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Heat, temperature and Clausius 
inequality in a model for active 
Brownian particles
Umberto Marini Bettolo Marconi1, Andrea Puglisi2 & Claudio Maggi3

Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced 
model of active particles. The model consists of an overdamped particle subject to Gaussian coloured 
noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation 
the average exchanges of heat and work with the active bath and the associated entropy production. 
We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active 
bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, 
by restricting the dynamical space to the first velocity moments of the local distribution function we 
derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes 
appear and are consistent with the previous thermodynamic analysis. The procedure also shows under 
which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation 
neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy 
production. In the last part, by using multiple time-scale analysis, we provide a constructive method 
(alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed 
balance condition determining negative entropy production.

Recently, there has been an upsurge of interest in active matter systems made of self-propelled particles which 
take energy from the environment to sustain their motion1,2. There are several reasons why this subject has drawn 
the attention of biologists and physicists: active particles model not only living systems such as Escherichia coli 
bacteria, spermatozoa, swarms of animals etc., but also manmade inanimate objects such as Janus spherical par-
ticles with catalytic patches coatings, polymeric spheres encapsulating a hematite cube, rod-shaped particles con-
sisting of Pt and Au segments3 which can be studied in a laboratory. Since the constituents of active matter are 
powered by some external engine and constantly spend energy to move through a viscous medium, they are 
permanently out of equilibrium and thus provide new challenges in non equilibrium statistical mechanics4. Every 
element of an active matter system can be considered out of equilibrium, in contrast to boundary driven systems, 
like a system subject to a concentration gradient which is locally equilibrated.

In contrast with passive Brownian particles subject to thermal fluctuations, such as colloids in solution, active 
systems can be described as assemblies of particles driven by fluctuating forces which are generically correlated 
in time. Theoreticians have proposed several descriptions of the active dynamics including the run-and-tumble 
model5,6, the active Brownian particle model7–9 and the Gaussian colored noise (GCN) model10,11, where the 
direction of motion fluctuates, but on a short-time scale there is a persistence to move in the current directions12. 
The persistent character of their trajectories is measured experimentally through their diffusivity3, which is usu-
ally much larger than the diffusivity of colloidal particles. The last model is a particularly simple description of 
the self-propulsion mechanism, obtained by considering the motion of the particles as a set of coupled Langevin 
equations subject to a noise with a correlation time τ >​ 0, replacing the white noise (τ =​ 0) characterising passive 
matter. Thanks to this simple mathematical structure one can obtain many results in an explicit form. In particu-
lar, in the present paper we perform a study of the non equilibrium stochastic energetics of the GCN model and 
extend the analysis beyond the steady state and zero current regime which has been the subject of previous work 
of some of the authors13,14.
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Stochastic energetics aims to provide a link between stochastic processes - which constitute an effective 
dynamical description of mesoscopic systems (i.e. where the degrees of freedom of thermostats are replaced by 
stochastic effective terms) - and thermodynamics15,16. It basically answers the questions of what are the heat and 
the work associated with a random motion and aims at tracing the role of the energy exchanges in the variation 
of the Gibbs entropy17,18. In macroscopic thermodynamics, one studies the change of thermodynamic entropy 
S after a transformation from the equilibrium state A to equilibrium state B, during which a heat ∫​A→BδQ goes 
from the thermostat to the system. For such a transformation one has

∫ ∑δ
− = + →

→
S B S A Q

T
A B( ) ( ) ( ) (1)A B

where Σ​ - known as entropy production - satisfies Σ​ ≥​ 0 with the equal sign valid only in a quasi-static transfor-
mation. In a cyclic transformation S(B) =​ S(A), so that the Clausius inequality is recovered, δ = −Σ ≤∮ Q T/ 0.

In stochastic thermodynamics the equilibrium entropy is replaced by Gibbs entropy s(t) (details are given 
hereafter) and the average instantaneous entropy variation is written as

= + 

ds
dt

s s , (2)m s

with the entropy production rate ≥s 0s  (=​0 only at equilibrium) and sm interpreted as “entropy production of the 
surrounding medium”18. Indeed in many cases of non-conservative forces applied to a system in contact with a 
heat bath at temperature T, it appears that = s q T/m , with q the average heat flux going from the heat bath to the 
system (in the rest of the paper we use, for simplicity, the notation q to indicate a heat flux, which of course does 
not imply the existence of an observable q depending on the state of the system). In the stationary state, therefore, 
one has - again -

= − ≤ .




q
T

s 0 (3)s

There are however other cases where such a simple interpretation of sm is lost. One of the most studied cases is 
when the non-conservative force depends on the velocity of the particle, a fact which is common in mesoscopic 
systems with feedback19 and in some models of active particle20–23. In those examples one finds a more complicate 
structure of the kind

= + +


 

ds
dt

q
T

s s (4)s act

where still ≥s 0s , but an additional contribution sact entropy production appears without a well defined sign (we 
use “act” for “active”, but previous authors have called it “pumping”24). As a consequence in the stationary state the 
Clausius inequality is no more guaranteed. A possible interpretation of this fact is a problem in the modellisation 
of the external non-conservative agent25.

Here we apply the methods of stochastic energetics and thermodynamics to the GCN model, showing that the 
instantaneous entropy variation can be written as

∫

∫
θ

= +

=

�
�

� �

�

�

ds
dt

dx q x
x

s

q dxq x

( )
( )

( ), (5)

s

with ≥s 0s  taking a simple Onsager-like structure and ��q x( ) representing the local energy flux coming from the 
active bath (represented by the Gaussian coloured noise) which has an effective local temperature θ(x) (details in 
Section Model and Methods). Remarkably, Eq. (5) generalises the Clausius inequality26–28, as in the stationary 
state it implies

∫ θ
≤ .

��dx q x
x

( )
( )

0
(6)

Interestingly, a known approximation of the GCN model where only the longer time-scales are considered 
(“UCNA” approximation29–31), yields a zero entropy production, being =q x( ) 0 everywhere, as in local equilib-
rium. This is consistent with a known observation: coarse-graining operations that remove fast time-scales are 
likely to suppress part - or all - of the entropy production of a system24,32–35. For the same reason, the entropy 
production needed to sustain the active bath (see for instance4), which is usually hotter then the equilibrium (sol-
vent) bath, does not appear in our description here, because the model is defined on a time-scale which is slower 
than the one of the molecular heat exchanges.

