large cohort studies.

The development of mass spectrometry (MS/MS)-based proteomics coupled with
protein extraction at subcellular level [19] as well as the high-throughput immunoassays
coupled with size-exclusion chromatography (SEC) [20] have opened up new possibilities
to query the spatial intracellular organization of the proteome on a larger scale [21]. More
recently, the Aebersold group [22] has developed a strategy combining mass-spectrometry
and SEC. Other similar attempts involve machine learning algorithms to assign subcellular
localization based on protein quantification across multiple subcellular fractions by MS/MS.
However, all these studies provide proteome-wide information but lack the multiple
combinations between several proteomics characterizations and comprehensive integration
with transcriptomics.

This study has two main purposes: i. Evaluation of protein extraction or complemen-
tary characterization with MS/MS-based proteomics and affinity proteomics (SEC-MAP),
which may be useful for bioinformatic orthogonal integration with deep transcriptomics
characterization; ii. generation of systematic pipeline for comprehensive orthogonal inte-
gration of protein subcellular localization, affinity proteomics (SEC-MAP), MS/MS data
sets, and RNA-seq information in human lymphoma cell line, like a model for mapping
cancer protein interactions. Moreover, the combination of these methodologies helps to
deepen the knowledge about the architecture of the cells and the complexity of the spatial
organization of the proteome, which can be a tool for interpreting a multiscale map of pro-
tein systems—which is relevant for deciphering cell signaling pathways linked to genetic
perturbations/alterations, therapeutic interventions, or another external stimulus.

2. Materials and Methods
2.1. Cell Cultures

Human Ramos cell line (Burkitt′s lymphoma, European Collection of Authenticated
Cell Cultures—ECACC-Cat. no: 85030802) was cultured in RPMI 1640 medium supple-
mented with L-glutamine (Gibco, Whaltham, MA, USA), 10% (v/v) fetal bovine serum
(Gibco, Whaltham, MA, USA) and 1% (v/v) penicillin/streptavidin (Gibco, Whaltham,
MA, USA). The growth was monitored daily and cells were incubated at 37 ◦C/5% CO2
with media renewal every 2–3 days.

2.2. Protein Extraction and Quantification

For protein extraction, 40 × 106 Ramos cells were pelleted by centrifugation and
washed three times with PBS, and further centrifuged for 5 min (min.) at 1200 rpm. All
the different protein extraction buffers were supplemented with phosphatase and protease
inhibitors: tris [2-carboxyethyl]phosphine] (TCEP—Sigma-Aldrich, Burlington, MA, USA)
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1 mM, phenylmethylsulfonyl fluoride (PMSF—Sigma-Aldrich, USA) 1 mM, sodium flu-
oride (NaF—Sigma-Aldrich, USA) 1 mM, sodium orthovanadate (Sigma-Aldrich, USA)
1 mM, β-glycerophosphate (Sigma-Aldrich, USA) 1 mM and sodium pyrophosphate tetra-
basic decahydrate (Sigma-Aldrich, USA) 1 mM. All centrifugation and incubation steps
were carried out at 4 ◦C. The extracted proteins from each strategy were stored at −20 ◦C
until further use.

Protein quantification was performed by Coomassie Plus (Bradford) Assay Kit
(ThermoFisher Scientific, Cat. no: 23236, USA) and Pierce™ BCA Protein Assay Kit (Ther-
moFisher Scientific, Cat. no: 23225, Waltham, MA, USA), following the manufacturer’s
instructions. Each sample (20 µg) was separated in 12% SDS-PAGE gel under reducing
conditions. Subsequently, SDS-PAGE gels were stained with 0.1% (w/v) Coomassie brilliant
blue and silver stains solutions according to standard laboratory procedure [23–25].

The different protein extraction procedures, which are evaluated herein, are described
below and summarized in Table 1.

2.2.1. Protocol #1

Total of 375 µL of lysis buffer (140 mM NaCl, 50 mM EDTA, 10% (v/v) glycerol, 1%
octylphenoxy poly(ethyleneoxy)ethanol—IGEPAL-, 20 mM Tris-HCl pH = 7 supplemented
with proteases and phosphates inhibitors) per 1 × 107 cells was added, and cells were incu-
bated on ice for 15 min. After that, the sample was centrifuged for 15 min at 15,000× g and
the supernatant containing the protein content was stored at −20 ◦C until further analysis.

2.2.2. Protocol #2

As protocol #1, 1× 107 cells were incubated with 375 µL of lysis buffer (20 mM HEPES
pH = 8 and 9 M urea). Cell lysis was performed by sonication on ice (3 times 5 s bursts and
1 min break). Afterward, it was centrifuged for 15 min at 15,000× g and the supernatant
containing the total protein content was stored at −20 ◦C until further analysis.

2.2.3. Protocol #3

Similar procedure as protocol #2 with a lysis buffer containing 7 M urea, 2 M thiourea,
and 30 mM Tris-HCl pH = 8.5. The sample was then centrifuged for 15 min at 12,000× g
and the supernatant was stored at −20 ◦C until further analysis.

2.2.4. Protocol #4

The same procedure as protocol #3 but with a different lysis buffer: 5 mM HEPES pH
8, 10 mM MgCl2, 140 mM NaCl and 0.01% Tween 20.

2.2.5. Protocol #5

Total of 1 × 107 cells were incubated with 375 µL of hypotonic buffer (30 mM HEPES
pH = 8, 15 mM KCl, 2 mM MgCl2, 1 mM EDTA and 20% glycerol) supplemented with 10%
(v/v) laurylmaltoside (n-Dodecyl-β-D-maltoside) for 30 min in rotation at 4 ◦C. Afterward
centrifugation at 16,000× g for 5 min was carried out and the supernatant containing the
proteins was collected.

2.2.6. Protocol #6

Similar to protocol #5 with a difference that the lysis buffer was supplemented with
1.5% (v/v) Triton X-100 instead of laurylmaltoside.

