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widely practiced on large commercial scales in different camelid species, espe
dromedary camel and alpaca. However, the inability to cryopreserve embryos sig
reduces itsbroaderapplication, andas such limits thecapacity toutilizeelite genetic
internationally. In addition, cryopreservation of the semen of camelids is also diffi
gesting an extreme sensitivity of the germplasm to cooling and freezing. As a resu
resources of camelids must continue to bemaintained as living collections of anima
concernsoverdisease outbreaks suchas thatof thehighlypathogenicMiddle EastRe
Syndrome in the Middle East and Asia, there is an urgent need to establish an effec
banking system for camelid species, especially the camel. The current review com
summarizes recent progress in thefield of camelid embryo cryopreservation, identi
possible reasons for the slowdevelopmentof an effective protocol anddescribing ei
directions to improve the current protocols. At the same time, the results of a rece
edarycamel embryo transfer studywhichproduced ahighmorphologic integrityan
rate of Open Pulled Straw-vitrified embryos are also discussed.

� 2016 Elsevier Inc. All rights
rspecies
1. Introduction
 same number of chromosomes (37 pairs), and inte
artly due
The camelid family includes dromedary and Bactrian
crossbreeding can generate hybrids [4–6].

The reproductive efficiency of camelids is low p
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Accordingly, assisted reproduction technologies,
fresh embryo transfer (ET), have been widely pra
dromedary camel breeding programs in Middle
countries [7], and in alpaca and llama programs m
Australia and South America [8,9]. However, fro
bryos are not used in those commercial operation
an unacceptably low pregnancy rate [1,10]. The a
successfully cryopreserve embryos could overco
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(growing follicles) to be ovulated with the treatment of
hormones, and this requires a large pool of females from
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which to select appropriate recipients [11]. In a
embryo cryopreservation provides an effective m
preserving endangered camelids, such as the vic
guanaco. Furthermore, a successful cryopreservati
nology would promote the application of other
biotechnologies, such as cloning and transgenics,
commercial scales [12]. Thus, there is a need to
and summarize recent progress in the field of
cryopreservation for camelids to provide research
new insight into designing experiments that wil
more effective cryopreservation protocols for us
programs to facilitate a wider application.

To review and cover all results published in t
literature searches were conducted for each spe
each technique using the PubMed database. Ke
combinations used were as follows:

I. Camelids, embryo, cryopreservation or freez
II. Dromedary, embryo, cryopreservation or fre
III. Bactrian, embryo, cryopreservation or freezin
IV. Alpaca, embryo, cryopreservation or freezing
V. Ilama, embryo, cryopreservation or freezing.

A total of 22 articles were retrieved and review
with the current authors’ extensive experience
preservation of embryos and stem cells in the hum
bovine and camel [14–16], several approaches on
improve the efficacy of the existing protocols for
camelid embryos are presented.

1.1. History of cryopreservation of camelid embryos

Two approaches of cryopreservation, slow free
vitrification, are most commonly used to mainta
tional capacity of animal germplasm during a coo
warming process. Although cryopreservation of ger
has been successfully applied in human medicin
some livestock breeding programs [15,17], the cry
vation of camelid embryos is in its infancy (Table
the focus on modification of established p
commonly used for other species [18,27].

Attempts to freeze camelid embryos started in
1990s, with the application of ET to dromedary
[3,18]. As shown in Table 2, a number of pregnanc

Table 1
History of cryopreservation of camelid embryos and its compa
Species Method Achieveme

Dromedary camel Slow freezing Pregnancy/
Vitrification Pregnancy/

Lama Slow freezing
Vitrification Pregnancy

Bovine Slow freezing Live birth
Vitrification Live birth

Ovine Slow freezing Live birth
Vitrification Live birth

Swine Slow freezing Live birth
Vitrification Live birth

Horse Slow freezing Live birth
Vitrification Pregnancy
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vitrified embryos [10,16] and one from a slow-fro
bryo in dromedary camels [18]. It has been nearly 3
since the initial studies, but embryo cryopreserva
still not yet been successfully incorporated int
program, a reflection of the difficulties associat
developing an effective procedure for camelids.

Possible reasons for the slow development of a
tive cryopreservation protocol for camelids incl
following:

I. The lack of zona pellucida in hatched embr
permeability of cryoprotective agents (CPAs
the cooling/warmingprocessesmightbe influ
the lack of zona pellucida in hatched embryo
the current ET practice with dromedary
example, hatched embryos are preferably coll
Days 7, 8, or 9 after ovulation with the inte
enhancing the recovery rate. Therefore, the p
developed for nonhatched embryos in other
are unsuitable for freezing camelid hatched e

II. A much larger variation in embryo size: Emb
not only differs between donors on Days 6, 7, a
it can also vary substantially between embr
vested from one animal. Thus, there is a cha
develop protocols that fit different-sized embr

III. A great amount of lipids in embryos: Similar to
embryos, camelid embryos contain a high co
tion of lipidsdthis has been shown to have an
effect on conventional freezing methods [28,

IV. The lack of a convenient and reliable evalua
tem for embryo quality: The morphologic app
of cryopreserved embryos does not always c
to their developmental potential, and so, it
ficient to assess the outcome of the cryopres
and to predict ET success [27].