Equations (5–6) are not the only important result of our work. We also derive the hydrodynamic equations of 
the GCN model (for non-interacting particles or, equivalently, in the dilute limit) for density, momentum, and 
temperature local fields. This is pivotal in getting further insight in the local thermodynamics of the model, i.e. 
making explicit terms such as the local pressure, local kinetic temperature, internal heat fluxes and local entropy 
production.
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This paper is organised as follows: in section Model and Methods, we present the model of independent active 
particles in one dimension subject to a generic potential and write the evolution equation for the Kramers equa-
tion for the position-velocity distribution function. Using the Kramers equation and after introducing the con-
cepts of work, heat and Gibbs entropy, we present a thermodynamic description of the non equilibrium coloured 
noise system by relating the entropy variation to the power and heat flux of the system. Using stochastic thermo-
dynamic methods we show that there exists a local Clausius inequality involving the heat flux and a non uniform 
local temperature. Such a scenario is corroborated by the analysis of the hydrodynamic equations derived from 
the Kramers equation. We also derive the UCNA approximation from the hydrodynamic equations by taking 
the overdamped limit and show that this approximation corresponds to a vanishing entropy production which 
is consistent with the fact that the UCNA satisfies the detailed balance condition. To go beyond such an approxi-
mation we use a multiple-time scale method and show how a finite entropy production arises. Finally, we present 
our conclusions.

The Supplementary Information illustrates the multiple-time scale method used in the main text to expand 
the Kramers equation in powers of τ  around the τ =​ 0 solution and derive the form of the phase-space probability  
distribution without imposing the detailed balance condition.

Model and Methods
We consider a minimal model describing the basic dynamical properties of a suspension of mutually 
non-interacting active particles in the presence of an external field. The steady state properties of such a model, 
including interactions, have been recently studied in a series of papers, but little attention has been devoted to 
its dynamical properties. For the sake of simplicity we study a one dimensional model, and leave the straight-
forward extension to higher dimensions with interactions to future work. As mentioned in the introduction, 
the distinguishing feature of active matter is the ability of the self-propelled particles to convert energy from the 
environment into persistent motion so that one observes a variety of peculiar properties such as extraordinary 
large diffusivities as compared to suspensions of colloidal particles of similar size and spatial distributions not 
following Boltzmann statistics, to mention just a few. Besides the active Brownian particle (ABP) model, which 
considers independently the translational and the rotational degrees of freedom of the particles, the GCN has 
recently gained increasing popularity among theoreticians, because it lends itself to more analytical treatments. 
Farage et al.11 presented a clear discussion of how the GCN can be considered as a coarse grained version of the 
ABP, and can be derived by averaging over the angular degrees of freedom. The essence of the GCN is to describe 
the dynamics of an active suspension by means of an over damped equation for the position variable subject 
to a deterministic force and to a stochastic driving. At variance with colloidal solutions described by standard 
Brownian dynamics the noise is time-correlated to account for the persistence of the trajectories. We model the 
effective dynamics for the space coordinates of an assembly of non-interacting active Brownian particles13,36 as

γ
= +x t f x a t( ) 1 ( ) ( )

(7)

where the term a, also called “active bath”, evolves according to the law:

τ τ
η= − + .a t a t D t( ) 1 ( ) ( ) (8)

1/2

The force f(x) acting on each particle is time-independent and associated to the potential w(x), γ is the drag 
coefficient, whereas the stochastic force η(t) is a Gaussian and Markovian process distributed with zero mean 
and moments 〈​η(t)η(t′​)〉​ =​ 2δ(t −​ t′​). The coefficient D due to the activity is related to the correlation of the 
Ornstein-Uhlenbeck process a(t) via

τ τ
′ =





−
− ′ 



.a t a t D t t

( ) ( ) exp

In order to proceed analytically it is convenient to switch from the (x, a) variables to the phase-space variables 
(x, v) where = v x and rewrite (7) and (8) as

τ
τ
γ τγ τ

η

=

= −




−





+ +





x v

v df
dx

v f D1 1 1
(9)

1/2

One can immediately write the associated Kramers equation for the phase-space distribution p(x, v;t):

γτ τ τ
∂
∂
+
∂
∂
+

∂
∂
=

∂
∂



∂
∂
+ Γ





p
t

v p
x

f x p
v v

D
v

x v p( ) 1 ( )
(10)

with Γ = − τ
γ( )x( ) 1 df

dx
. The second and third term on the left hand side represent the streaming terms in the 

evolution, that is correspond to the Hamiltonian evolution of the phase-space distribution, whereas the right 
hand side describes the dissipative part of the evolution. Notice that, at variance with the standard Kramers equa-
tion the force is divided by the unusual factor τγ and the friction is space dependent and varies with τ.
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Transport equation in phase-space and entropy production.  In order to proceed further, it is 
time-saving to adopt non-dimensional variables for positions, velocities, and time and rescale forces accordingly. 
We define τ=v D/T  and introduce the following non-dimensional variables:

γ
ζ
τ

≡ ≡ ≡ ≡ =t tv
l

V v
v

X x
l

F X lf x
D

l
v

, , , ( ) ( ) ,T

T T

Interestingly, ζ is the inverse of the Péclet number, τ=Pe D l/ , of the problem, that is the ratio between the 
mean square diffusive displacement due to the active bath in a time interval τ, the so called persistence length, 
over the typical length of the problem, l, such as length-scale of the variation of the external potential w(x). As it 
will be clear in the following the parameter ζ plays the role of a non-dimensional friction.

We rewrite Kramers’ evolution equation for the phase-space distribution function using (11) as:

ζ∂
∂

+
∂
∂

+
∂
∂

=
∂
∂





∂
∂
+

P X V t
t

V
X

P X V t F X
V

P X V t
V V

g X V P X V t( , , ) ( , , ) ( ) ( , , ) ( ) ] ( , , ) ,
(12)

where = Γ = −
ζ

g X x( ) ( ) 1 dF
dX

1
2 .