2.2.7. Protocol #7

In this case, 1 × 107 cells were incubated with 375 µL of buffer (5 mM HEPES pH 8,
10 mM MgCl2, 140 mM NaCl and 0.01% Tween 20) and it was centrifuged for 15 min at
13,000× g. After centrifugation, the supernatant enrichment in cytoplasmic (Cyt) proteins
was collected and the pellet was re-suspended in 375 µL of buffer supplemented with 38%
(v/v) octyl-β-D-glucopyranoside. The sample was sonicated on ice (3 times 3 s bursts and
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1 min break). After sonication, it was incubated for 30 min on ice and subsequently, it
was centrifuged for 15 min at 13,000× g. Finally, the supernatant enriched in membrane
proteins (Mem) was collected [26].

2.2.8. Protocol #8

Ramos cell pellets were re-suspended at a volume equal to 5 times that of the cell
pellet in hypotonic buffer supplemented with protease and phosphatase inhibitors and
0.015% digitonin following the methodology published by Díez P. et al., 2015 [19].

Then, it was incubated on a rotatory shaker for 30 min and then it was centrifuged
for 5 min at 500× g. After centrifugation, cytoplasmic (Cyt) proteins were found in the
resulting supernatant 1. The pellet 1 was washed 3× with hypotonic buffer and it was
centrifuged for 5 min at 500× g at 4 ◦C. The following fractions were processed similarly in
a stepwise manner. For the supernatant 2 containing organelle (Org) proteins, a hypotonic
buffer was supplemented with 0.5% Tween 20; for the supernatant 3 containing nuclear
(Nuc) proteins, a hypotonic buffer supplemented with 14 mM NaCl was used; for the
supernatant 4 containing membrane (Mem) proteins, a hypotonic buffer supplemented
with 1% laurylmaltoside was used.

2.2.9. Protocol #9

Similar procedure as protocol #8 for cytoplasmic and organelle subcellular fractions.
The membrane fraction was extracted with a hypotonic buffer supplemented with 0.5%
octylphenoxy poly(ethyleneoxy)ethanol (IGEPAL) and centrifuged for 5 min at 3000× g. A
hypotonic buffer supplemented with 1% laurylmaltoside was used for the extraction of the
nuclear fraction.

2.3. Proteomics Analysis
2.3.1. Protein Digestion and LC-MS/MS Analysis

Each lane in SDS-PAGE gel (loaded with 15 µg protein extract) was cut into five
equal fragments and digested using the method described by Olsen et al. with slight
modifications (each piece was destained with 15 mM potassium ferrocyanide and for
reduction and 50 mM sodium thiosulfate was used for the alkylation process) and incubated
with 10 mM DTT at 56 ◦C for 45 min and then 55 mM iodoacetamide (IAA) was added
and incubated at room temperature (RT) for 30 min, respectively. Trypsin (6.25 ng/mL)
at 37 ◦C for 18 h was used for protein digestion, and the peptide solution was acidified
with formic acid (FA) and desalted using C18-Stage-Tips columns) [19,27]. Samples were
partially dried and stored at −20 ◦C until analyzed by LC-MS/MS.

A nanoUPLC system (nanoAcquity, Waters Corp., Milford, MA, USA) coupled to
an LTQ-Velos-Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA)
via a nanoelectrospray ion source (NanoSpray flex, Proxeon, Thermo) was used to study
with LC-MS/MS. Peptides dissolution was carried out using 0.5% FA/3% acetonitrile
(ACN). A trapping column (nanoACQUITY UPLC 2G-V/M Trap Symmetry 5 µm particle
size, 180 µm × 20 mm C18 column, Waters Corp., Milford, MA, USA) was used to load.
Separation was made with a linear gradient from 7% to 35% solvent B (ACN/0.1% FA)
at a flow rate of 250 nL/min over 120 min in a nanoACQUITY UPLC BEH 1.7 µm, 130 Å,
75 µm × 250 mm C18 column (Waters Corp., Milford, MA, USA) [19,26,27]. Tandem mass
spectra (MS/MS) acquisition and survey MS scan were applied to a data-dependent auto-
matic switch using the positive ion mode of the nUPLC-LTQ-Orbitrap Velos. Acquisition
scan was made with lock mass option enabled for the 445.120025 ion and mass range of
m/z 400 to 1600. In the ion trap for fragmentation by collision-induced dissociation with
35% normalized energy, 10 ms activation time, q = 0.25, ± 2 m/z precursor isolation width
and wideband activation, we selected the 20 peaks with the most intensity and with ≥2
charge state and above the 500 intensity threshold. Automatic gain control was 1 × 106 for
MS and 5 × 103 for MS/MS scans and dynamic exclusion was enabled for 90 s [19,26,27].
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Table 1. Summary of protein extraction procedures.

Protocols

Buffer elements #1 #2 #3 #4 #5 #6 #7 #8 #9

Step 1

TCEP 1 1 1 1 1 1 1 1 1 1
PMSF 1 1 1 1 1 1 1 1 1 1
NaF 1 1 1 1 1 1 1 1 1 1

Sodium orthovanadate 1 1 1 1 1 1 1 1 1 1
β-glycerophosphate 1 1 1 1 1 1 1 1 1 1

Phosphatase Inhibitor (mM)

Sodium pyrophosphate tetrabasic decahydrate 1 1 1 1 1 1 1 1 1 1
NaCl 140 - - 140 - - 140 - - 400Salt (mM) KCl - - - - 15 15 - 15 15 -

Nuclear envelope protector (mM) MgCl2 - - - 10 2 2 10 2 2 2
Metalloproteinase inhibitor (mM) EDTA 50 - - - 1 1 - 1 1 1

Urea - 9 7 - - - - - - -Chaotropic agent (M)
Thiourea - - 2 - - - - - - -
Tris/HCl 20 - 30 - - - - - - -Buffer solution (mM)
HEPES 20 - 5 30 30 5 30 30 30

Thickening agent (%-v/v-) Glycerol 10 - - - 20 20 - 20 20 -
IGEPAL 1 - - - - - - - - -
Tween 20 - - - 0.1 - - 0.1 - - -

Laurylmaltoside - - - - 10 - - - - -
Non ionic detergent (%-v/v-)

