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Abstract
The	 combination	 of	 ecosystem	 stressors,	 rapid	 climate	 change,	 and	 increasing	
landscape-	scale	development	has	necessitated	active	restoration	across	large	tracts	
of	disturbed	habitats	in	the	arid	southwestern	United	States.	In	this	context,	program-
matic	directives	such	as	the	National	Seed	Strategy	for	Rehabilitation	and	Restoration	
have	increasingly	emphasized	improved	restoration	practices	that	promote	resilient,	
diverse	plant	communities,	and	enhance	native	seed	reserves.	While	decision-	support	
tools	have	been	implemented	to	support	genetic	diversity	by	guiding	seed	transfer	de-
cisions	based	on	patterns	in	local	adaptation,	less	emphasis	has	been	placed	on	iden-
tifying	priority	seed	mixes	composed	of	native	species	assemblages.	Well-	designed	
seed	mixes	can	provide	foundational	ecosystem	services	including	resilience	to	dis-
turbance,	resistance	to	 invasive	species,	plant	canopy	structure	to	facilitate	natural	
seedling	 recruitment,	 and	 habitat	 to	 support	 wildlife	 and	 pollinator	 communities.	
Drawing	from	a	newly	developed	dataset	of	species	distribution	models	for	priority	
native	plant	taxa	in	the	Mojave	Desert,	we	created	a	novel	decision	support	tool	by	
pairing	spatial	predictions	of	species	habitat	with	a	database	of	key	species	traits	in-
cluding	life	history,	flowering	characteristics,	pollinator	relationships,	and	propagation	
methods.	This	publicly	available	web	application,	Mojave	Seed	Menus,	helps	restora-
tion	practitioners	generate	customized	seed	mixes	for	native	plant	restoration	in	the	
Mojave	Desert	based	on	project	locations.	Our	application	forms	part	of	an	integrated	
Mojave	Desert	 restoration	program	designed	 to	help	practitioners	 identify	 species	
to	 include	 in	 local	seed	mixes	and	nursery	stock	development	while	accounting	for	
local	adaptation	by	identifying	appropriate	seed	source	locations	from	key	restoration	
species.
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1  |  INTRODUC TION

Restoring	 degraded	 environments	 to	 diverse	 and	 resilient	 ecosys-
tems	is	a	fundamental	conservation	goal,	but	one	that	is	increasingly	
challenging	due	 to	accelerating	human	development	and	 rapid	cli-
mate	change	across	much	of	the	globe.	Evidence	suggests	that	di-
versity	 is	key	to	ecosystem	stability	and	ability	to	withstand	novel	
stressors	(Isbell	et	al.,	2015;	Tilman	&	Downing,	1994).	This	pattern	
holds	at	multiple	levels	of	organization	from	the	regional	to	the	plant	
community	and	genotypic	levels	(Oliver	et	al.,	2015).	Awareness	of	
the	fundamental	role	of	diverse,	connected	ecosystems	has	resulted	
in	a	paradigm	shift	in	restoration	ecology,	from	previous	efforts	tai-
lored	for	rapid	soil	stability	and	erosion	control	(e.g.,	use	of	cultivars	
or	soil-	stabilizing	species	from	outside	regions)	to	native	plant	mate-
rials	development	programs	aimed	at	increasing	local	seed	reserves,	
promoting	genetic	diversity,	and	minimizing	risk	from	long-	distance	
seed	 transfer	 (Kettenring	 et	 al.,	 2014;	 Oldfield	 &	 Olwell,	 2015;	
Olwell	&	Riibe,	2016).	Substantial	challenges	remain	for	restoration	
practitioners	 seeking	 to	 apply	 these	 principles	 across	 a	 variety	 of	
disturbed	environments.

The	 desert	 ecoregions	 of	 the	 southwestern	 United	 States	
are	 particularly	 challenging	 environments	 to	 restore	 (Lovich	 &	
Bainbridge,	1999).	These	ecoregions	are	increasingly	threatened	by	
stressors	such	as	climate	change,	which	is	creating	a	hotter	and	drier	
climate	 and	 may	 shift	 seasonal	 precipitation	 patterns	 (Dai,	 2013;	
IPCC,	2013),	putting	local	ecotypes	at	a	phenological	disadvantage	
(Kimball	et	al.,	2010).	Moreover,	widespread	invasions	of	annual	grass	
species	(e.g.,	Bromus tectorum	and	B. madritensis)	have	altered	shru-
bland	communities	across	the	southwestern	United	States	and	con-
tributed	 to	wildfires	unprecedented	 in	size	and	 frequency	 (Brooks	
et	 al.,	 2004;	D’Antonio	&	Vitousek,	1992).	Disturbance	 impacts	 in	
deserts	are	also	compounded	by	the	notoriously	slow	pace	of	plant	
community	recovery	(Engel	&	Abella,	2011;	Webb	&	Newman,	1982).	
Recruitment	 and	 establishment	 of	 desert	 shrubland	 plants	 occurs	
largely	 during	 infrequent	 resource	 pulses,	 with	 little	 regeneration	
outside	 of	 these	 periods	 (Chesson	 et	 al.,	 2004).	 Moreover,	 many	
desert	woody	species	do	not	readily	resprout	after	wildfire	or	sur-
face	disturbance	(Abella,	2009),	and	resprouting	does	not	guarantee	
survival	 following	 disturbance	 (DeFalco	 et	 al.,	 2010).	 Instead,	 re-
plenishment	of	soil	seed	banks	by	seeds	dispersing	from	intact	areas	
depends	 largely	on	 seasonal	precipitation	pulses	 that	 favor	 repro-
duction	(Bamberg	et	al.,	1976;	Meyer	&	Pendleton,	2015).	Persistent	
soil	seed	banks	have	evolved	bet-	hedging	strategies	to	circumvent	
reproductive	failure	 (Angert	et	al.,	2009),	yet	seedling	recruitment	
often	fails	because	disturbance	to	the	soil	surface	diminishes	seed	
banks	(DeFalco	et	al.,	2009;	Esque,	Young,	et	al.,	2010)	and	reduces	
shrub	cover	for	wildlife	and	nurse	plants	that	facilitate	establishment	
of	native	seedlings	(Brown	&	Minnich,	1986;	Cave	&	Patten,	1984),	
particularly	in	the	presence	of	invasive	species	(Esque,	Kaye,	et	al.,	
2010).	 In	 coming	decades,	 the	 footprint	of	 landscape-	scale	distur-
bance	 is	 likely	 to	 increase	across	 the	 southwestern	United	States,	
in	part	due	to	planned	utility-	scale	renewable	energy	development	
(Bureau	of	Land	Management	&	U.S.	Department	of	Energy,	2015;	

Hernandez	et	al.,	2014).	Hence,	 there	 is	a	clear	need	for	effective	
restoration	strategies	that	overcome	ecosystem	stressors	in	this	re-
gion	and	promote	healthy,	diverse,	and	resilient	landscapes.

Seeding	efforts	in	the	desert	southwest	have	often	had	limited	
success	(Knutson	et	al.,	2014),	even	while	the	frequency	and	scale	of	
such	treatments	have	 increased	concomitantly	with	a	shift	 toward	
the	use	of	native	species	(Copeland	et	al.,	2018).	Recently,	national	
programs	such	as	the	National	Seed	Strategy	(Olwell	&	Riibe,	2016),	
Seeds	of	Success	(Haidet	&	Olwell,	2015),	and	the	National	Strategy	
to	Promote	the	Health	of	Honeybees	and	Other	Pollinators	(Vilsack	
&	McCarthy,	 2015)	 have	 funded	 efforts	 to	 put	 “the	 right	 seed	 in	
the	 right	 place	 at	 the	 right	 time”	 and	 supported	 the	 development	
of	 diverse	 native	 seed	 reserves,	 along	 with	 improved	 restoration	
techniques.	 For	 example,	 the	Bureau	 of	 Land	Management	 (BLM)	
Mojave	Desert	Native	Plant	Program	has	taken	a	multi-	faceted	ap-
proach	 that	 uses	 science	 to	 discriminate	 among	 best	 restoration	
techniques,	identify	priority	restoration	species	(Esque	et	al.,	2021)	
and	plant	functional	groups	(Shryock	et	al.,	2014),	and	develop	seed	
transfer	zones	using	landscape	genomics	and	common	garden	stud-
ies	 (Shryock	 et	 al.,	 2017).	However,	 a	 topic	 that	 has	 received	 less	
emphasis,	 but	 has	 a	 large	 potential	 impact,	 is	 the	 development	 of	
geographically	appropriate	seed	mixes	that	promote	diverse	native	
species	assemblages.	Well-	designed	seed	mixes	can	promote	com-
munity	resilience	by	restoring	diversity	(Isbell	et	al.,	2015)	and	func-
tional	traits	(Balazs	et	al.,	2020),	resisting	competitive	pressure	from	
invasive	species	(Abella	et	al.,	2012),	and	providing	essential	cover	
and	forage	for	wildlife	(Esque	et	al.,	2021).	Moreover,	custom	seed	
mixes	can	be	tailored	toward	restoring	plant-	pollinator	associations	
in	 denuded	 areas,	 as	 these	 relationships	 are	 critical	 to	 ecosystem	
function	 (Bucharova	 et	 al.,	 2021)	 and	 support	 biodiversity	 across	
trophic	levels	(Burghardt	&	Tallamy,	2013).

Thus	 far,	 a	 key	 element	missing	 from	 the	 restoration	 practi-
tioner's	toolbox	is	an	accessible	decision-	support	tool	that	incor-
porates	 species	 trait	 information	 and	 habitat	 requirements	 in	 a	
geographical	context,	such	that	restoration	practitioners	can	eas-
ily	create	species	 lists	–		or	 “seed	menus”	–		based	on	restoration	
project	 locations	 (but	see	M’Gonigle	et	al.,	2017).	A	well-	crafted	
seed	menu	can	predict	suitable	species	based	on	their	habitat	dis-
tribution	 and	 the	 environmental	 characteristics	 of	 a	 restoration	
site,	 while	 also	 providing	 species	 attribute	 information	 so	 that	
practitioners	can	emphasize	functional	traits,	pollinator	diversity,	
rapid	growth,	or	other	species	characteristics	in	their	restoration	
designs.	 Although	 seed	 menus	 help	 to	 identify	 suitable	 native	
species,	 one	 complication	 is	 that	 they	 do	 not	 account	 for	 local	
adaptation.	Most	 desert	 species	 are	 adapted	 to	 a	 particular	 set	
of	 environmental	 conditions	 at	 the	 population	 level	 (Baughman	
et	al.,	2019)	 including	climate,	 soil	 characteristics,	 and	pollinator	
associations.	 Introduction	 of	 maladapted	 genotypes	 into	 local	
populations	can	have	negative	consequences	such	as	outbreeding	
depression	or	reproductive	failure	(Hufford	&	Mazer,	2003;	McKay	
et	al.,	2005).	However,	decision-	support	tools	exist	to	guide	seed	
transfer	 decisions	 in	 the	Mojave	 and	 elsewhere	 (Shryock	 et	 al.,	
2018).	We	propose	an	integrated	workflow	that	includes	tools	to	
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select	and	prioritize	species	for	a	given	restoration	site	as	well	as	
to	identify	appropriate	seed	sources	from	each	species	to	account	
for	local	adaptation	or	facilitate	alternative	seed	sourcing	designs	
such	as	genetic	admixture	(Broadhurst	et	al.,	2008)	or	predictive	
seed	sourcing/assisted	migration	(Breed	et	al.,	2013).