Work, heat and entropy production.  Equation (12) can be written as a continuity equation in phase 
space

∂
∂

+
∂
∂

+
∂
∂

=
t

P X V t
X

I X V t
V

I X V t( , , ) ( , , ) ( , , ) 0 (13)x v

by introducing a probability current vector, (Ix, Iv), whose components are the sum of a reversible current (indi-
cated with a superscript R)

≡I I VP FP( , ) ( , ) (14)x
R

v
R

and a dissipative or irreversible current (indicated with a superscript D)

ζ ζ≡



−
∂
∂
−



I I P

V
g X VP( , ) 0, ( )

(15)x
D

v
D

The dynamical equation (12) ruling the statistical evolution of the phase space distribution can be seen as the 
result of an Hamiltonian (non dissipative) dynamics coupled to an heat-bath:

ζ∂
∂
+
∂
∂
∂
∂

−
∂
∂
∂
∂

=
∂
∂





∂
∂
+





t

P E
V X

P E
X V

P
V V

gV P
(16)

where

= +E t V U X( ) 1
2

( ) (17)
2

with w =​ DγU such that F(X) =​ −​dU/dX. Upon differentiating the expectation value of E(t) with respect to time 
we obtain

= +  E t W t Q t( ) ( ) ( ) (18)

with

=
∂
∂

= ∬W t dXdVP X V t
t
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∂
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Since in the simple case of a time independent potential (which is the situation considered in the rest of this 
paper), =W 0, i.e. = E Q . Explicitly, we obtain

ζ= −






+
∂
∂





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V
dXdVVI( ) ( )

(23)v
D2
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We underline that our definition of heat is coherent with the standard definition of stochastic energetics15. 
Indeed it is straightforward to verify that Q  corresponds to the average of the power dissipated by forces acting 
on the particle which are related to the active bath, i.e. all forces appearing in Eq. (9) but the conservative term 
f/τγ.

We introduce now the Gibbs entropy ≡ −∬S t dXdVP X V t P X V t( ) ( , , )ln ( , , ), which in equilibrium systems 
connects the statistical level and the probability distribution P X V t( , , ) to the macroscopic thermodynamic quan-
tities such as heat and work, and relate its time derivative to the heat rate Q t( ) . We consider:

= −
∂
∂

= ∇ ⋅ + ∬ ∬S t dXdV
t

P X V t P X V t dXdV P X V tI I( ) ( , , )ln ( , , ) [ ]ln ( , , ) (24)
R D

To derive equation (24) we used the continuity equation (13). After integrating by parts and using the zero flux 
boundary conditions at infinity and the definitions (14) and (15) we obtain the expression:

= − ∇ ⋅ + = +  ∬S t dXdV
P

P S SI I( ) 1 [ ] (25)
R D R D

= ∇ ⋅ . ∬S dXdV P
P

I[ ]
(26)

R D
R D

( )
( )

One can see that the reversible contribution to S vanishes since

= ∇ ⋅ = −

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
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∂
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−
∂
∂
∂
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X

E X V
V

V
E X V

X

I( ) ( , , ) ( , , )
( , , )
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( , ) 0
(27)

R R

Analogously we may write the dissipative contribution to S as

ζ
ζ=







+




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 ∬S t dXdV I
P

g X VI( ) 1 ( ) ( )
(28)

D v
D

v
D

2

so that the total time derivative of the entropy (24) turns out to be:

= +  S t S t S t( ) ( ) ( ) (29)s m

ζ=



∂
∂
+





 ∬S t dXdV
P

P
V

g X VP( ) 1 ( )
(30)s

2

ζ= = −




+
∂
∂


.

 ∬ ∬S t dXdVg X VI dXdVg X g X V P V P
V

( ) ( ) ( ) ( )
(31)m v

D 2

It is clear that in the steady state the time derivative of the entropy vanishes =S 0, as well as Q . However, it is 
interesting to identify Ss as an entropy production rate, which is indeed always non-negative, and Sm as the flux of 
entropy due to heat exchanges between the system and the surroundings, also known as entropy production of 
the medium18. One immediately notices that Sm is not simply proportional to Q t( ) , see Eq. (23), as one would 
find when studying the entropy production of a system coupled to an equilibrium thermostat and driven 
out-of-equilibrium by non-conservative forces18. Here we have a spatial distribution of temperatures. In order to 
appreciate that, we need to discuss the role of g(X) as an inverse temperature and to consider the dimensional 
form of the equations, which is done in the following two subsections.

Absence of detailed balance condition in the GCN.  The conditions of detailed balance can be written 
in terms of components of the dissipative or irreversible current (15), which must vanish in the steady state37:

ζ ζ



−
∂
∂

−


 =

P X V
V

g X V P X V0, ( , ) ( ) ( , ) (0, 0),
(32)

s
s

being Ps(X, V) the stationary distribution. Without loss of generality, such a solution can be written as the product 
of a weight function π(X, V) and a “local” Maxwellian with velocity variance which is position-dependent:

π
π

=



−



.P X V X V g X g X V( , ) ( , ) ( )

2
exp ( )

2 (33)s

1/2
2

Formula (33) - inserted in Eq. (32) - requires
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π∂
∂

=P X V X V
V

( , ) ln ( , ) 0, (34)s

which implies that π(X, V) =​ π(X) is a function of positions only and can be considered as a local density.
Instead, the vanishing of the reversible part of the current vector is not a necessary condition for detailed 

balance, which instead requires the vanishing of its divergence. To see that, consider the case of an Hamiltonian 
system, where detailed balance trivially holds, but the reversible component of the current in phase space is 
manifestly non zero. Indeed, in the steady state in virtue of the Hamilton equations the associated divergence 
vanishes, thus confirming our statement. In the present case, we write the divergence of the reversible current 
(see Eq. (14)) as:

=





∂
∂
+

∂
∂






= .div V
X

F X
V

P X VI ( ) ( , ) 0
(35)

R
s

Plugging the distribution (33) into equation (35) and taking into account that the form of Ps(X, V) implies the 
relation = V

g X X
1
( )

2 , where the last average indicates the mean square value of the velocity evaluated at position 
X, we can see that a density distribution π(X) satisfying (35) does not exist for arbitrary choices of g(X). In fact, we 
find:

π
π π






− + 
 − 










− 


 ≠ .