Triton X-100 - - - - - 1.5 - - - -
Protocols

Buffer elements #1 #2 #3 #4 #5 #6 #7 #8 #9

Step 1 Digitonin - - - - - - - 0.015 0.015 -Non ionic detergent (%-v/v-)
Octyl-β-D-glucopiranoside - - - - - - 38 - - -

Step 2 Non ionic detergent (%-v/v-) Tween 20 - - - - - - - 5 5 -

Step 3 Salt (mM) NaCl - - - - - - - 14 - -
IGEPAL - - - - - - - - - 0.5

Step 4
Non ionic detergent (%-v/v-)

Laurylmaltoside - - - - - - - 1 - 1

Centrifugation
Time (min) 15 15 15 15 5 5 15 5 5 5

103× g 15 15 12 12 16 16 15 0.5 0.5 3/15

Legend

Phosphatase Inhibitor Salt Nuclear envelope protector Metalloproteinase inhibitor

Chaotropic agent Buffer solution Thickening agent Non ionic detergent

Centrifugation
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2.3.2. Database Search

Raw data were converted into Mascot general file (.mgf) and target-decoy strategy
was used to search in the neXtProt database (release 2016-02). Comet version (v.) 2015.01
rev.2 [28] was used to identify the peak list (.mgf file) obtained from MS/MS spectra and
SearchGUI v. 1.30.1 [29] was used.

Concatenated target/decoy [30] version of the human complement of neXtProt release
2016-02 (41,992 sequences) was used for protein identification. SearchGUI v. 1.30.1 was
used to design decoy sequences (the reverse target sequences) [29]. The process for the iden-
tification of the settings was as follows: trypsin with a maximum of two missed cleavages;
10.0 ppm as MS1 and 0.5 Da as MS2 tolerances; fixed modifications: carbamidomethyla-
tion of cysteine (+57.021464 Da). The variable modifications were acetylation of protein
n-terminus (+42.010565 Da) and oxidation of methionine (+15.994915 Da) [19,26–30].

PeptideShaker v. 0.41.1 [31] was used to infer peptides and proteins from the identified
spectra. A method, as the one published by our group in 2015, was used for the validation
of decoy hit distribution (at a 1.0% False Discovery Rate—FDR—for Peptide Spectrum
Matches –PSMs-, peptides and proteins) [19]. It is obtained at protein/peptide/PSM levels,
the FDR (%), true positives, and false positives values for each replicated (1, 2, 3): Cyt 1
(0.99, 2899, 29/0.98, 10474, 104/1.0, 17627, 178); Cyt 2 (1.0, 3183, 32/1.0, 12897, 130/1.0,
20147, 203); Cyt 3 (0.99, 2802, 28/0,99, 10857, 109/1.0, 5666, 57); Mem 1 (0.93, 1166, 11/0.97,
2651, 26/0.99, 1303, 13); Mem 2 (0.97, 1122, 11/0.97, 1937, 19/0.99, 1607, 16); Mem 3 (1.0, 893,
9/0.98, 1523, 15/1.0, 1291, 13); Org 1 (0.97, 2543, 25/0.99, 7503, 75/0.99, 10305, 103); Org 2
(0.99, 2294, 23/0.99, 6919, 69/0.98, 4933, 49); Org 3 (0.96, 2465, 24/0.98, 7045, 70/1.0, 10507,
106); Nuc 1 (0.99, 2498, 25/0.98, 7145, 71/0.97, 915, 9); Nuc 2 (0.96, 2577, 25/1.0, 8938, 90/1.0,
4469, 45); Nuc 3 (1.0, 2872, 29/0.99, 10937, 109/0.99, 4585, 46). The protein-level FDR is an
estimate and not all proteins that exceeded the threshold were “confidently identified”.

The mass spectrometry data and the identification results have been deposited to the
ProteomeXchange Consortium [32] via the PRIDE partner repository [33] with the dataset
identifier PXD003939 and 10.6019/PXD003939. The data can be accessed with the following
credentials upon login to the PRIDE website (http://www.ebi.ac.uk/pride/archive/login,
accessed on 30 March 2021): Username: reviewer85106@ebi.ac.uk, Password: 0fVloZfQ.

2.3.3. Quantitative Analysis of MS/MS Datasets

Raw data were analyzed as reported by Paula et al. in 2021 [34]: i. For expression level
measuring, the Label-Free Quantification method MaxLFQ [35] with the MaxQuant Suite
v. 1.5.3.30 was used [36]. ii. PTXQC package v. 0.80.1 [37] in R v. 3.2.4 [38] was utilized
for quality control analysis. iii. Perseus framework v. 1.5.3.2 was performed for ulterior
analysis. Additionally, for each subcellular fraction (Mem, Cyt, Org and Nuc) total proteins
and exclusive proteins were determined.

2.3.4. RNA-Sequencing Transcriptomics

RNA-Seq data from Ramos B-cell line was obtained with Illumina Genome Analyzer
IIx with paired layout (experiment SRX105534: http://www.ncbi.nlm.nih.gov/sra/SRX105
534, accessed on 30 March 2019 taken from the study SRP00931 (http://trace.ncbi.nlm.nih.
gov/Traces/sra/?study=SRP009316, accessed on 30 March 2019) [39] from SRA (Sequence
Read Archive) database. Gene expression analysis consisted of calculated values of FPKM
fragment per kilobase of exon per million fragments mapped) on base for each gene on
the following steps [19]: i. Use of SRA tools [40] to obtain the SRR387395 dataset from
SRA database [40] and the subsequent conversion of the SRA file to paired-end fastq files;
ii. trimming of the data with Trimmomatic [41]; iii. use the program STAR [42] to align the
reads to ENSEMBL GRCh37 genome; iv. generation of a binary sequence alignment map
(BAM) with SAMtools [43]; v. calculating the FPKM value for each gene with CuffLinks
from the BAM files [44]; vi.-Use of the neXtProt ID mapping table to map ENSG_IDs within
the neXtProt database v. 2016-02 (ftp://ftp.nextprot.org/pub/current_release/mapping/,

http://www.ebi.ac.uk/pride/archive/login
http://www.ncbi.nlm.nih.gov/sra/SRX105534
http://www.ncbi.nlm.nih.gov/sra/SRX105534
http://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP009316
http://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP009316
ftp://ftp.nextprot.org/pub/current_release/mapping/
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accessed on 30 March 2019). Finally, a total of 19,518 neXtProt IDs could be mapped within
the RNA-Seq dataset, out of this 9523 neXtProt IDs had FPKM > 1.