Recently,	in	partnership	with	the	Bureau	of	Land	Management's	
Mojave	Desert	Native	Plant	Program,	Esque	et	al.	(2021)	developed	
a	priority	native	plant	species	 list	 (hereafter	 “Mojave	PSL”)	 for	 the	
Mojave	Desert	based	on	a	variety	of	species	traits	and	wildlife	ser-
vices.	This	 list	establishes	species	 targets	 for	 large-	scale	seed	col-
lection	programs	(e.g.,	the	National	Seed	Strategy,	Seeds	of	Success)	
to	prioritize	the	development	of	native	plant	materials	and	seed	re-
serves	for	future	restoration	needs	in	the	Mojave.	Here,	we	extend	
the	utility	of	 the	Mojave	PSL	by	providing	a	spatially	explicit	deci-
sion	support	tool	that	generates	seed	menus	for	project	sites	in	the	
Mojave	Desert.	Our	 new	 application,	Mojave	 Seed	Menus,	 draws	
from	presence-	only	species	distribution	models	(hereafter	SDMs)	to	
predict	suitable	habitat	for	49	species	from	the	Mojave	PSL.	These	
models	predict	where	species	are	likely	to	occur	based	on	climate,	
topography,	 or	 other	 natural	 features	 associated	with	 species	 oc-
currence	records.	By	spatially	stacking	SDMs,	we	generate	interac-
tive	 lists	of	priority	plant	species	for	any	given	 location	within	the	
Mojave.	 Moreover,	 Mojave	 Seed	 Menus	 pairs	 habitat	 predictions	
with	species	attribute	 information	 from	the	Mojave	PSL,	 including	
life-	history,	bloom	and	flowering	traits,	pollinator	associations,	prop-
agation	 techniques,	 importance	as	 forage	or	cover	 for	 the	Mojave	
desert tortoise (Gopherus agassizii),	 and	 response	 to	 disturbance	
(Esque	 et	 al.,	 2021).	We	 describe	 how	 this	 novel	 spatial	 decision-	
support	tool	can	be	used	to	create	detailed	seed	menus	for	Mojave	
restoration	projects,	as	well	as	integrate	with	existing	tools	for	ge-
netically	informed	seed	transfer	designs.

2  |  METHODS

2.1  |  Study site

The	Mojave	Desert	spans	approximately	150,000	km2	in	the	south-
western	United	States.	This	warm	desert	ecoregion	is	characterized	
by	north	to	south	trending	mountain	ranges	and	interlaying	basins	
(MacMahon,	1988).	Elevations	range	from	below	sea	level	in	Death	
Valley	to	over	3000	m	in	the	Panamint	Range	and	Spring	Mountains.	
Alluvial	 fans	and	washes	form	along	mid	to	 lower	elevation	slopes	
and	 contribute	 to	 the	 accumulation	 of	 fine	 particles	 and	 salinity	
in	 lower	basins,	 forming	playas	 in	 closed	basins.	Annual	 precipita-
tion	varies	along	elevational	gradients	but	averages	approximately	
135	 mm,	 with	 much	 of	 this	 occurring	 during	 the	 winter	 months	
(Hereford	 et	 al.,	 2006).	 However,	 summer	 precipitation	 increases	
along	a	longitudinal	gradient,	with	higher	quantities	recorded	in	the	
eastern	Mojave	due	to	summer	 tropical	 storms.	As	with	precipita-
tion,	 temperatures	 vary	 along	 elevation	 gradients	 and	 range	 from	
<0°C	in	winter	to	over	50°C	in	summer	at	low	elevations.	Mean	an-
nual	temperature	is	approximately	17°C.

2.2  |  Study species

We	selected	49	species	for	SDMs	(Appendix	S1)	based	on	their	res-
toration	 importance	 and	 inclusion	 in	 the	 recent	Mojave	 PSL.	 The	
species	selected	here	for	habitat	modeling	are	a	subset	of	those	in-
cluded	in	the	full	Mojave	PSL,	but	include	representatives	from	dif-
ferent	growth	forms	and	lifespans,	as	well	as	foundational	species.	
Selected	species	promote	overall	community	recovery	from	distur-
bance	 by	 providing	 favorable	microsites	 and	 attracting	 animals	 to	
increase	diversity,	such	as	creosote	bush	(Larrea tridentata)	and	the	
Joshua	tree	(Yucca brevifolia	and	Y. jaegeriana)	(Hurd	&	Linsley,	1975;	
Miller	&	Stebbins,	1975;	respectively).

2.3  |  Environmental variables

We	 derived	 14	 environmental	 variables	 to	 serve	 as	 covariates	 in	
SDMs,	which	together	characterize	climate,	topography,	plant	can-
opy,	 and	 soil	 surface	 properties	 for	 the	Mojave	 Desert	 (Table	 1).	
Precipitation	 and	 temperature	 were	 extracted	 at	 collection	 sites	
using	 ClimateNA	 v.	 6.2	 (Wang	 et	 al.,	 2016),	 which	 downscales	
PRISM	data	(Daly	et	al.,	2008)	and	corrects	for	elevational	variation.	
Satellite	 metrics	 incorporated	 plant	 canopy	 and	 soil	 surface	 data	
from	the	moderate-	resolution	imaging	spectroradiometer	(MODIS)	
satellite	 averaged	 across	 a	 minimum	 of	 ten	 years	 (NDVI	 ampli-
tude	 and	maximum	–		USGS	 eMODIS	 Remote	 Sensing	 Phenology,	
https://doi.org/10.5066/F7PC30G1;	 other	 metrics	 –		 Inman	 et	 al.,	
2014).	Topographic	metrics	were	calculated	by	aggregating	a	30	m	
digital	elevation	model	at	a	1	km2	resolution	for	modeling	(National	
Elevation	Dataset,	 https://www.usgs.gov/progr	ams/natio	nal-	geosp	
atial	-	progr	am/natio	nal-	map).

2.4  |  Species distribution modeling

We	used	an	ensemble	modeling	approach	to	create	SDMs	for	49	na-
tive	plant	species	throughout	their	Mojave	Desert	ranges.	We	used	
a	 custom	R	 script	 to	 control	 pseudo-	absence	 selection	 and	model	
evaluation	and	to	implement	parallel	processing	and	model-	averaged	
response	curves.	As	input	data	for	the	SDMs,	we	assembled	species	
occurrence	records	from	a	variety	of	sources	including	public	data-
bases	 (Consortium	of	California	Herbaria	 –		 http://ucjeps.berke	ley.
edu/conso	rtium/;	SEInet	–		https://swbio	diver	sity.org/seine	t/),	veg-
etation	 classification	 studies	 (National	 Park	 Service	 vegetation	 in-
ventory	products,	https://www.nps.gov/im/vmi-	produ	cts.htm),	U.S.	
Bureau	of	Land	Management	Seeds	of	Success	collections,	and	U.	S.	
Geological	Survey	datasets	 (Webb	et	al.,	2003).	Prior	to	modeling,	
all	occurrences	were	visually	assessed	for	georeferencing	errors	and	
masked	 from	water	bodies.	Additionally,	we	excluded	occurrences	
with	 positional	 uncertainty	 larger	 than	 1	 km	 when	 noted	 in	 the	
metadata.	Occurrences	for	each	species	are	mapped	in	Appendix	S1.

Our	 ensemble	 modeling	 approach	 included	 three	 algorithms:	
generalized	 additive	 models	 (R	 package	 “mgcv”	 version	 1.8–	22;	

https://doi.org/10.5066/F7PC30G1
https://www.usgs.gov/programs/national-geospatial-program/national-map
https://www.usgs.gov/programs/national-geospatial-program/national-map
http://ucjeps.berkeley.edu/consortium/
http://ucjeps.berkeley.edu/consortium/
https://swbiodiversity.org/seinet/
https://www.nps.gov/im/vmi-products.htm
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Wood,	 2017),	 random	 forests	 (R	 package	 “randomForest”	 version	
4.6–	12;	 Liaw	&	Wiener,	 2002),	 and	MaxEnt	 version	3.3.3k	 (as	 im-
plemented	in	R	package	“dismo”	version	1.1–	4;	Hijmans	et	al.,	2017;	
Phillips	 et	 al.,	 2006).	We	 chose	 to	 average	 predictions	 across	 dif-
ferent	 types	 of	 algorithms	 because	 the	 choice	 of	 algorithm	 is	 the	
largest	source	of	variability	in	SDM	predictions	(Watling	et	al.,	2015)	
and	because	multi-	model	ensembles	broaden	the	types	of	response	
functions	that	can	be	identified	(Araújo	&	New,	2007).	For	each	in-
dividual	algorithm,	we	generated	models	reflecting	all	combinations	
of	 the	 14	 environmental	 variables	 (Table	 1)	 while	 restricting	 the	
total	number	of	terms	within	any	one	model	to	six	to	avoid	overfit-
ting.	Correlated	variables	 (r >	 |0.7|)	were	not	 included	 in	the	same	
models.	 Due	 to	 the	 lack	 of	 surveyed	 absence	 points,	 we	 created	
random	selections	of	pseudo-	absences	following	the	recommenda-
tions	in	Barbet-	Massin	et	al.	 (2012)	for	each	algorithm.	To	account	
for	 patterns	 of	 spatial	 aggregation/unequal	 sampling	 effort	 in	 the	
presence	 points,	 which	 can	 bias	 model	 predictions	 (Veloz,	 2009),	
we	first	rasterized	presences	to	the	modeling	resolution	(1	km2)	and	
subsequently	applied	a	spatial	thinning	procedure	(grid	sampling)	in	
which	a	maximum	of	three	points	could	be	sampled	from	any	10	km2 
area	(Fourcade	et	al.,	2014).	Each	model	was	fit	across	a	series	of	50	
cross-	validation	runs,	with	each	run	consisting	of	a	random	sample	
of	pseudo-	absences	and	spatially	thinned	presence	points.	For	each	
cross-	validation,	a	random	20%	sample	of	points	was	withheld	for	

model	evaluation.	All	GAM	models	were	fit	with	restricted	maximum	
likelihood	(REML)	and	an	extra	penalty	allowing	smooth	terms	to	be	
penalized	to	zero	(“gam”	option	select=TRUE	in	“mgcv”	package)	to	
aid	model	selection.	Random	forest	models	were	fit	with	1000	ran-
dom	trees.	MaxEnt	models	were	 fit	with	10,000	pseudo	absences	
and	program	defaults.

We	considered	several	metrics	of	model	prediction	accuracy	to	
select	a	candidate	list	of	approximately	10	well-	performing	models	
for	each	algorithm	(30	total	candidate	models):	AUC	(i.e.,	the	area	
under	the	receiver	operating	characteristic;	Fielding	&	Bell,	1997),	
the	Boyce	 Index	 (Hirzel	 et	 al.,	 2006),	 and	 the	True	Skill	 Statistic	
(TSS;	Allouche	et	al.,	2006).	For	GAM	and	MaxEnt	models,	we	also	
calculated	each	model's	average	AIC	(with	each	model	being	fit	to	
the	same	subsets	of	data)	to	help	identify	well-	performing,	parsi-
monious	models.	AIC	values	 for	Maxent	models	were	calculated	
using	the	“ENMeval”	package	in	R	(Muscarella	et	al.,	2014),	which	
follows	the	approach	developed	by	Warren	and	Seifert	(2011).	To	
aid	model	 interpretation,	we	 derived	 relative	 importance	 values	
for	 each	 predictor	 present	 in	 the	 candidate	models	 for	 each	 al-
gorithm	 (Appendix	 S1).	Maxent	 relative	 importance	 values	were	
based	 on	 the	 default	 permutation	 importance	 output	 for	 each	
predictor	 (Phillips	 et	 al.,	 2006).	 Relative	 importance	 for	 predic-
tors	in	random	forest	models	was	based	on	the	mean	decrease	in	
accuracy	from	permutations	leaving	out	each	term	(“importance”	

TA B L E  1 Environmental	covariates	used	to	fit	SDMs	for	plant	species	in	the	Mojave	Desert

Environmental variable Code Definition

Climate

Summer	precipitation	(mm) SP Average	precipitation	received	from	May	to	Oct

Winter	precipitation	(mm) WP Average	precipitation	received	from	Nov	to	April

Summer	maximum	temperature	(°C) Tmax Maximum	temperature	of	warmest	month

Winter	minimum	temperature	(°C) Tmin Minimum	temperature	of	coldest	month

Annual	temperature	range	(°C) Trange Average	of	the	monthly	temperature	ranges	(monthly	maximum	minus	monthly	
minimum)

Annual	heat/moisture	index AHM (MAT	+	10)/(MAP/1000)

Climatic	moisture	deficit CMD Difference	between	potential	evapotranspiration	(PET)	and	actual	
evapotranspiration	(AET;	Dobrowski	et	al.,	2013)

Satellite	metrics

NDVI	amplitude AMP Maximum	increase	in	canopy	photosynthetic	activity	above	the	baseline	averaged	
for	the	period	2003–	2017

NDVI	maximum MAXN Maximum	level	of	photosynthetic	activity	during	the	growing	season	averaged	for	
the	period	2003–	2017

Soil	water	stress SWS Mean	of	the	Shortwave	and	Infrared	Water	Stress	Index	(SIWSI;	Fensholt	&	
Sandholt,	2003)	from	2001–	2010	(Inman	et	al.,	2014).