X
d X

dX
F X g X dg X

dX
V V V X g X V1

( )
( ) ( ) ( ) 1

2
( ) ( )exp ( )

2
0

(36)X
2 2 2

The only case where the identity holds is g(X) =​ g0, a constant, which occurs for ζ →​ ∞​ which is the equilib-
rium limit of the model or in the cases a) of linear or b) parabolic potentials U(X)), and sets the equilibrium 
Boltzmann solution π ∝ −X e( ) g U X( )0  for any value of V. In conclusion, apart from the special case g(X) =​ g0, the 
Kramers eq. (12) does not satisfy the detailed balance condition. On the other hand, one may verify that the first 
three projections in velocity space of the zero divergence condition Eq. (36) (i.e. obtained by multiplying such an 
equation by (1, V, V2), respectively and integrating w.r.t. V) can indeed be fulfilled, and consequently, the detailed 
balance condition is satisfied in this velocity subspace. In the case of the multiplication by the even powers of V 
and integration by V the balance equation is trivially satisfied. Multiplication by V and integration, instead, leads 
to:

π
π

− − =
X

d X
dX g X

dg X
dX

F X g X1
( )

( ) 1
( )

( ) ( ) ( ) 0
(37)

whose solution is

π
ζ

=




− −













.X U X dU

dX
g X( ) exp ( ) 1

2
( )

(38)
2

2



Interestingly, as we shall illustrate in below, the spatial distribution in Eq. (38) coincides with the static solu-
tion of the UCNA equation, which is known to satisfy the detailed balance condition, but in general, such a con-
dition holds only approximately (i.e. only to second order in the parameter ζ−2) for the non equilibrium steady 
state under scrutiny.

Dimensional form of equations.  The dimensional form of the equations is more enlightening for a ther-
modynamic interpretation of the entropy production of the medium, that is the second term on the r.h.s. of 
Eq. (29). First of all, let us notice that the local temperature appearing in the Maxwellian Eq. (33), in dimensional 
form, takes the expression θ(x) =​ D/[τΓ​(x)]. It is also useful to define Tb =​ D/τ, so that θ(x) =​ Tb/Γ​(x).

The dimensional form of the total energy and of the heat flux are respectively:

ε
τγ

= +t v w x( ) 1
2

( ) ,
(39)

2

and

τ
θ= −

Γ 





+
∂
∂







 ∬q dxdv x v p x v t x v
v

p x v t( ) ( , , ) ( ) ( , , )
(40)

2

and the Gibbs entropy now reads ≡ −∬s t dxdvp x v t p x v t( ) ( , , )ln ( , , ). In dimensional form using the local 
temperature the total entropy time derivative = +  s t s t s t( ) ( ) ( )s m  is the sum of the positive quantity

τ
=




Γ +

∂
∂


 ∬s t

T
dxdv

p
x vp T p

v
( ) 1 1 1 ( )

(41)s
b

b

2

and the entropy flux
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θ τ
θ= −

Γ 





+
∂
∂






. ∬s t dxdv

x
x v p x v t x v

v
p x v t( ) 1

( )
( ) ( , , ) ( ) ( , , )

(42)m
2

It is suggestive to rewrite

∫=� ��q t dxq x t( ) ( , ) (43)

∫ θ
=� ��s t dx

x
q x t( ) 1

( )
( , )

(44)m

with a local density of heat flux defined as

∫τ θ
τ θ

θ= −
Γ 





+
∂
∂






= − 

 − 


��q x t x dv v p x v t x v
v

p x v t T
x

n x t v x( , ) ( ) ( , , ) ( ) ( , , ) 1
( )

( , ) ( ) ,
(45)

b
x

2 2

where n(x, t) =​ ∫​dvp(x, v, t) and n(x, t)〈​v2〉​x =​ ∫​dvv2p(x, v, t), where 〈​v2〉​x is the mean squared velocity at given 
position. Expression (44) represents an interesting connection between the local entropy production of the 
medium (or entropy flux) and the local heat flux divided by the same local temperature θ(x) =​ Tb/Γ​(x) featuring 
in the approximate detailed balance solution, Eq. (33). Such a result is to be compared with alternative expressions 
for entropy production of the medium recently derived for active systems22,23.

Remarkably, the expression (44) for the entropy production of the medium and the fact that ≥s 0s , yields for 
the stationary state the following generalised Clausius inequality26

∫ θ
≤ .��dx

x
q x1

( )
( ) 0

(46)

Timescales and coarse-grained levels of description.  It is interesting to discuss the characteristic 
timescales existing in the model and their role in the results obtained up to here. The model in Eq. (7) has its 
natural interpretation as a coarse-grained version of a more refined model where the particle has a mass m. The 
more refined model has three main timescales: 1) τm =​ m/γ which is the molecular kinetic relaxation timescale, 
that is the timescale of the relaxation (to the statistics of the bath) of the velocity of the particle which is achieved 
only when the external forces vanish, i.e. a =​ 0 and f =​ 0 (passive colloid); 2) τ which is the persistence timescale 
of the active force a(t); 3) τw =​ Δ​x/vT - where τ=v D/T  and Δ​x is a characteristic length-scale of the potential 
w(x) - which is the time needed by the particle (roughly going at speed vT which is the active bath “thermal” veloc-
ity) to see the variations of the potential w(x). Apart from strange choices of the potential (e.g. w(x) varying over 
very small length-scales), the natural order of the three timescales is τ τ τ m w. Note that ζ =​ τw/τ (if l =​ Δ​x) 
and therefore in the perturbative scheme discussed in the Supplementary Information the small parameter 1/ζ 
corresponds to τ τw .

When there is no activity (a =​ 0), one has the well-known situation of a colloid in a potential lanscape: in that 
case, in view of the usual separation τ τm w (now one uses the molecular velocity to define τw =​ Δ​x/vth with 
=v T m/th solv  and Tsolv is the equilibrium temperature of the solvent), one adopts the classical overdamping 

approach, i.e. looks at the motion of the particle on a timescale intermediate between τm and τw. On such a 
time-scale the relaxation of the “velocity” to f(x)/γ is immediate

γ
= + .x f x( ) thermal noise

(47)

Operatively, this is equivalent to measure a “ coarse-grained velocity” defined as [x(t +​ Δ​t) −​ x(t)]/Δ​t with a 
time-lag such that τ τ∆ tm w. This is clearly very different from the instantaneous velocity, i.e. the one that 
could be measured with τ∆ t m, usually quite difficult in real experiments.