2.4. Biotin Protein Labeling

Protein extracts obtained from protocols #1, #4, #5, #6, #7, #8, and #9 were biotin-
labelled following the procedure described by Häggmark A. et al. 2013 [45]. All the cell
lysates were incubated with two different concentrations (10 µg/µL—protocol A—and
1 µg/µL—protocol B-) of NHS-PEG4-biotin (Thermo Scientific, no: 21363, USA) for 2 h at
4 ◦C. Biotin-labeling reactions were stopped with 4.5 µL for protocol A and 50% of the
volume of the biotin-labeling solution for concentration for protocol B of 0.5 M Tris-HCl
pH = 8.

After that, Amicon® Ultra-0.5 centrifugal filter 3K (Millipore-Merk, Damrstad, Germany)
was used for removing the excess of biotin until a final volume of 110 µL (maximum
volume of injection in column HPLC). In both approaches, 75 µg of protein was conjugated
with biotin.

2.5. Size Exclusion Chromatography (SEC): Fast Protein Liquid Chromatography (FPLC)

Equipment HPLC 1100 series (Agilent) and column Superdex® 200 Increase 10/300 GL
(GE Healthcare, Illinois, Sigma-Aldrich, USA) was used for protein fractionation based
on molecular weight (MW). As MW standards, a mix of five purified proteins (Ferritin—
440 kDa, aldolase—158 kDa-, conalbumin—75 kDa, ovalbumin—43 kDa and ribonuclease
A—13.7 kDa) was used. Each sample was fractionated and collected in 24 aliquots at
0.5 mL/min. (flow rate) and PBS 1X Na2+/K+- tween 20 0.5% (v/v) as running buffer.

Then, all 24 collected fractions were merged in 8 fractions within defined MW ranges
(fraction 1—166–473 kDa, fraction 2—121–142 kDa, fraction 3—74–103 kDa, fraction 4—
54–63 kDa, fraction 5—33–46 kDa, fraction 6—24–28 kDa, fraction 7—17–21 kDa and
fraction 8—11–15 kDa) by using Amicon® Ultra-0.5 centrifugal filter 3K (Millipore-Merk,
Germany) until a final volume of 100 µL. All steps were performed at 4 ◦C. Each collected
fraction was stored at −20 ◦C until incubation for protein microarray.

2.6. Protein Microarrays

Microarray preparation and performance evaluation were done following the proce-
dures previously described by Sierra-Sánchez et al., 2017 [46]. The glass slide surface was
activated by incubation with 2% (v/v) 3-(2-Aminoethylamino) propyldimethoxymethyl
(MANAE) silane in acetone for 30 min and slight shaking at RT [47]. Then, activated glass
slides were washed with acetone and Milli-Q water and dried with compressed filtered
air. For antibody array printing, a non-contact inkjet printing technology (Arrayjet Inc.,
Edinburg, UK) was employed with a slide-out of 7 similar subarrays and 5 replicates
per sample. The array content is described in Table S1 where 205 antibodies targeting
162 proteins, among positive and negative controls, were included (Table S2). All the
samples were prepared at 1:1 (v/v) dilution with JetStar™ (Arrayjet Inc., Edingburgh, UK)
printing buffer C.

2.7. Evaluation of Array Performance at Different MW Fractions

Protein microarrays were blocked with blocking solution PBS and 1% blocker BSA—
10X, (Thermo Fisher Scientific, USA) for 1 h at RT with mild stirring. Then, blocked protein
microarrays were thoroughly washed with distilled water. Regarding sample handling,
50% volume of each 24 collected fractions was processed with epitope retrieval treatment
(30 min at 56 ◦C and 1 min at 20 ◦C) and at last, the remaining 50% samples were combined
in one single solution. After that, 100 µL per subarray of each mix were incubated at 4 ◦C,
with mild stirring. After overnight incubation, 100 µL of Cy3- Streptavidin (1:200 -v/v-) was
added to each subarray, and it was incubated for 1 h in darkness in a humidified chamber
at RT. Finally, the protein microarrays were washed and dried for further acquisition of
array images. All steps were performed at RT unless otherwise specified.
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2.8. Image Analysis and Data Acquisition

TIFF images obtained at different exposition times to achieve optimal images with
SensoSpot® Fluorescence Microarray (Sensovation Gmbh, Radolfzell, Germany) were
analyzed using GenePix Pro v. 6.0 software. Parameters were set to quantify light intensity
values at Cy3 (λ = 532 nm) emission wavelength.

2.9. Protein Microarray Data Processing

Signal intensity values were processed by performing background subtraction, filter-
ing, and housekeeping processes.

Normalization

To remove the background, the following was used:

τiMMn = (δ̃− k)− 2σk

where:
τiMMn : signal intensity value spot i containing MasterMix (MMn).
δ̃: median intensity value per spot.
k: constant of subarray background intensity.
2σk: variance of signal intensity background per subarray.
To remove the background effect of the mastermix (MM), as the same MM for each

antibody was used, the following equation was used:

Si = τiMMn − (δ̃MMnmax
+ δ̃MMnmax

·0.05)

where:
Si: signal intensity value of spot i without background.
δ̃MMnmax

: maximum value of median intensity MM.
After background subtraction, the signal was normalized against a positive control

(biotin). For further analysis, only the proteins detected with >50% of spotted antibodies
displaying a normalized signal > 0 were included.

2.10. SEC-MAP Database

To combine the SEC-MAP data sets with transcriptomics and other proteomics char-
acterization (LC-MS/MS), a database was designed and developed containing: i. Protein
ratio at SEC-MAP for each MW fraction and protein extraction procedure; ii. Antibody
info: type (monoclonal/polyclonal), supplier, and developed; iii. Protein ID, NextProt ID,
Uniprot ID, MW (expected/observed/theoretical, etc.,), subcellular localization; iv. Detec-
tion by LC-MS/MS previously reported in the cell type of interest [19].