Surface	texture ATI Difference	in	mean	daytime	and	nighttime	surface	temperatures	for	2001–	2010	
(Inman	et	al.,2014)

Topography

Heat	load	index HLI Aspect/slope	transformation	index	(McCune	&	Keon,	2002)	representing	the	
range	in	heat	load	from	coolest	(northeast	slope)	to	warmest	(southwest	slope)

Slope	(°) Slope Slope	in	degrees

Topographic	position	index TPI Steady-	state	wetness	index	expressed	as	a	function	of	slope	and	upstream	
contributing	area
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function	 in	 the	R	package	 randomForest;	Liaw	&	Wiener,	2002).	
For	 GAM,	 we	 used	 the	 predictor's	 average	 expected	 degrees	
of	 freedom	 (edf)	 across	 all	 candidate	GAM	models	 in	which	 the	
predictor	 appeared	 as	 the	 measure	 of	 relative	 importance.	 We	
also	derived	partial	variable	response	curves	for	each	of	 the	top	
nine	predictors	present	in	the	candidate	models	for	each	species.	
These	 curves	 indicate	 the	 shape	 and	 direction	 of	 relationships	
between	predictors	and	habitat	probability	values.	For	GAM	and	
Maxent	models,	response	curve	functions	for	predictors	were	av-
eraged	across	all	of	the	models	in	which	each	predictor	occurred:	
in	 Appendix	 S1,	 these	 model-	averaged	 curves	 are	 overlaid	 on	
the	 individual	 response	 curves	 from	 candidate	models	 including	
each	predictor.	For	random	forest	models,	we	used	the	default	re-
sponse	 curves	 (“partialPlot”	 function)	 fitted	 to	 a	model	with	
the	top	nine	predictors.

Raster	surfaces	representing	SDM	predictions	from	each	model	
were	generated	by	averaging	model	predictions	across	the	50	cross-	
validation	 runs	 (all	 surfaces	 were	 generated	 with	 the	 “predict”	
function	of	the	R	package	“raster”).	Next,	ensemble	predictions	for	
individual	algorithms	were	generated	by	taking	the	weighted	aver-
age	among	candidate	model	predictions	for	each	algorithm	based	on	
TSS	 scores,	 resulting	 in	 three	ensemble	algorithm	predictions.	For	
each	species,	we	also	calculated	a	standard	error	layer	based	on	vari-
ation	across	all	candidate	models	included	in	the	ensemble.	Finally,	
an	overall	 ensemble	SDM	prediction	was	generated	by	 taking	 the	
average	of	the	three	individual	algorithm	ensembles.

2.4.1  |  Evaluation	of	systematic	model	bias

In	largely	unpopulated	regions	of	the	Mojave	Desert,	species	occur-
rence	records	may	be	biased	toward	areas	with	easier	human	access	
(e.g.,	near	roads	or	other	developed	features),	and	a	pattern	of	un-
equal	sampling	could	bias	SDM	model	performance	and	evaluation	
(Fourcade	et	al.,	2014;	Veloz,	2009).	Although	our	use	of	occurrence	
records	 from	 vegetation	 classification	 and	 other	 research	 studies	
may	partially	alleviate	this	 issue,	we	sought	to	evaluate	systematic	
spatial	sampling	bias.	To	do	so,	we	used	a	1	km2	resolution	terres-
trial	development	index	created	for	the	Western	United	States	(Carr	
&	Leinwand,	2020;	Carter	et	al.,	2017)	to	derive	a	spatial	 layer	re-
flecting	distance	from	roads	and	other	developed	features.	Next,	we	
created	spatial	layers	reflecting	the	overall	mean	of	the	habitat	prob-
abilities	across	all	49	individual	species	SDMs,	as	well	as	the	mean	
of	the	standard	error	layers	for	each	species	(hereafter	referred	to	
as	“aggregated	habitat	probabilities”	and	“aggregated	model	stand-
ard	errors”,	respectively).	We	then	assessed	whether	the	aggregated	
spatial	 patterns	 in	 SDM	habitat	 probabilities	 and/or	model	 stand-
ard	errors	were	associated	with	distances	to	developed	features,	as	
might	occur	if	there	were	strong	systematic	bias	in	the	model	suite.	
To	allow	for	non-	linear	associations,	we	fit	generalized	additive	mod-
els	in	the	R	package	“mgcv”	(Wood,	2017)	with	the	default	thinplate	
splines	and	evaluated	models	based	on	these	models’	coefficients	of	
determination.

2.5  |  Mojave Seed Menus application

We	developed	an	 interactive	spatial	decision	support	tool,	Mojave	
Seed	Menus,	 as	 a	 “shiny	 application”	 coded	 using	 the	 R	 package	
“shiny”	v.1.5.0,	which	generates	interactive	web	pages	or	dashboards	
paired	with	the	analytical	capabilities	of	R	(Chang	et	al.,	2020).	Our	
application	also	supports	an	interactive	online	map	generated	using	
the	leaflet	package	(Cheng	et	al.,	2019)	for	dynamic	user	input.	The	
core	 function	of	Mojave	Seed	Menus	 is	 to	overlay	SDMs	 for	 spe-
cies	of	restoration	importance	and	extract	their	habitat	probability	
values	(probabilities	range	from	0	to	1,	with	higher	values	indicating	
higher	 probability	 of	 occurrence)	 based	on	user	 input	 coordinates	
provided	as	spreadsheets,	shapefiles,	or	map	clicks.	Species	habitat	
values	for	each	potential	project	site	are	paired	with	species	attrib-
ute	values	from	the	Mojave	PSL,	including	life-	history,	disturbance	
ecology,	 pollinator	 interactions,	 and	 propagation	 techniques.	 The	
application	outputs	a	downloadable	“seed	menu”	table	with	species	
predicted	to	have	suitable	habitat	at	a	given	restoration	site(s),	along	
with	each	species’	attribute	information.	The	application	also	makes	
available	the	entire	species	guide	presented	 in	Esque	et	al.	 (2021).	
Used	 in	 combination	with	other	 restoration	 tools,	 e.g.,	 provisional	
seed	transfer	zones	or	climate	distance	projections	(Shryock	et	al.,	
2018),	the	Mojave	Seed	Menus	application	presents	a	powerful	new	
tool	for	restoration	practitioners.

3  |  RESULTS

3.1  |  Species distribution models

Our	ensemble	modeling	approach	produced	SDMs	that	performed	
well	on	average,	with	AUC	ranging	from	a	low	of	0.82	for	Ambrosia 
dumosa	 to	a	high	of	0.97	 for	Lupinus odoratus,	 and	averaging	0.88	
across	 all	 species	 (Table	 2).	 Somewhat	 counterintuitively,	 we	 ob-
tained	 lower	AUC	scores	 for	 several	of	 the	most	common	species	
including	A. dumosa	and	Larrea tridentata.	However,	this	is	likely	due	
to	these	species	having	particularly	broad	ranges	within	the	Mojave	
Desert	mapping	 extent,	 such	 that	 random	pseudoabsences	would	
more	frequently	fall	within	suitable	habitat	than	for	species	inhabit-
ing	a	narrower	range	of	conditions.	A	complete	set	of	species	maps	
is	available	 in	Appendix	S1,	while	habitat	 layers	are	provided	both	
within	Mojave	Seed	Menus	and	as	a	separate	U.S.	Geological	Survey	
data	release	(Shryock	et	al.,	2022b).

In	terms	of	environmental	variable	relative	importance,	we	found	
that	temperature	generally	outweighed	precipitation,	with	the	tem-
perature	 variables	 (Tmax,	 Tmin,	 and	 Trange)	 showing	 higher	 relative	
importance	 in	 aggregate	 than	 the	precipitation	 variables	 (WP	and	
SP)	for	39	of	49	species	(Table	2).	However,	given	that	temperature	
and	precipitation	interact	to	determine	the	overall	aridity	of	a	site,	it	
may	be	difficult	to	disentangle	these	effects.	Among	the	individual	
climate	variables,	the	amount	of	summer	precipitation	(SP)	had	the	
greatest	relative	importance	across	species	(13.84),	followed	by	an-
nual	temperature	range	(11.11).	Soil	surface	texture	had	the	highest	
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average	 relative	 importance	 (7.61)	 among	 variables	 representing	
topographic	 and	 surface	 characteristics,	 followed	 by	 slope	 (6.89).	
We	did	not	observe	obvious	differences	in	the	relative	importance	
of	environmental	variables	among	different	growth	 forms	or	 lifes-
pans,	 although	uneven	 representation	 from	 these	groups	 (e.g.,	we	
only	considered	a	low	number	of	cacti	and	grasses)	likely	reduces	our	
ability	to	detect	such	differences.	Response	curves	for	all	species	are	
provided	in	Appendix	S1.

3.1.1  |  Evaluation	of	systematic	model	bias

We	did	not	 find	strong	evidence	 for	 systematic	model	bias	across	
the	SDMs	based	on	associations	between	aggregated	habitat	prob-
abilities,	 aggregated	 standard	 errors,	 or	 distance	 to	 development.	
Graphs	of	the	distance	to	development	among	binned	habitat	prob-
ability	values	indicated	that	habitat	probabilities	were	slightly	lower	
farther	from	developed	areas	(Figure	1).	However,	in	GAM	models,	
distance	 to	 development	 explained	 less	 than	 one	 percent	 of	 the	
variation	in	aggregated	habitat	probabilities.	For	aggregated	model	
standard	 errors,	 somewhat	 higher	 values	 were	 associated	 with	

larger	 distances	 to	 development	 (Figure	 1).	 However,	 this	 pattern	
was	again	not	strong	enough	to	explain	more	than	one	percent	of	
the	variation	in	aggregated	standard	errors	in	GAM	models.

3.2  |  Seed Menu application

We	developed	an	interactive	web	application	to	aid	restoration	prac-
titioners	 in	creating	seed	menus	for	restoration	sites.	The	applica-
tion,	“Mojave	Seed	Menus”,	pairs	predicted	habitat	suitability	values	
for	priority	native	plant	species	with	species	attribute	 information	
useful	for	restoration	planning	at	user-	defined	locations	(Figure	2).	
Results	from	the	application	are	provided	to	users	in	downloadable	
table	format.	Mojave	Seed	Menus	will	be	freely	available	over	the	
web	 (https://rconn	ect.usgs.gov/Mojav	eSeed	Menu/)	 and	 will	 not	
require	 users	 to	 install	 special	 software	 or	 create	 a	 user	 account.	
The	 application	will	 also	 be	 available	 as	 stand-	alone	 software	 for	
users	who	wish	to	run	Mojave	Seed	Menus	locally	through	RStudio	
(Shryock	 et	 al.,	 2022a;	 https://doi.org/10.5066/P94A2QLK).	A	 list	
of	dependencies	for	the	stand-	alone	software	version	is	provided	in	
the	linked	repository.

F I G U R E  1 Evaluation	of	systematic	
model	bias	across	SDMs	of	Mojave	Desert	
plants.	We	compared	a	distance-	to-	
development	layer	calculated	from	the	
terrestrial	development	index	(Carr	&	
Leinwand,	2020)	with	aggregated	habitat	
probabilities	and	aggregated	model	
standard	errors	for	49	SDMs.	Violin	plots	
display	the	association	between	distance-	
to-	development	and	aggregated	habitat	
probabilities/standard	errors	(binned	
into	eight	classes).	The	overall	density	of	
occurrence	records	per	square	km	is	also	
displayed	(top	right)

https://rconnect.usgs.gov/MojaveSeedMenu/
https://doi.org/10.5066/P94A2QLK
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We	illustrate	several	key	features	of	Mojave	Seed	Menu's	user	
interface	 (Figure	 3a–	e),	 including	 the	 location	 input	 menu,	 inter-
active	 online	 map,	 seed	 menu	 customization	 menu,	 and	 options	
for	 viewing	 species	 habitat	models	 and	 setting	habitat	 probability	
thresholds	for	species	inclusion	in	seed	menus.	Users	have	several	
options	for	selecting	the	locations	(e.g.,	restoration	project	sites)	for	
generating	seed	menus,	including	uploads	from	coordinates	tables,	
point	or	polygon	shapefiles,	or	by	zooming	in	and	clicking	the	online	
map	 (Figure	 3a,	 b).	Users	 can	 also	 select	which	 species	 attributes	
they	would	 like	to	appear	 in	the	table	 (Figure	3c)	and	display	 indi-
vidual	species	habitat	models	in	the	online	map	viewer	(Figure	3d).