When there is activity a ≠​ 0, the new timescale τ allows one to operate two different levels of coarse-grain. On 
a timescale which is intermediate between τm and τ, the coarse-grained velocity ≈ + ∆ − ∆x x t t x t t[ ( ) ( )]/  
with τ τ∆ tm  satisfies

γ
= + +x f x a t( ) ( ) thermal noise,

(48)

which becomes our initial model definition, Eq. (7), when the thermal noise is neglected (which is usually safe, as 
it is much smaller than f(x)/γ +​ a(t)).

On a much longer timescale, i.e. when the velocity is measured using τ τ∆ t w, there is a complete over-
damping, i.e. also the active force is averaged out and only the potential acts, but with a re-normalized viscosity 
γΓ​(x), i.e. the “super-coarse-grained” velocity of the particle immediately relaxes to

γ
=
Γ

+ .x f x
x

( )
( )

active noise
(49)
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The entropy production of the first, most fundamental, level of description (real velocity, measured at 
τ∆ t m) could be computed by studying its complete Fokker-Planck equation: such a small scale entropy pro-

duction - however - is not particularly useful, as it would yield an expression which includes quantities which can 
be difficult to be measured in experiments (exceptions are presented in refs 24, 34 and 35). The meaning of this 
entropy production should be simple4: an external force (activity) is keeping the particle far from reaching ther-
mal equilibrium (at temperature Tsolv), in particular, such a force increases the energy of the particle. There is, 
naturally, an energy flux from the external force (the bacterium’s engine) to the particle and a heat flux from the 
particle to the bath. Our paper disregards such a low-level entropy production and focuses on the entropy pro-
duction at the second and third levels of description. The situation is similar to other systems where small-scale 
degrees of freedom are ignored (and - consequently - their contribution to entropy production), for instance in 
granular matter38.

At the second level, Eq. (48) or Eq. (7), the only relaxation of velocities which can be measured is that 
toward the local active bath at temperature θ(x) =​ Tb/Γ​(x). Its energetic counterpart is the total heat flux 
(Eq. (18) or - in dimensional form - Eq. (35) of the main text) which is the sum (space integral) of local heat 
fluxes, i.e. ∫=� ��q dxq x( ). In the stationary state the total heat flux is zero: there are regions where the flux goes 
in one direction (e.g. the particle is hotter than θ(x)) compensated by regions where it goes in the opposite 
direction. However, even with total zero heat flux, a non-zero global entropy flux ∫ θdxq x x( )/ ( ) may appear: 
this occurs because of the non-uniformity of the temperature. In the special case of a constant Γ​(x), θ(x) is 
proportional to Tb and the total entropy flux becomes proportional to the total heat flux, i.e. it vanishes. This 
“second-level” entropy production misses the entropy produced at the finer timescale (removed by the heat flux 
exchanged between the particle and the solvent heat bath), which is there even when the θ(x) is uniform. On 
the contrary, in the presence of a non-uniform θ, one gets a non-zero (de facto negative) total entropy flux, 
corresponding to positive entropy production. It is remarkable that even the incomplete description at such a 
second level of description yields a thermodynamic-like description where - as in the Clausius relation −​
∫ θ ≤q x x( )/ ( ) 0. In other examples of coarse-grained out-of-equilibrium systems (e.g. granular systems38, but 
also different models of active particles22, or systems with feedback19) one has that the heat flux does not rule 
the entropy flux and therefore there is nothing similar to a Clausius relation25. Models with temperature gradi-
ents showing such a relation can be found in refs 39 and 40.

We conclude this discussion by considering the third level of description, where the relaxation of the velocity 
to the active heat bath is also lost, Eq. (49). This level corresponds to the UCNA approximation and its approxi-
mated velocity statistics are exactly equal, everywhere, to a local Gaussian with temperature θ(x) - even when it is 
non-uniform. Consistently with the theoretical discussion, this implies local equilibrium with the active bath, or 
equivalently vanishing entropy production, i.e. detailed balance.

Internal energy and entropy density balance in dimensional form.  An interesting perspective 
is offered by considering the properties of the hydrodynamic space only, instead of the properties of the full 
phase-space: this is a different kind of coarse-graining, where fast components of the full solution p(x, v, t) are 
neglected. Details of the derivation are given in the Section S1 of the Supplementary Information, where we used 
the non dimensional variables.

We define the local density field n(x, t) =​ ∫​dvp(x, v, t), the local velocity field u(x, t) =​ [1/n(x, t)]∫​dvvp(x, v, t),  
the local kinetic temperature field T(x, t) =​ [1/n(x, t)]∫​dvp(x, v, t)(v −​ u(x, t))2, the local pressure π(x, t) =​ n(x, t)T(x, t),  
and the heat flux jq(x, t) =​ ∫​dvp(x, v, t)(v −​ u(x, t))3/2 and get for the following hydrodynamic-like balance 
equations:

∂
∂

+
∂
∂

=
n x t

t x
n x t u x t( , ) ( ( , ) ( , )) 0 (50)

π
τγ τ θ

∂
∂

+
∂
∂

= −
∂
∂

+ −
n x t u x t

t x
n x t u x t x t

x
f x n x t T

x
n x t u x t[ ( , ) ( , )] ( ( , ) ( , )) ( , ) ( ) ( , ) 1

( )
( , ) ( , )

(51)
b2

π

τ θ

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= −






−






T x t
t

u x t
x

T x t x t
n x t

u x t
x n x t x

j x t

T T x t
x

( , ) ( , ) ( , ) 2 ( , )
( , )

( , ) 2 1
( , )

( , )

2 ( , )
( )

1
(52)

q

b

The term π ∂
∂

x t( , ) u x t
x

( , )  represents a compression work per unit time. The terms in the r.h.s of (51) and (52) 
balance equations make the approach to the local values of u(x, t) and T(x, t) fast processes, in contrast with the 
slow evolution of the density. Defining the internal energy as ε =x t( , )int

T x t( , )
2

, we immediately get

ε
ε π

τ
ε
θ

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= −






−






x t
t

u x t
x

x t x t
n x t

u x t
x n x t x

j x t

T x t
x

( , ) ( , ) ( , ) ( , )
( , )

( , ) 1
( , )

( , )

2 ( , )
( )

1 ,
(53)

int
int q

b int

which corresponds to Eq. (34) of Chapter II in ref. 41, in the case of a system with a single chemical component. 
The last term, of course, is not present in ref. 41 because heat-bath thermostats are not considered there.
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Using the continuity equation to eliminate the compression work in the equation for the internal energy we 
derive