2.11. Integration of Transcriptomics, Proteomics, and SEC-MAP Datasets

A database called “complete protein mapping” was designed and developed from
reported LC-MS/MS characterization of Ramos cell line in our previously reported stud-
ies [19]. Total of 5672 proteins were detected by unique tryptic peptides in three technical
replicates and the subcellular localization (Cyt, Mem, Org, Nuc) was included (Table S3).
The genes coding for each of the detected proteins were mapped to chromosomes with the
R-package BiomaRt [48]. neXtProt IDs are used to merge the different datasets (RNA-Seq,
LC-MS/MS, and SEC-MAP). In the case of proteins with more than one gene IDs, the
gene ID with the highest FPKM value was selected, Table S4. In this study, a protein
was considered to be fully observed if: i. Number of peptides ≥ 1; ii. FPKM ≥ 1; or iii.
QAS value ≥ 1. Biological function analysis of observed proteins is based on DAVID and
GeneTerm-Linker tools [49,50], which were used for functional enrichment analysis (FEA).
Databases selected to find genes with annotated enriched terms were: (i) Gene Ontology
(GO) using GO_BP, GO_CC and GO_MF; (ii) KEGG_PATHWAY; and (iii) the INTERPRO
protein structural domain databases were used for generation of functional enrichment
analysis (FEA). Moreover, a platform STING v. 11.0 [51] for the protein interactions ob-
tained from SEC-MAP was used. For signaling pathways observed from the integration
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of proteomics and transcriptomics datasets, KEGG v. 93.0 [52] and Reactome v. 71 were
used [53].

2.12. Visualization of Transcriptomics, Proteomics, and SEC-MAP Datasets

In this study, the software called Infinicyt™ 2.0 (Cytognos SL, Salamanca, Spain) has
been employed for the visualization of multidimensional and multiparametric data sets. For
that, a classification of each immunoassay was based on expected and theoretical subcellular
localization and its correlation with the observed subcellular localization by the LC-MS/MS
characterization. Hence, proteins were classified—according to subcellular localization—
by positive selection in the following order: Nuc, Cyt, Mem, Org, Nuc-Org, Nuc-Cyt,
Nuc-Mem, Org-Cyt, Org-Mem, Cyt-Mem, Nuc-Org-Cyt, Nuc-Org-Mem, Nuc-Cyt-Mem,
Org-Cyt-Mem, and Nuc- Org-Cyt-Mem. Additionally, for each classified group, proteomics
and transcriptomics integration were represented by APS, t-SNE plot, population burst,
2D (file number—y-axis- and each subcellular localization—x-axis-, and LFQ logarithmic—
y-axis- and FPKM logarithmic—x-axis-). All these graphs (including 3D, tables, etc.,) are
reported in Supplementary Materials Dataset I.

After that, a second classification was established according to proteomics values vs.
transcriptomics values, represented by Log LFQ vs. Log FPKM, depicted in a 2D plot
which allowed for classifying (according to proteomics vs. transcriptomics) five additional
groups named: average population, average population, low Log LFQ vs. progressive
Log FPKM, high Log LFQ vs. low Log FPKM, high Log LFQ vs. Log FPKM, and a group
of outliers. Then, each group of proteins according to the subcellular localization was
re-classified on these additional groups.

3. Results

In Figure 1, an overall representation of the experimental workflow performed for
the systematic and multipronged multi-omics characterization and the multi-dimensional
bioinformatics integration is shown.

3.1. Protein Extraction Strategies for Multi-Pronged Proteomics Characterization

Knowing and exploring the different cell lysis strategies is fundamental to know the
compatibility of the different proteomics methodologies and the feasibility to perform an
integration of multi-pronged proteomic strategies (LC-MS/MS and SEC-MAP, for example)
(Figure 1). For that reason, this study compares nine different protein extraction methods
(as described in materials and methods section -M&M-) on a cell line of interest (Ramos cell
line, Burkitt’s lymphoma, RA1—ATTC: CRL-1596-). Each method is different regarding the
chemical composition (Table 1); therefore, to allow a better understanding and comparison
between them, they are named from #1–#9. In addition, protocols #7–#9 allow protein sepa-
ration at different subcellular localizations. Then, all the protein extraction strategies—and
subsequent chemical biotin labeling—are evaluated for SEC-MAP performance, according
to: i. Efficiency of protein extraction: direct correlation with protein abundance (Figure S1)
and expected subcellular localization. ii. Compatibility with protein labeling: biotin is com-
monly used in protein microarrays; however, several chemical components of the lysate
buffers can cause interferences in the biotin conjugation protocol and array performance
must be evaluated under these conditions (Figure S2). iii. SEC: to correctly analyze multi-
protein complexes, the array performance is evaluated at several MW fractions to confirm
that protein abundance is not affected by protein size (MW) and subcellular localization.

Performance of SEC-MAP: Effect of Protein Extraction Procedures and Biotin Conjugation

The total amount of protein extracted with each of the strategies show wide variability.
For the protein total extraction protocols, the amount of protein obtained ranged between
34 and 61 µg/protein total per 106 cells obtained, protocol #2 and #4, respectively. In the
case of subcellular enrichment, the amount with membrane extraction protocol ranged
from 169 to 270 µg/protein total per 106 cells with protocol #5 and #6; and subcellular
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fraction protocols (#9 & #7), the range is between 82 and 166 µg/protein total per 106 cells,
respectively. These results confirm that the properties of chemical reagents—presented
in the extraction buffers—are critical for the relative and/or absolute determination of
protein abundance; but, it seems that protein distribution is not influenced as they remain
comparable among all the protocols (Figure S1B).
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About biotin conjugation, it does not show differences in all the analyzed MW by
SEC (fraction 1—142–437 kDa –, fraction 2—74–121 kDa –, fraction 3—46–63 kDa –, frac-
tion 4—26–39 kDa –, fraction 5—11–24 kDa). However, for antibody array performance,
biotin-conjugated proteins present differences after SEC analysis (Figure S3). These are
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directly related to the effect on epitope recognition caused by chemical modification during
biotin labeling. For SEC-MAP performance, it is also relevant that optimal conditions
for SEC which were studied in all protein extractions in eight pre-defined MW ranges
in the same antibody microarray. First, the number of identified proteins different is
considered a parameter for comparison across the studied protein extraction strategies
(Table S5). In this case, protocol #1 presents the highest number of identified total proteins,
and protocol #6 the lowest. It is due to different detergent compositions in each protein
extraction buffer (Figure S4A).