The	 minimum	 habitat	 suitability	 threshold	 parameter	 allows	
users	to	select	the	minimum	probability	of	occurrence	allowable	in	
order	for	a	species	to	be	recommended	for	an	input	site	(Figure	3e),	
based	on	the	SDMs	for	each	species.	For	example,	if	the	user	selects	
0.4	as	the	threshold,	then	all	species	with	an	SDM	occurrence	prob-
ability	value	≥0.4	will	be	 included	 in	the	Seed	Menu	table	for	that	
site.	When	multiple	sites	are	input,	setting	the	threshold	parameter	
to	0.4	would	 require	 that	 all	 species	 included	have	 an	occurrence	
probability	value	≥0.4	at	all	input	sites.	The	dropdown	menu	also	in-
cludes	options	for	selecting	species-	specific	thresholds.	In	this	case,	
habitat	suitability	value	thresholds	have	been	determined	separately	
for	each	species	based	on	their	SDM	model	sensitivities	(proportion	
of	presences	correctly	predicted)	and/or	specificities	(proportion	of	
absences	correctly	predicted).	For	example,	the	“maximum	(sensitiv-
ity	+	specificity)”	option	provides	thresholds	that	maximize	the	sum	
of	model	sensitivity	and	specificity	for	each	species.

Based	 on	 the	 initial	 group	 of	 49	 species,	Mojave	 Seed	Menus	
provides	 strong	 coverage	 throughout	most	 of	 the	Mojave	 Desert	
(Figure	4).	The	vast	majority	of	the	Mojave	Desert	is	represented	by	
more	than	5	modeled	priority	plant	species	 (i.e.,	a	seed	menu	cre-
ated	anywhere	in	the	Mojave	would	likely	contain	5	or	more	recom-
mended	plant	species).	Only	scattered	and	environmentally	extreme	
areas	(e.g.,	lower	Death	Valley	and	the	highest	mountain	areas)	pro-
vide	coverage	for	fewer	species.

Detailed	online	instructions	are	included	with	the	Mojave	Seed	
Menus	application	to	facilitate	proper	use.	Mojave	Seed	Menus	also	
provides	a	web	version	of	the	Mojave	Desert	priority	species	guide	
developed	in	Esque	et	al.	(2021).	This	guide	contains	a	wealth	of	in-
formation	 for	 restoration	practitioners,	 including	detail	on	 species	
propagation,	 production,	 cultivation,	 and	 recoverability,	 as	well	 as	
species	 importance	for	the	Mojave	desert	tortoise	 (Gopherus agas-
sizii).	Further,	Mojave	Seed	Menus	will	display	the	provisional	seed	
transfer	 zones	 for	 the	Mojave	Desert	 developed	 in	 Shryock	 et	 al.	
(2018)	as	a	guide	for	identifying	genetically	appropriate	seed	sources.

4  |  DISCUSSION

Faced	 with	 increased	 development	 and	 unprecedented	 ecosys-
tem	 stressors,	 restoration	 practitioners	 in	 the	 Desert	 Southwest	
must	balance	a	need	to	act	with	the	often-	limited	commercial	sup-
ply	of	native	seeds	(Johnson	et	al.,	2010;	Peppin	et	al.,	2010)	until	
regionally	 adapted	 germplasm	 is	 developed	 for	 seed	 increase	 by	

F I G U R E  2 Flowchart	of	operations	used	by	Mojave	Seed	Menus	to	create	species	lists	for	restoration	sites.	Users	can	supply	restoration	
site	locations	as	coordinates,	map	clicks	in	a	browser,	or	point/polygon	shapefiles.	Next,	users	can	specify	a	habitat	suitability	threshold	if	
desired.	This	value	determines	the	minimum	probability	of	occurrence	necessary	for	a	species	to	be	recommended	at	an	input	site	(e.g.,	if	
the	threshold	is	set	at	0.4,	all	species	will	have	an	SDM	occurrence	probability	of	0.4	or	higher	at	an	input	site	in	the	final	seed	menu).	The	
application	will	then	extract	habitat	probabilities	(accounting	for	user-	specified	thresholds)	from	spatially	stacked	SDMs	and	pair	these	
habitat	probabilities	with	user-	selected	species	traits	in	a	downloadable	seed	menu	table
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F I G U R E  3 User	interface	for	the	Mojave	Seed	Menus	Shiny	application.	(a)	The	“create	seed	menus”	dialogue	box	directs	users	to	upload	
restoration	site	locations	as	coordinates,	map	clicks,	or	shapefiles.	(b)	The	online	map	displays	current	locations	input	and	can	be	used	to	
create	input	sites	via	map	clicks.	(c)	The	“Customize	seed	menu	table”	dialogue	lets	users	select	which	species	traits	to	include	in	outputs.	
(d)	Users	can	also	display	individual	species	SDMs	on	the	map	through	the	“View	species	habitat”	dialogue.	(e)	In	the	output	options	dialogue,	
users	can	control	the	habitat	probability	level	needed	for	a	species	to	be	recommended	at	input	sites
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commercial	growers	in	the	ecoregion.	Programmatic	directives,	na-
tional	policy,	and	restoration	science	all	point	toward	the	fundamen-
tal	importance	of	promoting	native	species	assemblages,	providing	
habitat	for	pollinator	communities,	and	maintaining	genetic	diversity	
(Olwell	&	Riibe,	2016;	Vilsack	&	McCarthy,	2015).	Meeting	these	ob-
jectives	 requires	careful	planning	and	prioritization	among	various	
stakeholders,	 including	 government	 agencies,	 non-	profits,	 univer-
sities,	 and	 commercial	 seed	 suppliers.	Accessible	decision	 support	
tools	are	pivotal	 to	 this	effort	and	have	already	been	deployed	 to	
guide	seed	transfer	decisions,	reducing	the	risks	of	maladaptation	or	
loss	of	genetic	diversity	(Massatti	et	al.,	2018;	Shryock	et	al.,	2017,	
2018).	However,	restoration	practitioners	must	also	select	a	mix	of	
species	to	seed	in	degraded	areas,	a	choice	that	is	not	trivial	given	
the	fundamental	role	of	community	assembly	on	numerous	ecologi-
cal	processes	(Oliver	et	al.,	2015).	To	support	effective	seed	mix	de-
signs	 in	 the	Mojave	Desert,	we	developed	Mojave	Seed	Menus,	 a	
spatial	application	that	pairs	species	distribution	models	(SDMs)	for	
priority	native	plant	species	with	species	trait	data,	giving	restora-
tion	practitioners	and	resource	managers	an	interactive	platform	to	
plan	seed	mixes	that	can	be	customized	to	match	project	objectives.

Mojave	 Seed	 Menus	 is	 currently	 based	 on	 a	 dataset	 of	 49	
SDMs	for	priority	plant	taxa	identified	in	the	Mojave	PSL	(Esque	
et	al.,	2021)	using	numerous	criteria,	including	their	importance	as	
forage	or	cover	for	the	Mojave	desert	tortoise	(Gopherus agassizii),	
associations	with	various	pollinators,	ability	to	colonize	disturbed	
areas	 and/or	 compete	 with	 invasive	 species,	 and	 other	 metrics.	
Although	 presence-	only	 SDMs	 have	 known	 biases,	 in	 particular	

spatial	bias	due	 to	aggregation	of	occurrence	 records	near	more	
easily	accessed	areas	(Fourcade	et	al.,	2014;	Veloz,	2009),	we	did	
not	detect	obvious	patterns	of	systematic	bias	across	our	SDMs.	
One	 might	 expect	 habitat	 suitability	 predictions	 from	 SDMs	 to	
show	a	trend	of	increasing	habitat	probabilities	near	roads	or	other	
developmental	 features	 if	 occurrence	 records	 were	 aggregated	
near	such	areas	rather	than	more	remote	locations.	However,	we	
did	not	detect	a	strong	association	(linear	or	non-	linear)	between	
aggregated	 habitat	 probabilities	 and	 the	 layer	 representing	 dis-
tance	 to	 development,	 or	 between	 aggregated	 model	 standard	
errors	and	this	layer	(Figure	1).	In	part,	our	SDMs	may	have	been	
strengthened	by	our	use	of	species	occurrences	from	vegetation	
studies	in	addition	to	herbarium	records,	as	the	former	are	likely	
to	 be	 less	 spatially	 biased.	We	 also	 used	 a	 grid	 sampling	 proce-
dure	to	disaggregate	occurrence	records	prior	to	modeling,	which	
reduces	 the	 impact	 of	 unequal	 sampling	 effort	 (Fourcade	 et	 al.,	
2014).	Moreover,	we	used	an	ensemble	SDM	approach	to	increase	
accuracy	by	reducing	dependence	on	individual	algorithms	(Araújo	
&	 New,	 2007).	 Overall,	 our	 SDMs	 provide	 reasonable	 accuracy	
based	on	the	model	AUC	and	TSS	scores	(Table	2)	and	predict	suit-
able	 areas	 for	 each	 species	 to	 establish	 given	 favorable	 climate	
conditions.	However,	as	with	all	SDMs,	we	note	that	our	models	
are	subject	to	bias	based	on	the	availability	of	species	occurrence	
records,	which	may	be	spatially	incomplete	or	fail	to	reflect	post-	
observation	temporal	habitat	changes.

Mojave	 Seed	Menus	 provides	 a	 number	 of	 accessible	 options	
for	users	 to	 create	 interactive	 seed	mixes	 for	 restoration	projects	

F I G U R E  4 Total	species	coverage	
provided	in	the	Mojave	Seed	Menus	
application,	indicating	how	many	species	
have	suitable	habitat	in	different	parts	of	
the	Mojave	based	on	the	initial	species	
list.	Species	with	suitable	habitat	can	
be	included	in	seed	menus	for	a	given	
location
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(Figure	3).	To	use	the	application,	the	only	required	input	is	one	or	
more	geographic	locations	(within	the	Mojave	Desert)	from	which	to	
derive	seed	menu(s).	These	can	be	provided	in	multiple	ways:	users	
can	provide	coordinates	for	a	single	location,	upload	a	spreadsheet	
with	 coordinates	 and	other	 attributes,	 click	 on	 the	online	 interac-
tive	map,	or	upload	a	point	or	polygon	shapefile	(multiple	points	and	
polygons	are	supported,	but	we	recommend	against	uploading	“mul-
tipart”	 shapefiles,	 in	which	multiple	 spatially	 distinct	 polygons	 are	
treated	as	a	single	 feature).	Shapefiles	can	be	uploaded	 in	any	co-
ordinate	system	recognized	by	the	“rgdal”	library	in	R	(Bivand	et	al.,	
2020).	Once	geographic	locations	are	uploaded,	users	can	custom-
ize	which	species	traits	to	include	in	the	seed	menu	and	download	
the	 resulting	 table.	 In	determining	which	 species	 can	be	 included,	
users	can	optionally	set	a	cut-	off	threshold	to	exclude	species	that	
do	not	meet	a	given	habitat	suitability	 threshold	or	use	a	species-	
specific	habitat	cut-	off	point	already	provided	as	a	drop-	down	menu	
in	 the	Mojave	Seed	Menu	program	 (described	above	 in	Methods).	
Currently,	Mojave	Seed	Menus	has	a	coverage	of	more	than	5	spe-
cies	across	the	vast	majority	of	the	Mojave	Desert,	with	many	areas	
represented	 by	 over	 10	 species	 (Figure	 4).	 This	 coverage	 enables	

restoration	 practitioners	 to	 devise	 seed	mixes	 emphasizing	 a	 par-
ticular	 suite	of	 functional	 plant	 traits,	 pollinator	 services,	 or	other	
characteristics.	 For	 example,	 if	 pollinator	 services	 are	 a	 priority,	
practitioners	can	select	 species	with	 the	highest	pollinator	counts	
or	that	serve	as	both	larval	and	adult	pollinator	hosts.	For	projects	
in	highly	denuded	areas,	species	that	are	known	colonizers	may	be	
preferable	 to	 establish	 rapid	 cover.	 The	 detailed	 species	 accounts	
provided	in	the	Mojave	PSL	and	through	Mojave	Seed	Menus	afford	
practitioners	broad	flexibility	to	set	resource	targets	and	project	ob-
jectives.	In	future	updates,	we	hope	to	expand	Mojave	Seed	Menus	
to	include	SDMs	and	trait	data	for	a	larger	proportion	of	species	de-
scribed	in	the	full	Mojave	PSL	(Esque	et	al.,	2021).