ε
ε π

τ
ε
θ






∂
∂

+
∂
∂

−





∂
∂

+
∂
∂












= −
∂
∂

−






−






n x t x t
t

u x t
x

x t x t
n x t

n x t
t

u x t
x

n x t

x
j x t T n x t x t

x

( , ) ( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

( , ) ( , ) 2 ( , )
( )

1
(54)

int
int

q
b int

2

In analogy with equilibrium thermodynamics, we can identify the quantity

ε π
θ
+

=
x t x t n x t

x
s x t[ ( , ) ( , )/ ( , )]

( )
( , )int

h

as a good candidate for the hydrodynamic entropy density and rewrite the last equation as an equation for the 
entropy. The first law of thermodynamics ε π= + ( )Tds d x t d( , )h int n

1  becomes the local relation

θ τ θ
ε
θ




∂
∂

+
∂
∂



 = −

∂
∂

−






−






n x t s x t
t

u x t
x

s x t
x x

j x t T
x

n x t x t
x

( , ) ( , ) ( , ) ( , ) 1
( )

( , ) 1
( )

( , ) 2 ( , )
( )

1
(55)

h
h q

b int

which can be also rewritten as

θ θ
θ

τ θ
ε
θ




∂
∂

+
∂
∂



 = −

∂
∂

−
∂
∂

−






−





.

n x t s x t
t

u x t
x

s x t
x

j x t

x x t
j x t

x
x

T
x

n x t x t
x

( , ) ( , ) ( , ) ( , )
( , )

( )
1

( , )
( , ) ( )

1
( )

( , ) 2 ( , )
( )

1
(56)

h
h

q
q

b int

2

In eq. (56) we identify the internal entropy flux ≡
θ

j x t( , )s

j x t

x

( , )

( )
q , which is the difference between the total 

entropy flux and the convective entropy flux41, and define the local entropy production of the system as:

σ
θ

θ
θ

= −
∂
∂

=
∂
∂

.x t
x t

j x t
x

x j x t
x x

( , ) 1
( , )

( , ) ( ) ( , ) 1
( ) (57)s q q2

A closed expression for the heat flux jq(x, t) =​ n(x, t)〈​(v −​ u(x, t))3〉​/2 requires the knowledge of the third veloc-
ity moment or alternatively one must use a phenomenological closure relating heat flux to the temperature gra-
dient, e.g. jq(x, t) =​ −​κ(x, t)∇​θ(x) with some positive thermal conductivity κ proportional to the density n(x, t).  
In such a case, the local entropy production, Eq. (57), is positive. Such a phenomenological assumption contrasts 
with the standard definition jq(x, t) =​ −​κ∇​T(x, t), however in the limit of small τ the temperature T(x, t) can be 
approximated by θ(x) so that

σ κ
θ

θ=



∂
∂



 ≥ .x t x t

x t x
x( , ) ( , )

( , )
( ) 0s 2

2

Finally, the local entropy flux towards the surrounding medium (i.e. towards the active bath) reads:

σ
τ θ

ε θ= − − .x t T
x

n x t x t x( , ) 1
( )

( , )[2 ( , ) ( )]
(58)m

b
int2

By rewriting it as

σ
τ θ

θ= − −x t T
x

n x t T x t x( , ) 1
( )

( , )[ ( , ) ( )],
(59)m

b
2

one can see that σm(x, t) corresponds (using Eq. (45)) to the density of medium entropy production θ��q x t x( , )/ ( ) 
featuring in the integrand in the r.h.s. of Eq. (44).

In conclusion, we can write

θ
σ σ

∂
∂

+
∂
∂

+
∂
∂

= +
t

n x t s x t
x

n x t u x t s x t
x

j x t

x
x t x t( , ) ( , ) ( ( , ) ( , ) ( , ))

( , )

( )
( , ) ( , ),

(60)h h
q

s m

where the second and the third term on the l.h.s. together represents the entropy current density, whereas in 
the r.h.s. we have the total entropy production density as the sum of the entropy production of the system and 
of the medium. Let us remark that formula (60) is in agreement with standard treatments of non equilibrium 
thermodynamics42.

UCNA: an approximate treatment of the Fokker-Planck-Kramers equation.  In the present sec-
tion, we show that it is straightforward to derive the static UCNA equation in a non perturbative fashion from the 
hydrodynamic eqs (50)–(52) and a series of approximations. First of all we assume that the kinetic temperature of 
the active particles is equal to the temperature θ of the non uniform heat bath: so that in eq. (52) we put
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θ= =
Γ

.T x t x T
x

( , ) ( )
( ) (61)

b

Next, we we assume that the l.h.s. of eq. (51) representing the hydrodynamic derivative of the average velocity 
vanishes, so that:




∂
∂

+
∂
∂



 +




∂
∂

+
∂
∂



 =u x t n x t

t x
n x t u x t n x t u x t

t
u x t

x
u x t( , ) ( , ) [ ( , ) ( , )] ( , ) ( , ) ( , ) ( , ) 0

(62)

The first parenthesis vanishes by the conservation of the particle number, the second parenthesis is zero when 
the volume element does not accelerate, which means that there is a dynamical equilibrium between frictional 
forces and external forces. Thus from the momentum eq. (51) we have the balance condition:

τ π
τγ

γ

= −
Γ






∂
∂

−






= −
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



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∂
∂




 Γ





−







n x t u x t
x

x t
x

f x n x t

x
D

x
n x t

x
f x n x t

( , ) ( , )
( )

( , ) ( ) ( , )

1
( )

( , )
( )

( ) ( , )
(63)

where in the last equality we have used the following relation between pressure, density and Γ​(x):π(x, t) =​ Dn(x, t)/
(τΓ​(x)). Notice that we have used the definition of pressure (given after Eq. (7) of the Supplementary Information):

π θ= = =
Γ

x t n x t T x t n x t x T n x t
x

( , ) ( , ) ( , ) ( , ) ( ) ( , )
( )b

and the equality between θ and T. Such a pressure coincides with the definition of pressure in the case of the static 
UCNA43. Finally, using the continuity equation we eliminate the hydrodynamic velocity and obtain the UCNA 
eq.:

γ
∂
∂

=
∂
∂ Γ






∂
∂




 Γ





−







n x t
t x x

D
x

n x t
x

f x n x t( , ) 1
( )

( , )
( )

( ) ( , )
(64)

which is a modified diffusion equation. Alternatively, as shown in Section S2 of the Supplementary Information 
one can derive systematically by a multiple-time scale method an equation for the evolution of n(x, t) which is 
equivalent to (64) to first order in τ.