Moreover, a comparison of the observed subcellular localization of the proteins is
made for each extraction procedure. A higher number of identified proteins are reached
by protocol #1 and the lowest one by protocol #4. When the comparison is focused only
on membrane proteins, protocol #5 displayed a higher number of identified proteins than
protocol #6 (Table S6, Figure S4A). Likewise, protocols #8 and #9 for subcellular protein
extractions (Cyt, Mem, Nuc, Org) gave similar numbers of identified proteins in all studied
subcellular localizations (Table S6, Figure S4). As proof of concept, the SEC-MAP analysis
focuses on BID, CASP 7, CASP 8, LYN, SYK, BTK, CDKN1B, DNAJB1, HSPD1, HSP90AA1,
HIST1H4A, BAX, BAK1, PAK1|1, and CCNB1. Moreover, in the known subcellular
localization are detected all of them (Table S7). Additionally, SEC-MAP has also detected
proteins with more than one localization; for example, in 4 subcellular localizations (Cyt,
Mem, Org, Nuc), BCL-2 is detected by protocol #8 and 3 subcellular localizations (Cyt, Org,
Nuc) by protocol #9 (Table S7).

Furthermore, analysis of subcellular protein localization by SEC-MAP has evaluated
the effect of different protein extraction procedures. One example is RELA, which is de-
tected in Cyt by protocol #7 and in the 4 subcellular fractions by protocol #8 (corroborating
the reported subcellular localization and observed in the LC-MS/MS datasets). Another
illustrative example is MAPK1, which is detected in the Cyt by protocols #7 and 8; how-
ever, protocol #9 detects it in Nuc localization. The observed subcellular localizations also
correlate with LC-MS/MS datasets. (Table S7).

These results show: i. Protein extractions strategies are critical in the identified protein
number by SEC-MAP. ii. Extraction strategy may be critical in the orthogonal integration
with other omics datasets.

3.2. Deciphering Differential Protein Profiles by SEC-MAP
3.2.1. Analysis of Intracellular Signaling Pathways by SEC-MAP

This study integrates multiplex antibody microarray detections (MAP) with sub-
cellular protein localization by SEC analysis. At first glance, a normal distribution of
identified proteins (in all the studied protein extracts) is observed in the analyzed MW
range (437-11 kDa) (Table S5 and Figure S5), where proteins are also detected in MW
fractions that correspond with large protein sizes (Figure 2).

SEC-MAP approach allows the analysis of intracellular signaling pathways by si-
multaneous detection of multiple proteins. For this reason, several well-characterized
signaling pathways are explored in the Ramos cell line: i. apoptosis regulation, ii. apop-
tosis inhibition, iii. BCR signaling pathway, iv. cell cycle control, v. STING pathway, vi.
Damage-associated molecular patterns (DAMPs), vii. MAPK signaling, viii. senescence
signaling [54–57]. In fact, SEC-MAP approach simultaneously detects heat shock proteins
(HSP), Histones (3, 4), BCL-2, BAX, BAK1, BID, CASP7-8-9, IFN-γ, IL10, IL6, TNF-β, NF-
Kβ1, TP53, RELA, MAP2K1, MAPK1, FOS, among others. Figure 3A shows the summary
of SEC-MAP analysis of these proteins at the expected molecular weight (MW and/or
expected SEC—fraction), as well as the detection of several proteins in other MWs than
the reported one (Table S7). Moreover, the SEC-MAP approach allows us to analyze the
signaling pathways based on protein localization (≥1 subcellular localization in one step
by extraction protocols #7, #8, #9). Figure 3B shows a similar overall distribution for all
SEC-MAP assays performed (Table S8).
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3.2.2. Multi-Protein Complex Analysis by SEC-MAP

Nowadays, the inhibition of multi-protein complexes is one of the chemotherapeutical
strategies in Burkitt’s lymphoma, such as Venetoclax, Nutlin-3, Ibrutinib work by inhibit-
ing the formation of multi-protein complexes (Figure 4) [57–59]. In this study, several
multi-protein complexes are analyzed by SEC-MAP. These include BCL-2, BCL2L11, BID,
BAD, BAK1, CASP3, and CASP8, which have been detected as multi-protein complexes
(Figure 4A and Supplementary Materials Dataset II).

Moreover, the feasibility of SEC-MAP for the analysis of multi-protein complexes
in only one intracellular signaling pathway. In Figure 4B, the BCR signaling pathway is
analyzed by SEC-MAP, which reports protein complexes for PLCG2, SYK, CD19, ZAP70,
LYN, BLNK, and BTK (Supplementary Materials Dataset II). Additionally, SEC-MAP
analysis seems feasible to study protein complexes with discrimination at subcellular
localization. A few illustrative examples are depicted in Figure 5A for apoptosis, Figure 5B
for STING signaling and in Figure 5C for Ibrutinib targets (BTK, LYN, BLNK, ZAP70) at
multiple subcellular localizations. Among these, SEC-MAP analysis also might be feasible
to determine interacting partners, such as MDM2-TP53 (Figure 4C) and/or decipher novel
protein complexes by the SEC-MAP analysis (Figure S6).