Although	 species	 selection	and	 seed	mix	design	are	 important	
components	of	native	plant	restoration,	we	emphasize	that	Mojave	
Seed	Menus	 is	 part	 of	 an	 integrated	 restoration	 program	 for	 the	
Mojave	Desert	(Figure	5).	A	second	core	component	of	this	program	
aims	 to	 increase	 seeding	 effectiveness	 by	 accounting	 for	 within-	
species	 variation.	 Local	 adaptation	 is	widespread	 among	 plants	 in	
arid	regions,	leading	to	intraspecific	variation	in	phenology,	growth,	
emergence,	 and	 other	 traits	 expressed	 along	 gradients	 of	 climate	

F I G U R E  5 An	integrated	restoration	decision-	support	framework	for	the	Mojave	Desert,	including	online	applications	available	through	
the	USGS	and	BLM	Mojave	Desert	Native	Plant	Program.	In	this	framework,	restoration	practitioners	and	resource	managers	can	first	
use Mojave Seed Menus	to	generate	a	list	of	native	plant	species	given	anticipated	locations	of	restoration	projects.	By	providing	extensive	
species	trait	information,	this	application	facilitates	robust	seed	mix	designs	that	can	be	customized	according	to	project	objectives	(e.g.,	
pollinator	services,	desert	tortoise	forage,	rapid	establishment).	Once	species	are	selected,	Climate Distance Mapper	can	help	practitioners	
identify	suitable	seed	sources	from	existing	stores,	or	areas	to	target	for	future	seed	collections.	Climate	Distance	Mapper	ranks	seed	
sources	based	on	the	dissimilarity	in	climate	(climate	distance)	between	seed	source	and	restoration	sites	and	can	incorporate	future	climate	
scenarios	in	these	calculations.	Together,	Mojave Seed Menus	and	Climate Distance Mapper	provide	key	decision	support	for	prioritization	and	
development	of	native	plant	resources	to	supply	future	restoration	needs
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and	 topography	 (Baughman	 et	 al.,	 2019).	 It	 is	 particularly	 import-
ant	 to	account	 for	 local	adaptation	 in	heterogeneous	 regions	such	
as	 the	Mojave,	which	 has	 both	 large	 elevational/climate	 gradients	
(Hereford	et	al.,	2006)	and	an	extreme	climate	that	grants	species	
narrow	windows	for	regeneration	(Reynolds	et	al.,	2012).	Seed	trans-
fer	zones	based	on	genetic	studies	(landscape	genomics	or	common	
gardens)	are	still	a	primary	approach	for	generating	species-	specific	
guidelines	(e.g.,	Shryock	et	al.,	2017).	When	genetics	studies	are	un-
available	or	pending,	 then	 climate	distances	between	 seed	 source	
and	 planting	 sites	 can	 serve	 as	 a	 generalized	 proxy	 for	 clines	 in	
local	 adaptation	 across	many	 species	 (Shryock	 et	 al.,	 2017,	 2018).	
In	 partnership	with	 the	Mojave	Desert	 Native	 Plant	 Program,	we	
previously	made	available	a	decision	support	tool	(Climate	Distance	
Mapper;	 https://rconn	ect.usgs.gov/Clima	te_Dista	nce_Mapper)	 for	
the	Mojave	and	other	southwestern	U.S.	deserts	that	allows	prac-
titioners	to	rank	seed	sources	for	project	sites	in	both	current	and	
future	predicted	climate	(e.g.,	by	minimizing	the	multivariate	climate	
distance	 between	 sites;	 Shryock	 et	 al.,	 2018).	 By	 using	 this	 appli-
cation	in	tandem	with	Mojave	Seed	Menus,	practitioners	can	both	
create	 seed	mixes	 for	 a	 restoration	 site	 and	 rank	 alternative	 seed	
sources	for	selected	species,	thereby	decreasing	potential	for	mal-
adaptation	 in	the	current	and	future	climates	 (Figure	5).	Given	the	
restoration	site	location	and	a	table	of	available	seed	sources,	the	ex-
ample	workflow	in	Figure	5	can	be	rapidly	accomplished.	Moreover,	
if	seed	sources	are	unknown,	Climate	Distance	Mapper	allows	users	
to	create	focal-	point	seed	zones	surrounding	restoration	sites,	des-
ignating	areas	to	target	for	future	seed	collections.	With	such	tools	
becoming	widely	accessible,	restoration	practitioners	will	have	more	
time	to	focus	on	other	challenges	in	desert	restoration,	including	the	
timing	of	restoration	projects	to	coincide	with	favorable	conditions	
(Havrilla	et	al.,	2020),	strategies	to	cope	with	competition	from	inva-
sive	species	that	often	dominate	disturbed	areas	(Leger	et	al.,	2021;	
Leger	 &	Goergen,	 2017),	 and	 propagating	 species	 for	 outplanting	
that	may	 serve	 as	 “resource	 islands”	 to	 facilitate	 shrubland	estab-
lishment	(Badano	et	al.,	2016;	Hulvey	et	al.,	2017).	Collectively,	the	
Mojave	PSL	(Esque	et	al.,	2021),	Mojave	Seed	Menus,	and	Climate	
Distance	Mapper	(Shryock	et	al.,	2018)	provide	a	robust	and	flexible	
decision	support	framework	for	restoration	practitioners	to	create	
diverse,	resilient,	and	sustainable	native	plant	communities.	In	addi-
tion,	these	tools	can	help	resource	managers	set	priority	targets	for	
seed	collection,	production,	and	cultivation	efforts	that	are	neces-
sary	to	sustain	future	restoration	needs.

ACKNOWLEDG EMENTS
We	 thank	 J.	 Perkins	 and	 C.	 Lund	 (BLM,	 California)	 for	 providing	
funding	to	support	the	development	of	seed	menus	for	the	Mojave	
Desert	ecoregion.	Funding	support	was	also	provided	through	the	
California	 BLM	 Plant	 Conservation	 and	 Restoration	 Program	 and	
BLM	Mojave	Desert	Native	Plant	Program.	We	thank	Gayle	Tyree	
for	assistance	 in	compiling	species	occurrence	records.	Any	use	of	
trade,	product,	or	 firm	names	 is	 for	descriptive	purposes	only	and	
does	not	imply	endorsement	by	the	U.S.	Government.

CONFLIC T OF INTERE S T
The	authors	declare	no	conflict	of	interest.

AUTHOR CONTRIBUTIONS
Daniel F. Shryock:	 Conceptualization	 (equal);	 Formal	 analysis	
(lead);	 Methodology	 (equal);	 Software	 (lead);	 Writing	 –		 original	
draft	 (lead);	Writing	–		 review	&	editing	 (equal).	Lesley A. DeFalco: 
Conceptualization	 (lead);	 Funding	 acquisition	 (lead);	 Methodology	
(equal);	Project	administration	(equal);	Resources	(equal);	Supervision	
(equal);	 Writing	 –		 review	 &	 editing	 (equal).	 Todd C. Esque: 
Conceptualization	(equal);	Funding	acquisition	(equal);	Methodology	
(equal);	Project	administration	(equal);	Resources	(equal);	Writing	–		
review	&	editing	(equal).

DATA AVAIL ABILIT Y S TATEMENT
Data	 associated	 with	 this	 manuscript	 will	 be	 available	 as	 a	 USGS	
data	release	product	on	ScienceBase	(Shryock	et	al.,	2022b;	https://
doi.org/10.5066/P9XQJFEL).	 Software	 code	 and	 documentation	
for	 Mojave	 Seed	 Menus	 will	 be	 available	 from	 the	 USGS	 official	
code	 repository	 (Shryock	 et	 al.,	 2022a;	 https://doi.org/10.5066/
P94A2QLK).

ORCID
Daniel F. Shryock  https://orcid.org/0000-0003-0330-9815 
Lesley A. DeFalco  https://orcid.org/0000-0002-7542-9261 
Todd C. Esque  https://orcid.org/0000-0002-4166-6234 

R E FE R E N C E S
Abella,	S.	R.	(2009).	Post-	fire	plant	recovery	in	the	Mojave	and	Sonoran	

Deserts	 of	western	North	 America.	 Journal of Arid Environments,	
73(8),	699–	707.	https://doi.org/10.1016/j.jarid	env.2009.03.003

Abella,	S.	R.,	Craig,	D.	J.,	Smith,	S.	D.,	&	Newton,	A.	C.	(2012).	Identifying	
native	vegetation	for	reducing	exotic	species	during	the	restoration	
of	desert	ecosystems.	Restoration Ecology,	20(6),	781–	787.	https://
doi.org/10.1111/j.1526-	100X.2011.00848.x

Allouche,	O.,	Tsoar,	A.,	&	Kadmon,	R.	(2006).	Assessing	the	accuracy	of	
species	 distribution	models:	 Prevalence,	 kappa	 and	 the	 true	 skill	
statistic	(TSS).	Journal of Applied Ecology,	43(6),	1223–	1232.	https://
doi.org/10.1111/j.1365-	2664.2006.01214.x

Angert,	 A.	 L.,	 Huxman,	 T.	 E.,	 Chesson,	 P.,	 &	 Venable,	 D.	 L.	 (2009).	
Functional	tradeoffs	determine	species	coexistence	via	the	storage	
effect.	Proceedings of the National Academy of Sciences of the United 
States of America,	106(28),	11641–	11645.	https://doi.org/10.1073/
pnas.09045	12106

Araújo,	M.	B.,	&	New,	M.	(2007).	Ensemble	forecasting	of	species	distri-
butions.	Trends in Ecology and Evolution,	22(1),	 42–	47.	 https://doi.
org/10.1016/j.tree.2006.09.010

Badano,	E.	I.,	Samour-	Nieva,	O.	R.,	Flores,	J.,	Flores-	Flores,	J.	L.,	Flores-	
Cano,	J.	A.,	&	Rodas-	Ortíz,	J.	P.	(2016).	Facilitation	by	nurse	plants	
contributes	 to	 vegetation	 recovery	 in	 human-	disturbed	 desert	
ecosystems.	 Journal of Plant Ecology,	 9(5),	 485–	497.	 https://doi.
org/10.1093/jpe/rtw002

Balazs,	 K.	 R.,	 Kramer,	 A.	 T.,	Munson,	 S.	M.,	 Talkington,	 N.,	 Still,	 S.,	 &	
Butterfield,	 B.	 J.	 (2020).	 The	 right	 trait	 in	 the	 right	 place	 at	 the	
right	 time:	 Matching	 traits	 to	 environment	 improves	 restoration	
outcomes.	 Ecological Applications,	 30(4),	 e02110.	 https://doi.
org/10.1002/eap.2110

https://rconnect.usgs.gov/Climate_Distance_Mapper
https://doi.org/10.5066/P9XQJFEL
https://doi.org/10.5066/P9XQJFEL
https://doi.org/10.5066/P94A2QLK
https://doi.org/10.5066/P94A2QLK
https://orcid.org/0000-0003-0330-9815
https://orcid.org/0000-0003-0330-9815
https://orcid.org/0000-0002-7542-9261
https://orcid.org/0000-0002-7542-9261
https://orcid.org/0000-0002-4166-6234
https://orcid.org/0000-0002-4166-6234
https://doi.org/10.1016/j.jaridenv.2009.03.003
https://doi.org/10.1111/j.1526-100X.2011.00848.x
https://doi.org/10.1111/j.1526-100X.2011.00848.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1073/pnas.0904512106
https://doi.org/10.1073/pnas.0904512106
https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.1093/jpe/rtw002
https://doi.org/10.1093/jpe/rtw002
https://doi.org/10.1002/eap.2110
https://doi.org/10.1002/eap.2110


14 of 16  |     SHRYOCK et al.