When the momentum current vanishes we have from (64) the following condition:

γ=
∂
∂




 Γ






f x D
x

n x t
x

( ) ( , )
( )

which is the hydrostatic equation discussed in previous papers by some of us13 showing that the dynami-
cal and the static definitions of active pressure coincides. According to (56), the UCNA, since jq(x, t) =​ 0 and  
T(x, t) =​ θ(x), corresponds to

∂
∂

+
∂
∂

=
t

n x t s x t
x

n x t u x t s x t[ ( , ) ( , )] [ ( , ) ( , ) ( , )] 0, (65)h h

i.e. it coincides with vanishing entropy production, as previously discussed.
Finally, let us remark that due to the equality (61) the heat flux ��q x t( , ) defined by (45) vanishes everywhere in 

the UCNA, and not only its integral. As underlined by Cates and Nardini44 the UCNA method maps the GCN 
non-equilibrium description into an equilibrium one and rules out macroscopic steady-state fluxes. Hence, σm(x, t)  
vanishes within the UCNA, but we do not expect this vanishing to occur in the GCN case. In order to explicitly 
observe a negative value of the entropy production it is necessary to consider an approximation more refined than 
the UCNA, a task which will be carried out in the next section by using a perturbative method.

Results and Discussion
A systematic perturbative solution of the Fokker-Planck equation for the GCN.  We have seen 
that the UCNA eq. (64), derived from the exact evolution equation (10) for the phase-space distribution function, 
P X V t( , , ) by eliminating the velocity in favour of the configurational degrees of freedom, satisfies the detailed 
balance condition. In Section S2 of the Supplementary Information, we show how to construct a systematic 
expansion of the Fokker-Planck equation in the small parameter τ ζ∝ 1/ , and obtain a time-dependent equa-
tion for the reduced spatial distribution function and its corrections about the solution with τ =​ 0. Such an expan-
sion when truncated at the second order in the perturbative parameter 1/ζ2 leads to the same evolution equation 
for the reduced spatial density as the one introduced by Fox45:

γ
∂
∂

=
∂
∂






∂
∂

−




t

n x t
x x

D x n x t f x n x t( , ) ( ( ) ( , )) ( ) ( , )
(66)

Fox Fox Fox Fox
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with =
Γ

D x( )Fox D
x( )

. One can observe that it has the same time independent (and zero flux) solution as the 
UCNA(64). Both the Fox and the UCNA description represent a contracted description in terms of a spatial dis-
tribution with respect to the phase-space distribution of the GCN, which is fully described by Kramers’ equation. 
The Fox approximation emerges in the limit of small τ, or small Péclet number, when for small τ the velocity 
distribution thermalises rapidly and reaches a gaussian shape. The method that we shall discuss below gives quan-
titative support to this intuitive idea. If τ (or Péclet) is small the particles lose memory of their initial velocities 
after a time span which is of the order of the time constant τ so that the velocity distribution soon becomes sta-
tionary. While the derivation of the UCNA equation can be done simply eliminating the time derivative of the 
highest order in the stochastic differential equation and then writing the associated equation for the distribution 
function of positions only, such a procedure does not tell us anything about the deviations of the velocity distri-
bution from a local Maxwellian. In order to study the corrections, it is convenient to consider a general method of 
kinetic theory which allows extracting a reduced description from a finer one. An instance of such a method is the 
so-called Hilbert-Chapman-Enskog approach which allows deriving, starting from the transport equation for the 
phase space distribution, the Navier-Stokes equations under the form of a series expansion with the Knudsen 
number as the perturbation parameter (and to successive orders in Knudsen number the Burnett and 
super-Burnett equations)46. In the overdamped case, the application of the Hilbert approach is even simpler 
because there is only one conserved, slow mode, namely the diffusive density mode. The remaining momentum 
and energy variables are slaved to the density, so that one can reduce the Kramers equation to a Smoluchowski-like 
equation involving only the density47. The reduction is achieved by the multiple-time scale method as illustrated 
in Section S2 of the Supplementary Information where we report the necessary details of the calculation. In this 
section, we use some results concerning the steady state phase-space distribution function.

Mean square velocity and entropy production beyond the order 1/ζ2.  In order to observe viola-
tions of the detailed balance condition we shall consider the fourth order in the 1/ζ expansion of the phase space 
distribution function. To this purpose, one quantity of capital interest to compute the heat-flux and the entropy 
production is the mean square velocity. Using the expansion of the steady state P(X, V) given in Eq. (28) of the 
Supplementary Information up to fourth order in ζ−1 we have the formula for 〈​V2〉​X, the dimensionless mean 
squared velocity at given position, which is also the local kinetic temperature of the particle:

∫
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where ψ00(X) =​ ∫​dVP(X, V) is the marginalized distribution function and ∫​dVV2P(X, V) =​ ψ00(X) +​ 2ψ22(X)/ 
ζ2 +​ 2ψ42(X)/ζ4 +​ O(ζ−6) according to Eq. (28) of the Supplementary Information. Substituting eqs (18) and (25) 
from the Supplementary Information we obtain the following approximation:
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where the remainder, R(X) is found using the result of Eq. (25) in the Supplementary Information:
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We compare now the expression (68) with the approximate UCNA prediction:
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and conclude that up to order ζ−2 the result (68) of the multiple-time scale method and of the UCNA agree and 
give the same value the kinetic temperature 〈​V2〉​X. On the other hand, at order ζ−4 the two formulae are identical 
only when R(X) =​ 0, a situation occurring both in the case of a particle confined to an harmonic potential well 
or in a constant force field, where the entropy production vanishes, in agreement with the fact that the detailed 
balance holds.

Let us consider the difference, Δ​(X), between the local temperature of the bath 1/g(X) and the kinetic tem-
perature 〈​V2(X)〉​X whose sign controls the direction of the local heat exchange with the bath (positive values 
correspond to an heat flux towards the particle, whereas for negative values the particle transfers heat to the bath):

ζ
∆ = − = − ≈ −X

g X
V X V X V X R X( ) 1
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( ) ( ) ( ) ( )

(71)X X
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where the last approximate equality follows from (68). Thus inserting this result in eq. (31) we find:
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Using the scaling =
τ

t D l/t  we can see that the lowest order estimate of the dimensional entropy produc-
tion rate τ ~s t( )m

2 in agreement with Fodor et al.48.