3.2.3. Analysis of Specific Protein Isoforms and/or Variants by SEC-MAP

In the content of protein microarray, there are spotted antibodies targeting specific mo-
tifs/amino acid residues with post-translational modifications (PTMs) of the same proteins
(see M&M sections and Supplementary Materials Dataset II). Moreover, several antibodies
target the same protein (i.e., monoclonal -mAb-, polyclonal -pAb-). Hence, whether SEC-
MAP analysis could use to evaluate the specificity and/or selectivity of antibodies against
a particular protein, as well as to evaluate protein states (such as monomer, complexed,
degraded) or to provide info about isoforms/variants of a particular protein (Table S9).
Here, FOS protein could be a representative example, which is detected by one antibody in
two subcellular localizations (Protocol #8: Org, Cyt), and in three subcellular localizations
(Protocol #9: Mem, Org, Nuc) by a different antibody (Table S9). As proof of concept, a few
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protein isoforms are highlighted (in all cases, all antibodies used are in the M&M section):
i. 4E-BP1 (clone 53H11) Rabbit mAb (as described in the M&M) and phospho-4E-BP1
(Thr37/46) (clon 236B4) Rabbit mAb. The rabbit mAb (clone 4E-BP1) allowed the protein
identification in protocols #1, #4, #5, #7 (Cyt), #8 (Mem, Org and Cyt) and #9 (Mem, Org,
Cyt and Nuc), while phospho-4E-BP1 (Thr37/46) is detecting the isoform only by protocol
#1. ii.-STAT3 phospho-protein isoforms are detected SEC-MAP analysis by both antibodies
(pAb-clone C-20-to STAT3 and p-STAT3 mAb-clone B-7-) with all the protein extraction
protocols (#1 to #9). iii.-p38 isoforms: Several antibodies against phospho-isoforms of
p38 (Phospho-p38 MAPK—Thr180/Tyr182-, (Rabbit mAb clone D3F9) the native form
(Rabbit mAb clone 9212) detect the phosphorylated isoforms by SEC-MAP, allowing the
determination of the relative abundance.
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Figure 4. Multicomplex protein analysis by the SEC-MAP approach. Multiprotein complexes were
detected at different protein extraction procedures. Peaks located at the same molecular weight
(MW) fraction, and not found in their theoretical (TH) MW fraction, represent complexes formed by
proteins when they are at a fraction above the expected one. When it is found in fractions below those
expected, we speak of protein being hydrolyzed. If it is detected in theoretical fraction (dotted line),
protein is found alone. (A). Proteins related to the BCL-2-BCL2L11 interaction signaling pathway.
(B). Proteins related to the BTK pathway. (C). MDM2-TP53 interaction.
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3.2.4. Orthogonal Integration of SEC-MAP with Multi-Omics Datasets (RNA-Seq &
LC-MS/MS)

Regarding the results of SEC-MAP integration with RNA-seq and LC-MS/MS datasets
for Ramos cell line, a pipeline for orthogonal integration of datasets has been designed
(Figure 6). First, a systematic database containing the global information from SEC-MAP
analysis (global proteome, multi-protein complexes, specific protein isoforms/state, etc.)
(Table S5) was required. Subsequently, correlations between the protein array content,
RNA-seq and LC-MS/MS data were explored. Accordingly, 162 proteins are studied
by SEC-MAP, RNA-seq, and LC-MS/MS, showing a strong inter-relationship between
the proteins detected by these three omics strategies. Taking into account the orthog-
onal integration, first as the starting point, two-by-two correlations could be reported:
i. 55.90% matching proteins between SEC-MAP and LC-MS/MS characterization; ii. 50.93%
matching proteins between SEC-MAP and RNA-Seq information. iii. 99.59% matching
proteins characterization between RNA-Seq and LC-MS/MS (see Table S10). Furthermore,
according to neXtProt release 2020.01-17, 518 identified proteins belong to PE1, 6 to PE2,
and 6 to PE5 of MS/MS information only and, 5121 belongs to PE1, 3 to PE2, and 3 to PE5
corresponding to the integration of MS/MS and RNA-Seq data (Table S11).

In this study, aiming to provide an approach suitable for globally graphical visualiza-
tion of the orthogonal integration of multi-omics datasets (SEC-MAP, RNA-seq, LC-MS/MS),
a bioinformatics tool—named Infinicyt (https://www.cytognos.com/infinicyt/2.0,
accessed on 30 March 2019; Cytognos SL, Salamanca, Spain)—has been successfully imple-

https://www.cytognos.com/infinicyt/2.0
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mented. This software tool also allowed to study a quantitative correlation between these
datasets (i.e., FPKM and LFQ, for RNA-seq and LC-MS/MS respective) (Figure 7).
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According to STRING and Reactome databases, it is observed that pathways related
to the immune system and metabolism are significantly represented in 5 protein clusters.
Metabolism of proteins and RNA pathways, cellular responses to external stimuli, tran-
scription and DNA repair and cell cycle are represented in 4 proteins groups according to
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different high/low value log [LFQ] vs. high/low values of log [FPKM]. Finally, develop-
ment biology and chromatin organization have been represented in three proteins groups
according to log [LFQ] and log [FPKM] values (Table S12).

Bearing in mind similar patterns in the correlation between log[LFQ] and log[FPKM],
the t-SNE plots provide insights from the functional point of view (within group of proteins):
i. vesicle-mediated transport display high values on both parameters (Figure S7A), ii. or-
ganelle biogenesis and maintenance pathway displays high values in both parameters
(Figure S7B); iii. hemostasis, DNA replication and programmed cell death for population
averages appear as outliers on the correlation (Figure S7C,D). Deepening in this analysis by
adding subcellular localization, several groups are observed on t-SNE plots according to the
subcellular localization (Figure S7E–I, Table S12). For example, at Cyt localization, proteins
related to cell–cell communication, programmed cell death, and hemostasis displayed low
log[LFQ] and progressive log[FPKM] values. About proteins with ubiquitous localization
in several subcellular localizations (Cyt + Mem + Nuc + Org) is observed as a homogeneous
group at the t-SNE plot (with both high values, log[LFQ] & log [FPKM]) (Table S12).