Bamberg,	S.	A.,	Vollmer,	A.	T.,	Kleinkopf,	G.	E.,	&	Ackerman,	T.	L.	(1976).	
A	 comparison	 of	 seasonal	 primary	 production	 on	Mojave	Desert	
shrubs	during	wet	and	dry	years.	The American Midland Naturalist,	
95,	398–	405.

Barbet-	Massin,	M.,	Jiguet,	F.,	Albert,	C.	H.,	&	Thuiller,	W.	(2012).	Selecting	
pseudo-	absences	for	species	distribution	models:	How,	where	and	
how	many?	Methods in Ecology and Evolution,	3(2),	327–	338.	https://
doi.org/10.1111/j.2041-	210X.2011.00172.x

Baughman,	O.	W.,	Agneray,	A.	C.,	Forister,	M.	L.,	Kilkenny,	F.	F.,	Espeland,	
E.	K.,	Fiegener,	R.,	Horning,	M.	E.,	Johnson,	R.	C.,	Kaye,	T.	N.,	Ott,	
J.,	St.	Clair,	J.	B.,	&	Leger,	E.	A.	(2019).	Strong	patterns	of	intraspe-
cific	variation	and	 local	adaptation	 in	Great	Basin	plants	revealed	
through	a	review	of	75	years	of	experiments.	Ecology and Evolution,	
9(11),	6259–	6275.	https://doi.org/10.1002/ece3.5200

Bivand,	 R.,	 Keitt,	 T.,	 &	 Rowlingson,	 B.	 (2020).	 rgdal: Bindings for the 
“Geospatial” Data Abstraction Library.	Retrieved	from	https://cran.r-	
proje	ct.org/packa	ge=rgdal

Breed,	M.	F.,	Stead,	M.	G.,	Ottewell,	K.	M.,	Gardner,	M.	G.,	&	Lowe,	A.	
J.	(2013).	Which	provenance	and	where?	Seed	sourcing	strategies	
for	revegetation	in	a	changing	environment.	Conservation Genetics,	
14(1),	1–	10.	https://doi.org/10.1007/s1059	2-	012-	0425-	z

Broadhurst,	L.	M.,	Lowe,	A.,	Coates,	D.	J.,	Cunningham,	S.	A.,	McDonald,	
M.,	Vesk,	P.	A.,	&	Yates,	C.	(2008).	Seed	supply	for	broadscale	resto-
ration:	Maximizing	evolutionary	potential.	Evolutionary Applications,	
1(4),	587–	597.	https://doi.org/10.1111/j.1752-	4571.2008.00045.x

Brooks,	M.	L.,	D’Antonio,	C.	M.,	Richardson,	D.	M.,	Grace,	J.	B.,	Keeley,	
J.	E.,	DiTomaso,	J.	M.,	&	Pyke,	D.	(2004).	Effects	of	 invasive	alien	
plants	on	fire	regimes.	BioScience,	54(7),	677–	688.

Brown,	D.	E.,	&	Minnich,	R.	A.	(1986).	Fire	and	Changes	in	creosote	bush	
scrub	of	the	western	Sonoran	desert,	California.	American Midland 
Naturalist,	116(2),	411.	https://doi.org/10.2307/2425750

Bucharova,	A.,	Lampei,	C.,	Conrady,	M.,	May,	E.,	Matheja,	J.,	Meyer,	M.,	
&	 Ott,	 D.	 (2021).	 Plant	 provenance	 affects	 pollinator	 network:	
Implications	 for	 ecological	 restoration.	 Journal of Applied Ecology,	
59(2),	373–	383.	https://doi.org/10.1111/1365-	2664.13866

Bureau	of	Land	Management,	&	U.S.	Department	of	Energy	(2015).	Final	
Programmatic	 Environmental	 Impact	 Statement	 (PEIS)	 for	 Solar	
Energy	Development	in	Six	Southwestern	States	(FES	12-	24;	DOE/
EIS-	0403).	1	Statewide	Agricultural	Land	Use	Baseline	2015	§.

Burghardt,	K.	T.,	&	Tallamy,	D.	W.	(2013).	Plant	origin	asymmetrically	im-
pacts	feeding	guilds	and	life	stages	driving	community	structure	of	
herbivorous	arthropods.	Diversity and Distributions,	19(12),	1553–	
1565.	https://doi.org/10.1111/ddi.12122

Carr,	N.	B.,	&	Leinwand,	 I.	 I.	F.	 (2020).	Terrestrial Development Index for 
the western United States:1- kilometer moving window: U.S. Geological 
Survey data releasee.	https://doi.org/10.5066/P93ZU0R9

Carter,	S.	K.,	Carr,	N.	B.,	&	Miller,	K.	H.,	&	Wood,	D.	J.	A.	(Eds.).	(2017).	
Multiscale guidance and tools for implementing a landscape approach 
to resource management in the Bureau of Land Management.	In	Open-	
File	Report.	https://doi.org/10.3133/ofr20	161207

Cave,	G.	H.,	&	Patten,	D.	T.	(1984).	Short-	term	vegetation	responses	to	
fire	 in	 the	 upper	 Sonoran	 desert.	 Journal of Range Management,	
37(6),	491.	https://doi.org/10.2307/3898842

Chang,	W.,	Cheng,	J.,	Allaire,	J.	J.,	Xie,	Y.,	&	McPherson,	J.	(2020).	shiny: 
Web Application Framework for R.	 Retrieved	 from	 https://cran.r-	
proje	ct.org/packa	ge=shiny

Cheng,	J.,	Karambelkar,	B.,	&	Xie,	Y.	(2019).	leaflet: Create Interactive Web 
Maps with the JavaScript “Leaflet” Library.	 Retrieved	 from	 https://
cran.r-	proje	ct.org/packa	ge=leaflet

Chesson,	P.,	Gebauer,	R.	L.	E.,	Schwinning,	S.,	Huntly,	N.,	Wiegand,	K.,	
Ernest,	M.	S.	K.,	Sher,	A.,	Novoplansky,	A.,	&	Weltzin,	J.	F.	(2004).	
Resource	 pulses,	 species	 interactions,	 and	 diversity	maintenance	
in	 arid	 and	 semi-	arid	 environments.	 Oecologia,	 141(2),	 236–	253.	
https://doi.org/10.1007/s0044	2-	004-	1551-	1

Copeland,	S.	M.,	Munson,	S.	M.,	Pilliod,	D.	S.,	Welty,	 J.	L.,	Bradford,	 J.	
B.,	&	Butterfield,	B.	J.	(2018).	Long-	term	trends	in	restoration	and	

associated	 land	 treatments	 in	 the	 southwestern	 United	 States.	
Restoration Ecology,	 26(2),	 311–	322.	 https://doi.org/10.1111/
rec.12574

D’Antonio,	C.	M.,	&	Vitousek,	P.	M.	 (1992).	Biological	 invasions	by	ex-
otic	grasses,	the	grass/fire	cycle,	and	global	change.	Annual Review 
of Ecology and Systematics,	23(1),	 63–	87.	 https://doi.org/10.1146/
annur	ev.es.23.110192.000431

Dai,	 A.	 (2013).	 Increasing	 drought	 under	 global	 warming	 in	 observa-
tions	and	models.	Nature Climate Change,	3(1),	52–	58.	https://doi.
org/10.1038/nclim	ate1633

Daly,	C.,	Halbleib,	M.,	Smith,	J.	I.,	Gibson,	W.	P.,	Doggett,	M.	K.,	Taylor,	
G.	H.,	Curtis,	J.,	&	Pasteris,	P.	P.	(2008).	Physiographically	sensitive	
mapping	of	climatological	temperature	and	precipitation	across	the	
conterminous	 United	 States.	 International Journal of Climatology,	
28(15),	2031–	2064.	https://doi.org/10.1002/joc.1688

DeFalco,	L.	A.,	Esque,	T.	C.,	Kane,	J.	M.,	&	Nicklas,	M.	B.	 (2009).	Seed	
banks	 in	 a	 degraded	 desert	 shrubland:	 Influence	 of	 soil	 surface	
condition	and	harvester	ant	activity	on	seed	abundance.	Journal of 
Arid Environments,	73(10),	885–	893.	https://doi.org/10.1016/j.jarid	
env.2009.04.017

DeFalco,	 L.	 A.,	 Esque,	 T.	 C.,	 Scoles-	Sciulla,	 S.	 J.,	 &	 Rodgers,	 J.	 (2010).	
Desert	 wildfire	 and	 severe	 drought	 diminish	 survivorship	 of	 the	
long-	lived	 Joshua	 tree	 (Yucca	 brevifolia;	 Agavaceae).	 American 
Journal of Botany,	97,	243–	250.

Dobrowski,	 S.	 Z.,	 Abatzoglou,	 J.,	 Swanson,	 A.	 K.,	 Greenberg,	 J.	 A.,	
Mynsberge,	 A.	 R.,	 Holden,	 Z.	 A.,	 &	 Schwartz,	M.	 K.	 (2013).	 The	
climate	 velocity	 of	 the	 contiguous	 United	 States	 during	 the	
20th	 century.	 Global Change Biology,	 19(1),	 241–	251.	 https://doi.
org/10.1111/gcb.12026

Engel,	E.	C.,	&	Abella,	S.	R.	(2011).	Vegetation	recovery	in	a	desert	land-
scape	after	wildfires:	Influences	of	community	type,	time	since	fire	
and	 contingency	 effects.	 Journal of Applied Ecology,	48(6),	 1401–	
1410.	https://doi.org/10.1111/j.1365-	2664.2011.02057.x

Esque,	T.	C.,	Defalco,	L.	A.,	Tyree,	G.	L.,	Drake,	K.	K.,	Nussear,	K.	E.,	&	
Wilson,	J.	S.	(2021).	Priority	species	lists	to	restore	desert	tortoise	
and	pollinator	habitats	in	Mojave	Desert	Shrublands.	Natural Areas 
Journal,	41(2),	145–	158.	https://doi.org/10.3375/043.041.0209

Esque,	T.	C.,	Kaye,	J.	P.,	Eckert,	S.	E.,	DeFalco,	L.	A.,	&	Tracy,	C.	R.	(2010).	
Short-	term	soil	inorganic	N	pulse	after	experimental	fire	alters	in-
vasive	and	native	annual	plant	production	in	a	Mojave	Desert	shru-
bland.	Oecologia,	164(1),	253–	263.	https://doi.org/10.1007/s0044	
2-	010-	1617-	1

Esque,	T.	C.,	 Young,	 J.	A.,	&	Tracy,	C.	R.	 (2010).	 Short-	term	effects	of	
experimental	 fires	on	a	Mojave	Desert	 seed	bank.	Journal of Arid 
Environments,	 74(10),	 1302–	1308.	 https://doi.org/10.1016/j.jarid	
env.2010.04.011

Fensholt,	R.,	&	Sandholt,	 I.	 (2003).	Derivation	of	a	 shortwave	 infrared	
water	stress	index	from	MODIS	near-		and	shortwave	infrared	data	
in	 a	 semiarid	 environment.	 Remote Sensing of Environment,	 87(1),	
111–	121.	https://doi.org/10.1016/j.rse.2003.07.002

Fielding,	A.	H.,	&	Bell,	J.	F.	(1997).	A	review	of	methods	for	the	assessment	
of	 prediction	 errors	 in	 conservation	 presence/absence	 models.	
Environmental Conservation,	24(1),	38–	49.	https://doi.org/10.1017/
S0376	89299	7000088

Fourcade,	 Y.,	 Engler,	 J.	 O.,	 Rödder,	 D.,	 &	 Secondi,	 J.	 (2014).	 Mapping	
species	distributions	with	MAXENT	using	a	geographically	biased	
sample	of	presence	data:	A	performance	assessment	of	methods	
for	 correcting	 sampling	 bias.	PLoS One,	9(5),	 e97122.	 https://doi.
org/10.1371/journ	al.pone.0097122