A numerical example.  In order to illustrate the above theoretical results, we have performed some numer-
ical simulations and integrated the stochastic eq. (9) by an Euler algorithm optimized for GPU execution36. We 
focus on the archetypical case of the double well potential: w(x) =​ x4/4 −​ x2/2. This potential has been used as the 
simplest model for testing the colored noise approximation schemes29 and it has been recently considered as a 
Ginzburg-Landau potential for the phase separation of attractive active particles49. For this example we set γ =​ 1, 
D =​ 1 and τ =​ 0.7, we use a time-step dt =​ 10−3τ and we average 1024 independent trajectories staring in x =​ 0 for 
more than 107 steps. In Fig. 1(a) we report the full phase-space distribution p(x, v), the corresponding p(x) is 
shown in Fig. 1(b). In Fig. 1(c) we show the “temperature” profiles 〈​v2〉​x and θ(x) determining the local heat flow 
��q x( ) (equation (45)) and the local entropy production θ��q x x( )/ ( ) (see (44)) shown in Fig. 1(d). We find in agree-
ment with the theory of section Model and Methods that in the stationary state ∫ ≈��dxq x( ) 0 as shown in Fig. 1(d) 
the positive lobe of ��q x( ) is compensated by two smaller negative lobes. Differently for the entropy we have 
∫ θ ≈ − . <��dxq x x( )/ ( ) 0 34 0 in agreement with inequality (46) as also shown in Fig. 1(d) where θ��q x x( )/ ( ) has 
much more pronounced negative lobes (dashed line, gray area). Let us remark that these numerical findings are 
in agreement with our theoretical formula (74) for the velocity difference.

Finally, we can compare these results with the prediction of the theory of the previous subsection, use the 
quartic potential X4/4 −​ X2/2 and employ (69) to evaluate the mean square velocity
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Figure 1.  (a) Stationary probability distribution p(x, v), obtained numerically in the case of a double-well 
potential and persistence time τ =​ 0.7. (b) Position probability distribution n(x) (full line) obtained numerically 
for the potential w(x) (dashed line) for two different values of the persistence time (blue τ =​ 0.7 and magenta 
τ =​ 0.2). The potential is shifted upwards by an inessential constant 1/4 for reasons of presentation.  
(c) “Temperature” profiles 〈​v2〉​x and θ(x) (full and dashed lines respectively and blue τ =​ 0.7 and magenta 
τ =​ 0.2). In the case τ =​ 0.7, notice the crossover of the difference θ(x) −​ 〈​v2〉​x from positive values at small 
values of x to negative values at larger values of the coordinate. When τ =​ 0.2, the difference is very small. (d) 
Local heat flow and local entropy production (full and dashed lines respectively) for persistence time τ =​ 0.7. 
Both quantities are negative in the potential wells since there the particle transfers heat to the bath, whereas the 
opposite occurs in the peak region. Note that the integral of the entropy is negative as evidenced by the grey 
area, in agreement with (46).
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and observe that in this case 〈​V2〉​X differs from 1/g(X) (the non dimensional equivalent of θ(x)) by a quantity  
−​Δ​(X), with:

ζ
∆ = + −X X X( ) 9 (1 )

(74)4
2 4

which assumes positive values near the origin, but is negative for large values of X as also shown by the numerical 
solution Fig. 1(c). The negativity of Δ​(X) for large X can explain why the entropy production predicted by eq. (72) 
is negative in agreement with the numerical result of Fig. 1(d).

Summary and Conclusion
We have analysed the energetics and thermodynamics of a stochastic model for active particles, in the 
non-interacting case and restricted to a single dimension. Our results show that the active bath (the fluctuating 
active force a(t)) can be interpreted as at local equilibrium at temperature θ(x) =​ Tb/Γ​(x) =​ D/[τΓ​(x)], with D the 
active diffusivity, τ the active persistence and Γ​(x) a renormalisation factor which depends on the external force 
field. As a matter of fact, the particle is at equilibrium with the active bath (yielding a zero entropy production) 
only when the force field is flat, i.e. Γ​(x) =​ 1. Otherwise, there is an active entropy production which - in the sta-
tionary state - is eliminated as entropy flux to the medium, taking the simple expression Eq. (44) and obeying a 
generalised Clausius relation, Eq. (46). By observing the system on a longer timescale (UCNA approximation), 
the discrepancy between local temperature and θ(x) becomes negligible and the particle appears as at equilibrium 
with the active bath. A hydrodynamic approach which describes the evolution of density, velocity and tempera-
ture fields, allows one to define local internal energy, local entropy and their local “thermodynamic” relations. The 
result is consistent with the global picture obtained from the analysis of the Kramers equation. In the hydrody-
namic description, the UCNA approximation is interpreted as the analog of the Euler hydrodynamic solution of 
the Boltzmann equation. There one employs a local Maxwell-Boltzmann distribution and obtains an approximate 
solution of the transport equation and a set of conditions which determine the local values of the density, fluid 
velocity and temperature, the hydrodynamic fields. In the present case, the solution of the Kramers equation is a 
local Maxwellian at temperature 1/g(X) and density π(X) given by the UCNA. Finally, we have discussed how to 
improve the theory and obtain a non vanishing entropy production by deriving a systematic expansion of the 
phase-space distribution function in powers of τ  without invoking the detailed balance condition. When this 
condition is violated we observe numerically and theoretically a negative entropy production and a dependence 
of the local mean square velocity on position.

As far as approximations, such as the UCNA, involving the detailed balance condition, are concerned their 
predictions about the steady state structure of many-particle systems should be valid up to order 1/ζ2, i.e. order τ.  
In this case, the application of the concept of effective potential can lead to simple treatments of non uniform 
systems but are not reliable when the activity becomes large and higher order terms in the perturbative expansion 
are important.

A generalisation of the above discussion to many dimensions and to interacting particles is expected to give 
similar results, but certainly, deserves further investigation. A promising line of research is an experimental veri-
fication of the generalised Clausius inequality, Eq. (46).
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