4. Discussion

The synergistic integration of multi-omics datasets is highly dependent on multiple
methodological aspects, which are also critical in the design and development of an
algorithm for deepening the biological knowledge of intracellular signaling pathways.
In this study, a simple approach has been designed and developed for the orthogonal
integration of SEC-MAP, LC-MS/MS, and RNA-seq datasets corresponding to a Ramos cell
line as a model. This orthogonal integration allowed—in a particular cellular situation—
to decipher protein expression, isoforms, quantification at peptide and transcript levels,
protein localization, protein interactions which also could be done at multiple cellular
differentiation stages and/or physiological situations; thus, it could help uncover novel
insights about the cellular dynamics and response to external stimulus.

Initially, sample preparation, as protein extraction procedures, has been revealed
which is critical for orthogonal integration of multi-omics because of the expected influ-
ence in relative protein abundance, protein chemistry, protein stability, protein structure,
tryptic digestion, protein solubility, and PTMs. It has been shown that protein extraction
procedures have to be optimized for multi-omics integration because it could be an advan-
tage/disadvantage in multi-pronged proteomics characterization (such as LC-MS/MS and
SEC-MAP). Additionally, the specificity and selectivity of immunoassays are also affected
by chemical labeling for detecting antigen-antibody interaction, which may hinder the epi-
topes and/or alter protein structure. Therefore, it is another critical factor for immunoassay
validation of findings from RNA-seq and LC-MS/MS.

Overall, the importance of protein extraction procedures for further integration of
proteomics with other omics datasets has been revealed. For example, protocols #2 and
#3 have urea in the lysis buffer, which decreases the efficiency of biotin labeling and
subsequent SEC-MAP analysis [60]. Another consideration is the chemical formulation
of lysis buffers, such as the effect of non-ionic detergents (protocols #1, #5 and #6). Here,
the role of critical micelle concentration (CMC) for each detergent is important in the
protein extraction efficiency obtained for protocols #5 and #6. With this, it is shown
that the detergent used in protocol #1 achieves a higher yield on protein extraction in
comparison with other procedures. In this regard, among all protocols studied, protocol
#1 is the one that gives us the best results; while protocol #6 produces the poorest results.
Regarding subcellular localization, protocol #5 seems to be optimized for membrane protein
extraction; meanwhile, for subcellular localizations, protocols #8 & #9 reported similar
performance and effectiveness, with slight differences in membrane subcellular localization
and organelle subcellular localization; which confirms the previously reported results by
our group [19].

Regarding Human Proteome Project, it is a huge effort to detect “missing proteins”;
which are classified into five groups (1–5) according to protein evidence (PE) [61]; then,
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protein enrichment is aligning a useful strategy to identify and detect “missing proteins”
as it is shown in this study because a few proteins (reported as “missing proteins”) have
been detected (mainly on group PE2 and PE5).

Recently, several studies employing SEC (in Escherichia coli, HEK293, osteosarcoma
cells, liver human tissue and others) focused mainly on analysis of protein interactions
(protein-protein, protein-metabolite, protein-small molecules), the difference between
transcriptomics-proteomics levels or in combination with spatial proteomics [17,18,21,26].
In this study, SEC is combined with multiplex protein arrays (MAP) such that, not only
it can identify single proteins, but also detect isoforms and protein complexes. Such use
of SEC-MAP has also been reported by Kirtwodd et al., in 2013 [62]. In this study, it is
observed that proteins are identified in a wide MW range by SEC-MAP; where protocol
#1 seems to yield the best performance in most of the MW range studied; however, few
other protocols give a better identification only for a few of the MW fractions, which might
be related with the subcellular localization, presence of protein complexes, and inherent
chemical properties of the proteins.

Regarding the SEC-MAP integration, many proteins (i.e., PAK1|P1, CCNB1, CASP,
among others) are successfully detected at the expected MW and the subcellular local-
ization as their confirmed existence by transcriptomics and MS/MS datasets. There is
another group of proteins that are detected at the reported subcellular localization but
at different MW, such as, BLC-2, RELA, MAPK1, MDM2, TP53, BLNK, SYK, CD19, LYN,
ZAP70, PLCG2, suggesting the existence of protein–protein interactions and protein com-
plexes. Thus, this approach is amenable for studying protein interaction networks and/or
intracellular signaling dynamic as confirmed previously by our group in this study by
correctly identifying the protein players in the previously reported pathways in this B
lymphocyte cell line (such as senescence, evading growth suppressors, survival and death
pathways, immune system evasion and immunoediting) [26,63–65]. This also opens the
possibility to decipher interactions on newly reported pathways such as DAMPs (damage-
associated molecular patterns), which might be useful for immunotherapies on lymphoma
and leukemia because of their direct relation with the immunogenic cell death (ICD).
Finally, similar to previously described by Díez P. et al. [19], it has been feasible to dis-
criminate between protein groups in particular cell signaling pathways (such as immune
system, metabolism, vesicle-mediated transport, organelle biogenesis and maintenance,
homeostasis, etc.), monitoring subcellular localization and multi-omics correlation.

5. Conclusions

Multi-pronged proteomics characterization is highly dependent on protein extraction
procedures, being a key step for functional outcomes from detection of proteins/multi-
protein complexes in samples. Furthermore, it also reveals critical orthogonal integration
of multi-omics data sets (such as SEC-MAP, LC-MS/MS, RNA-seq) and also provides com-
plimentary info such as multi-protein complexes and subcellular localization. Moreover,
the reported pipeline for multi-omics integration is useful for the HPP, as it systematically
explores the compatibility of multi-omics data sets. Currently, the RNA-Seq technique
provides us with information on the presence-absence of a particular protein of interest;
meanwhile, MS/MS and SEC-MAP add data on protein localization, isoforms, and also,
protein complexation status (complex-monomer-degraded). Consequently, SEC-MAP
analysis seems to be a useful tool for orthogonal multi-omics integration, as it provides
detailed complementary information about MW, subcellular localization, isoforms, PTMs,
and protein complexes. Furthermore, SEC-MAP analysis seems feasible for determining
predicted or unknown protein complexes and/or protein interactions in any sample (either
from cell culture or clinical specimens).

With multi-omics orthogonal integration, it seems feasible to identify if a drug
could target a protein complex of interest. It might help in the selection of drugs for
a particular pathology.
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