Haidet,	 M.,	 &	 Olwell,	 P.	 (2015).	 Seeds	 of	 success:	 A	 national	 seed	
banking	 program	 working	 to	 achieve	 long-	term	 conserva-
tion	 goals.	 Natural Areas Journal,	 35(1),	 165–	173.	 https://doi.
org/10.3375/043.035.0118

Havrilla,	 C.	 A.,	 Munson,	 S.	 M.,	 McCormick,	 M.	 L.,	 Laushman,	 K.	 M.,	
Balazs,	K.	R.,	&	Butterfield,	B.	J.	(2020).	RestoreNet:	An	emerging	
restoration	 network	 reveals	 controls	 on	 seeding	 success	 across	

https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1002/ece3.5200
https://cran.r-project.org/package=rgdal
https://cran.r-project.org/package=rgdal
https://doi.org/10.1007/s10592-012-0425-z
https://doi.org/10.1111/j.1752-4571.2008.00045.x
https://doi.org/10.2307/2425750
https://doi.org/10.1111/1365-2664.13866
https://doi.org/10.1111/ddi.12122
https://doi.org/10.5066/P93ZU0R9
https://doi.org/10.3133/ofr20161207
https://doi.org/10.2307/3898842
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=leaflet
https://cran.r-project.org/package=leaflet
https://doi.org/10.1007/s00442-004-1551-1
https://doi.org/10.1111/rec.12574
https://doi.org/10.1111/rec.12574
https://doi.org/10.1146/annurev.es.23.110192.000431
https://doi.org/10.1146/annurev.es.23.110192.000431
https://doi.org/10.1038/nclimate1633
https://doi.org/10.1038/nclimate1633
https://doi.org/10.1002/joc.1688
https://doi.org/10.1016/j.jaridenv.2009.04.017
https://doi.org/10.1016/j.jaridenv.2009.04.017
https://doi.org/10.1111/gcb.12026
https://doi.org/10.1111/gcb.12026
https://doi.org/10.1111/j.1365-2664.2011.02057.x
https://doi.org/10.3375/043.041.0209
https://doi.org/10.1007/s00442-010-1617-1
https://doi.org/10.1007/s00442-010-1617-1
https://doi.org/10.1016/j.jaridenv.2010.04.011
https://doi.org/10.1016/j.jaridenv.2010.04.011
https://doi.org/10.1016/j.rse.2003.07.002
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1371/journal.pone.0097122
https://doi.org/10.1371/journal.pone.0097122
https://doi.org/10.3375/043.035.0118
https://doi.org/10.3375/043.035.0118


    |  15 of 16SHRYOCK et al.

dryland	ecosystems.	Journal of Applied Ecology,	57(11),	2191–	2202.	
https://doi.org/10.1111/1365-	2664.13715

Hereford,	R.,	Webb,	R.	H.,	&	Longpré,	C.	 I.	 (2006).	Precipitation	his-
tory	and	ecosystem	response	to	multidecadal	precipitation	vari-
ability	 in	 the	Mojave	Desert	 region,	1893–	2001.	 Journal of Arid 
Environments,	 67(Suppl.),	 13–	34.	 https://doi.org/10.1016/j.jarid	
env.2006.09.019

Hernandez,	R.	R.,	Easter,	S.	B.,	Murphy-	Mariscal,	M.	L.,	Maestre,	F.	T.,	
Tavassoli,	M.,	Allen,	E.	B.,	Barrows,	C.	W.,	Belnap,	J.,	Ochoa-	Hueso,	
R.,	Ravi,	S.,	&	Allen,	M.	F.	(2014).	Environmental	impacts	of	utility-	
scale	 solar	 energy.	Renewable and Sustainable Energy Reviews,	29,	
766–	779.	https://doi.org/10.1016/j.rser.2013.08.041

Hijmans,	R.	J.,	Phillips,	S.,	Leathwick,	J.,	&	Elith,	J.	(2017).	dismo: Species 
Distribution Modeling.	https://cran.r-	proje	ct.org/packa	ge=dismo

Hirzel,	 A.	 H.,	 Le	 Lay,	 G.,	 Helfer,	 V.,	 Randin,	 C.,	 &	 Guisan,	 A.	 (2006).	
Evaluating	the	ability	of	habitat	suitability	models	to	predict	spe-
cies	 presences.	 Ecological Modelling,	199(2),	 142–	152.	 https://doi.
org/10.1016/j.ecolm	odel.2006.05.017

Hufford,	 K.	M.,	 &	Mazer,	 S.	 J.	 (2003).	 Plant	 ecotypes:	 Genetic	 differ-
entiation	 in	 the	 age	 of	 ecological	 restoration.	 Trends in Ecology 
and Evolution,	 18(3),	 147–	155.	 https://doi.org/10.1016/S0169	
-	5347(03)00002	-	8

Hulvey,	K.	B.,	Leger,	E.	A.,	Porensky,	L.	M.,	Roche,	L.	M.,	Veblen,	K.	E.,	
Fund,	A.,	 Shaw,	 J.,	&	Gornish,	E.	S.	 (2017).	Restoration	 islands:	A	
tool	 for	 efficiently	 restoring	 dryland	 ecosystems?	 Restoration 
Ecology,	25,	S124–	S134.	https://doi.org/10.1111/rec.12614

Hurd,	 P.	 D.,	 Jr,	 &	 Linsley,	 E.	 G.	 (1975).	 The principal Larrea bees of the 
Southwestern United States (Hymenoptera: Apoidea).	 Smithsonian	
Institution	Press.	https://doi.org/10.5479/si.00810	282.193

Inman,	R.	D.,	Nussear,	K.	E.,	Esque,	T.	C.,	Vandergast,	A.	G.,	Hathaway,	S.	
A.,	Wood,	D.	A.,	Barr,	K.	R.,	&	Fisher,	R.	N.	(2014).	Mapping habitat 
for multiple species in the Desert Southwest.	U.S.	Geological	Survey	
Open-	File	 Report	 2014-	1134.	 https://doi.org/10.3133/ofr20	
141134

IPCC	(2013).	Climate	change	2013	the	physical	science	basis:	Working	
Group	I	contribution	to	the	fifth	assessment	report	of	the	intergov-
ernmental	panel	on	climate	change.	 In	T.	F.	Stocker,	D.	Qin,	G.	K.	
Plattner,	M.	M.	B.	Tignor,	S.	K.	Allen,	J.	Boschung,	&	P.	M.	Midgley	
(Eds.),	Climate Change 2013 the Physical Science Basis: Working Group 
I Contribution to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change.	 https://doi.org/10.1017/CBO97	81107	
415324

Isbell,	F.,	Craven,	D.,	Connolly,	J.,	Loreau,	M.,	Schmid,	B.,	Beierkuhnlein,	
C.,	Bezemer,	T.	M.,	Bonin,	C.,	Bruelheide,	H.,	de	Luca,	E.,	Ebeling,	A.,	
Griffin,	J.	N.,	Guo,	Q.,	Hautier,	Y.,	Hector,	A.,	Jentsch,	A.,	Kreyling,	
J.,	 Lanta,	 V.,	 Manning,	 P.,	 …	 Eisenhauer,	 N.	 (2015).	 Biodiversity	
increases	the	resistance	of	ecosystem	productivity	 to	climate	ex-
tremes.	Nature,	526(7574),	574–	577.	https://doi.org/10.1038/natur	
e15374

Johnson,	I.	R.,	Stritch,	L.,	Olwell,	P.,	Lambert,	S.,	Horning,	M.	E.,	&	Cronn,	
R.	 (2010).	What	 are	 the	 best	 seed	 sources	 for	 ecosystem	 resto-
ration	on	BLM	and	USFS	 lands?	Native Plants Journal,	11(2),	117–	
131.	https://doi.org/10.2979/NPJ.2010.11.2.117

Kettenring,	K.	M.,	Mercer,	K.	L.,	Reinhardt	Adams,	C.,	&	Hines,	J.	(2014).	
Application	 of	 genetic	 diversity-	ecosystem	 function	 research	 to	
ecological	 restoration.	 Journal of Applied Ecology,	51(2),	 339–	348.	
https://doi.org/10.1111/1365-	2664.12202

Kimball,	 S.,	 Angert,	 A.	 L.,	 Huxman,	 T.	 E.,	 &	 Venable,	 D.	 L.	 (2010).	
Contemporary	climate	change	in	the	Sonoran	Desert	favors	cold-	
adapted	species.	Global Change Biology,	16(5),	1555–	1565.	https://
doi.org/10.1111/j.1365-	2486.2009.02106.x

Knutson,	K.	C.,	Pyke,	D.	A.,	Wirth,	T.	A.,	Arkle,	R.	S.,	Pilliod,	D.	S.,	Brooks,	
M.	L.,	Chambers,	J.	C.,	&	Grace,	J.	B.	(2014).	Long-	term	effects	of	
seeding	after	wildfire	on	vegetation	in	Great	Basin	shrubland	eco-
systems.	 Journal of Applied Ecology,	51(5),	 1414–	1424.	 https://doi.
org/10.1111/1365-	2664.12309

Leger,	 E.	 A.,	 Barga,	 S.,	 Agneray,	 A.	 C.,	 Baughman,	 O.,	 Burton,	 R.,	 &	
Williams,	M.	 (2021).	 Selecting	 native	 plants	 for	 restoration	 using	
rapid	 screening	 for	 adaptive	 traits:	 Methods	 and	 outcomes	 in	 a	
Great	Basin	case	study.	Restoration Ecology,	29(4),	e13260.	https://
doi.org/10.1111/rec.13260

Leger,	E.	A.,	&	Goergen,	E.	M.	(2017).	 Invasive	Bromus	tectorum	alters	
natural	selection	in	arid	systems.	Journal of Ecology,	105(6),	1509–	
1520.	https://doi.org/10.1111/1365-	2745.12852

Lenz,	L.	W.	(2007).	Reassessment	of	Yucca brevifolia	and	recognition	of	
Y. jaegeriana	as	a	Distinct	Species.	Aliso: A Journal of Systematic and 
Evolutionary Botany,	24(1),	97–	104.

Liaw,	A.,	&	Wiener,	M.	(2002).	Classification	and	Regression	by	random-
Forest.	R News,	2(3),	18–	22.	http://cran.r-	proje	ct.org/doc/Rnews/

Lovich,	J.	E.,	&	Bainbridge,	D.	(1999).	Anthropogenic	degradation	of	the	
southern	 California	 desert	 ecosystem	 and	 prospects	 for	 natural	
recovery	and	restoration.	Environmental Management,	24(3),	309–	
326.	https://doi.org/10.1007/s0026	79900235

M’Gonigle,	L.	K.,	Williams,	N.	M.,	Lonsdorf,	E.,	&	Kremen,	C.	 (2017).	A	
Tool	 for	Selecting	Plants	When	Restoring	Habitat	 for	Pollinators.	
Conservation Letters,	 10,	 105–	111.	 https://doi.org/10.1111/
conl.12261

Macmahon,	J.	A.	(1988).	Warm	deserts.	In	M.	G.	Barbour,	&	W.	D.	Billings	
(Eds.),	North American terrestrial vegetation,	2nd	ed.	(pp.	285–	322).	
Cambridge	University	Press.

Massatti,	R.,	Prendeville,	H.	R.,	Larson,	S.,	Richardson,	B.	A.,	Waldron,	B.,	
&	Kilkenny,	F.	F.	 (2018).	Population	history	provides	 foundational	
knowledge	 for	 utilizing	 and	 developing	 native	 plant	 restoration	
materials.	Evolutionary Applications,	11(10),	2025–	2039.	https://doi.
org/10.1111/eva.12704

McCune,	B.,	&	Keon,	D.	(2002).	Equations	for	potential	annual	direct	in-
cident	radiation	and	heat	load.	Journal of Vegetation Science,	13(4),	
603–	606.	https://doi.org/10.1111/j.1654-	1103.2002.tb020	87.x

McKay,	J.	K.,	Christian,	C.	E.,	Harrison,	S.,	&	Rice,	K.	J.	(2005).	“How	local	
is	local?”	-		A	review	of	practical	and	conceptual	issues	in	the	genet-
ics	of	restoration.	Restoration Ecology,	13(3),	432–	440.	https://doi.
org/10.1111/j.1526-	100X.2005.00058.x

Meyer,	 S.	 E.,	 &	 Pendleton,	 B.	 K.	 (2015).	 Evolutionary	 drivers	 of	mast-	
seeding	 in	 a	 long-	lived	 desert	 shrub.	American Journal of Botany,	
102(10),	1666–	1675.	https://doi.org/10.3732/ajb.1500209

Miller,	A.	H.,	&	Stebbins,	R.	C.	(1964).	The lives of desert animals in Joshua 
Tree National Monument	(452	pp.).	University	of	California	Press.

Muscarella,	 R.,	 Galante,	 P.	 J.,	 Soley-	Guardia,	 M.,	 Boria,	 R.	 A.,	 Kass,	 J.	
M.,	Uriarte,	M.,	&	Anderson,	R.	P.	(2014).	ENMeval:	An	R	package	
for	 conducting	 spatially	 independent	 evaluations	 and	 estimating	
optimal	 model	 complexity	 for	 Maxent	 ecological	 niche	 models.	
Methods in Ecology and Evolution,	 5(11),	 1198–	1205.	 https://doi.
org/10.1111/2041-	210x.12261

Oldfield,	S.,	&	Olwell,	P.	(2015).	The	right	seed	in	the	right	place	at	the	
right	time.	BioScience,	65,	955–	956.	https://doi.org/10.1093/biosc	
i/biv127

Oliver,	T.	H.,	Heard,	M.	S.,	Isaac,	N.	J.	B.,	Roy,	D.	B.,	Procter,	D.,	Eigenbrod,	
F.,	Freckleton,	R.,	Hector,	A.,	Orme,	C.	D.	L.,	Petchey,	O.	L.,	Proença,	
V.,	 Raffaelli,	 D.,	 Suttle,	 K.	 B.,	 Mace,	 G.	 M.,	 Martín-	López,	 B.,	
Woodcock,	B.	A.,	&	Bullock,	J.	M.	(2015).	Biodiversity	and	resilience	
of	ecosystem	 functions.	Trends in Ecology and Evolution,	30,	 673–	
684.	https://doi.org/10.1016/j.tree.2015.08.009

Olwell,	 P.,	 &	 Riibe,	 L.	 (2016).	 National	 seed	 strategy:	 Restoring	 polli-
nator	 habitat	 begins	with	 the	 right	 seed	 in	 the	 right	 place	 at	 the	
right	 time.	 Natural Areas Journal,	 36(4),	 363–	365.	 https://doi.
org/10.3375/043.036.0403

Peppin,	D.	 L.,	 Fulé,	 P.	 Z.,	 Lynn,	 J.	C.,	Mottek-	Lucas,	A.	 L.,	&	Hull	 Sieg,	
C.	 (2010).	Market	 perceptions	 and	opportunities	 for	 native	 plant	
production	on	the	southern	Colorado	plateau.	Restoration Ecology,	
18,	113–	124.	https://doi.org/10.1111/j.1526-	100X.2010.00656.x

Phillips,	 S.	 J.,	 Anderson,	 R.	 P.,	 &	 Schapire,	 R.	 E.	 (2006).	Maximum	 en-
tropy	 modeling	 of	 species	 geographic	 distributions.	 Ecological 

https://doi.org/10.1111/1365-2664.13715
https://doi.org/10.1016/j.jaridenv.2006.09.019
https://doi.org/10.1016/j.jaridenv.2006.09.019
https://doi.org/10.1016/j.rser.2013.08.041
https://cran.r-project.org/package=dismo
https://doi.org/10.1016/j.ecolmodel.2006.05.017
https://doi.org/10.1016/j.ecolmodel.2006.05.017
https://doi.org/10.1016/S0169-5347(03)00002-8
https://doi.org/10.1016/S0169-5347(03)00002-8
https://doi.org/10.1111/rec.12614
https://doi.org/10.5479/si.00810282.193
https://doi.org/10.3133/ofr20141134
https://doi.org/10.3133/ofr20141134
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1038/nature15374
https://doi.org/10.1038/nature15374
https://doi.org/10.2979/NPJ.2010.11.2.117
https://doi.org/10.1111/1365-2664.12202
https://doi.org/10.1111/j.1365-2486.2009.02106.x
https://doi.org/10.1111/j.1365-2486.2009.02106.x
https://doi.org/10.1111/1365-2664.12309
https://doi.org/10.1111/1365-2664.12309
https://doi.org/10.1111/rec.13260
https://doi.org/10.1111/rec.13260
https://doi.org/10.1111/1365-2745.12852
http://cran.r-project.org/doc/Rnews/
https://doi.org/10.1007/s002679900235
https://doi.org/10.1111/conl.12261
https://doi.org/10.1111/conl.12261
https://doi.org/10.1111/eva.12704
https://doi.org/10.1111/eva.12704
https://doi.org/10.1111/j.1654-1103.2002.tb02087.x
https://doi.org/10.1111/j.1526-100X.2005.00058.x
https://doi.org/10.1111/j.1526-100X.2005.00058.x
https://doi.org/10.3732/ajb.1500209
https://doi.org/10.1111/2041-210x.12261
https://doi.org/10.1111/2041-210x.12261
https://doi.org/10.1093/biosci/biv127
https://doi.org/10.1093/biosci/biv127
https://doi.org/10.1016/j.tree.2015.08.009
https://doi.org/10.3375/043.036.0403
https://doi.org/10.3375/043.036.0403
https://doi.org/10.1111/j.1526-100X.2010.00656.x


16 of 16  |     SHRYOCK et al.

Modelling,	 190(3–	4),	 231–	259.	 https://doi.org/10.1016/j.ecolm	
odel.2005.03.026

Reynolds,	 M.	 B.	 J.,	 DeFalco,	 L.	 A.,	 &	 Esque,	 T.	 C.	 (2012).	 Short	 seed	
longevity,	 variable	 germination	 conditions,	 and	 infrequent	 estab-
lishment	 events	 provide	 a	 narrow	 window	 for	 Yucca	 brevifolia	
(Agavaceae)	recruitment.	American Journal of Botany,	99(10),	1647–	
1654.	https://doi.org/10.3732/ajb.1200099

Shryock,	D.	F.,	Defalco,	 L.	A.,	&	Esque,	T.	C.	 (2014).	 Life-	history	 traits	
predict	perennial	 species	 response	 to	 fire	 in	a	desert	ecosystem.	
Ecology and Evolution,	4(15),	3046–	3059.	https://doi.org/10.1002/
ece3.1159

Shryock,	D.	 F.,	DeFalco,	 L.	 A.,	 &	 Esque,	 T.	 C.	 (2018).	 Spatial	 decision-	
support	tools	to	guide	restoration	and	seed-	sourcing	in	the	Desert	
Southwest.	 Ecosphere,	 9(10),	 e02453.	 https://doi.org/10.1002/
ecs2.2453

Shryock,	D.	F.,	DeFalco,	L.	A.,	&	Esque,	T.	C.	(2022a).	Mojave Seed Menus: 
A new spatial tool for restoration.	U.S.	Geological	Survey	software	
release,	v1.0.0.	https://doi.org/10.5066/P94A2QLK

Shryock,	D.	F.,	DeFalco,	L.	A.,	&	Esque,	T.	C.	(2022b).	Species distribution 
models for native species in the Mojave Desert.	U.S.	Geological	Survey	
data	release.	https://doi.org/10.5066/P9XQJFEL

Shryock,	D.	F.,	Havrilla,	C.	A.,	DeFalco,	L.	A.,	Esque,	T.	C.,	Custer,	N.	A.,	
&	Wood,	T.	E.	(2017).	Landscape	genetic	approaches	to	guide	na-
tive	plant	restoration	in	the	Mojave	Desert.	Ecological Applications,	
27(2),	429–	445.	https://doi.org/10.1002/eap.1447

Tilman,	D.,	&	Downing,	J.	A.	(1994).	Biodiversity	and	stability	in	grasslands.	
Nature,	367(6461),	363–	365.	https://doi.org/10.1038/367363a0

Veloz,	 S.	 D.	 (2009).	 Spatially	 autocorrelated	 sampling	 falsely	 in-
flates	 measures	 of	 accuracy	 for	 presence-	only	 niche	 mod-
els. Journal of Biogeography,	 36(12),	 2290–	2299.	 https://doi.
org/10.1111/j.1365-	2699.2009.02174.x

Vilsack,	T.,	&	McCarthy,	G.	(2015).	National strategy to promote the health 
of honeybees and other pollinators.	Pollinator	Health	Task	Force.

Wang,	 T.,	 Hamann,	 A.,	 Spittlehouse,	 D.,	 &	 Carroll,	 C.	 (2016).	 Locally	
downscaled	and	 spatially	 customizable	 climate	data	 for	historical	

and	future	periods	for	North	America.	PLoS One,	11(6),	e0156720.	
https://doi.org/10.1371/journ	al.pone.0156720

Warren,	 D.	 L.,	 &	 Seifert,	 S.	 N.	 (2011).	 Ecological	 niche	 modeling	 in	
Maxent:	The	importance	of	model	complexity	and	the	performance	
of	model	selection	criteria.	Ecological Applications,	21(2),	335–	342.	
https://doi.org/10.1890/10-	1171.1

Watling,	 J.	 I.,	 Brandt,	 L.	 A.,	 Bucklin,	 D.	 N.,	 Fujisaki,	 I.,	 Mazzotti,	 F.	 J.,	
Romañach,	S.	S.,	&	Speroterra,	C.	(2015).	Performance	metrics	and	
variance	partitioning	reveal	sources	of	uncertainty	 in	species	dis-
tribution	models.	Ecological Modelling,	309– 310,	48–	59.	https://doi.
org/10.1016/j.ecolm	odel.2015.03.017

Webb,	 R.	 H.,	Murov,	M.	 B.,	 Esque,	 T.	 C.,	 Boyer,	 D.	 E.,	 DeFalco,	 L.	 A.,	
Haines,	 D.	 F.,	 &	 Medica,	 P.	 A.	 (2003).	 Perennial vegetation data 
from permanent plots on the Nevada Test Site.	In	Open-	File	Report.	
https://doi.org/10.3133/ofr03336

Webb,	R.	H.,	&	Newman,	E.	B.	 (1982).	Recovery	of	soil	and	vegetation	
in	ghost-	towns	in	the	Mojave	Desert,	southwestern	United	States.	
Environmental Conservation,	9,	245–	248.

Wood,	S.	N.	 (2017).	Generalized additive models: An introduction with R,	
2nd	ed.	CRC	Press.	https://doi.org/10.1201/97813	15370279

SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 in	 the	 online	
version	of	the	article	at	the	publisher’s	website.

How to cite this article:	Shryock,	D.	F.,	DeFalco,	L.	A.,	&	
Esque,	T.	C.	(2022).	Seed	Menus:	An	integrated	decision-	
support	framework	for	native	plant	restoration	in	the	Mojave	
Desert. Ecology and Evolution,	12,	e8805.	https://doi.
org/10.1002/ece3.8805

https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.3732/ajb.1200099
https://doi.org/10.1002/ece3.1159
https://doi.org/10.1002/ece3.1159
https://doi.org/10.1002/ecs2.2453
https://doi.org/10.1002/ecs2.2453
https://doi.org/10.5066/P94A2QLK
https://doi.org/10.5066/P9XQJFEL
https://doi.org/10.1002/eap.1447
https://doi.org/10.1038/367363a0
https://doi.org/10.1111/j.1365-2699.2009.02174.x
https://doi.org/10.1111/j.1365-2699.2009.02174.x
https://doi.org/10.1371/journal.pone.0156720
https://doi.org/10.1890/10-1171.1
https://doi.org/10.1016/j.ecolmodel.2015.03.017
https://doi.org/10.1016/j.ecolmodel.2015.03.017
https://doi.org/10.3133/ofr03336
https://doi.org/10.1201/9781315370279
https://doi.org/10.1002/ece3.8805
https://doi.org/10.1002/ece3.8805