1.2. Slow freezing
cols

late
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The principle of cryopreservation is to use per
CPAs (e.g., glycerol, propanediol [PROH], DM
ethylene glycol [EG]) and nonpermeating CPAs (e
rose, glucose, and trehalose) to replace intracellul
from embryos and prevent the formation of ice

with other domestic species.
nt Years Reference of first report

live birth 2002 Skidmore et al. [18]
live birth 2005 Skidmore et al. [10] and Nowshari et al. [16]

2002 Aller et al. [8]
1973 Wilmut and Rowson [19]
1986 Massip et al. [20]
1976 Willadsen et al. [21]
1994 Széll et al. [22]
1989 Hayashi et al. [23]
2000 Dobrinsky et al. [24]
1982 Yamamoto et al. [25]
2005 Eldridge-Panuska et al. [26]



during the freezing and thawing process [17,30,31]. In
addition, controlled slow freezing rates also facilitate suf-
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Table 2
The outcome of embryo transfers that resulted in pregnancy or live offspring in different camelids species.

Species Method Pregnancy rate (%) Live birth rate (%) Reference

Dromedary camel Slow freezing 14/43 (32.6%) 1/43 (2.3%, unpublished data)a Skidmore et al., 2004 [18]
Vitrification 2/20 (10%) 1/20 (5%) Nowshari et al., 2005 [16]

8/21 (38%) 1/21 (4.8%, unpublished data)b Skidmore et al., 2005 [10]
Llama Vitrification 2/4 (50%) Aller et al., 2002 [8]

a Only one pregnancy was allowed for full term from 14 pregnant recipients, others were terminated by prostaglandin treatment after the confirmation of
pregnancy by ultrasound scanning at 3 mo of the transfer.

b Only one pregnancy was allowed for full term from eight pregnant recipients, others were terminated by prostaglandin treatment after the confirmation
of pregnancy by ultrasound scanning at 3 mo of the transfer.
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ficient water to leave the cell during progressive fre
the extracellular fluid.

Standard slow freezing protocols for mam
oocytes/embryos usually consist of four disting
components:

I. Equilibration media: Single (e.g., glycerol, PR
combination of two (e.g., glycerol þ DMSO)
ating CPAs (w1.5 M), with the addition o
permeating CPA (w1 M) [32].

II. Equilibration time: Embryos are equilibrated
solutions for 5 to 10 minutes and then fro
slow controlled rate (w0.3 �C/min) until see

III. Seeding temperatures: At �4.5 w �7 �C, se
performed to induce the freezing process a
stepwise cooling. On reaching �35 �C, straw
plunged directly into liquid nitrogen, or the
ature reduction may be continued but at a fa
(w�50 �C/min) to �150 �C before the straw
in liquid nitrogen.

IV. Thawing: This includes the direct warming o
to about 32w37 �C in a water bath (w2 m
and then, the embryos undergo rehydrati
sequence of rapid changes through a series
tions with decreasing concentrations o
permeating CPAs (e.g., sucrose, w 1 M) taki
15 minutes [17,31].

Because of the strong dependence of intracel
formation (IIF) in mammalian cells and yeast on t
peratures associated with extracellular ice crysta
(“seeding”), the determination of the optimum
temperature of a freezing medium is probably t
critical part of an effective protocol [33,34]. How
importance of this parameter is often neglected in
the camelid hatched embryo freezing protocols a
ators simply use �7 �C, a seeding temperature est
for intact blastocysts in cattle and sheep [35].
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In the initial phase of developing cryopres
protocols, slow freezing methods have been use
the toxicity of standard embryo CPAs to camel e
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required to achieve cryoprotection and to c
different methods of rehydration with or without
The highest pregnancy rate (37%) was achieved w
embryos were exposed to EG for 10 minutes
slowly at a rate of �0.5 �C/min to �33 �C before p
into liquid nitrogen, and then thawed and rehyd
0.2-M sucrose in holding media for 5 minutes
comparison to vitrification, the relatively high
nancy rate from slow-frozen embryos may be due
intact cytoskeleton integrity. Cell death associat
slow freezing was comparable to that of unfrozen
cells, but freezing caused widespread disruptio
actin cytoskeleton, indicating that levels of cell de
embryo may not be as critical as cytoskeleton inte
embryo survival and implantation. It appears th
freezing maintains better cytoskeleton integrity
ryos compared with vitrification [36].
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There has only been one report of the other
species (specifically llama), undergoing embryo c
ervation by a slow freezing method [37]. It is inter
note a sensitivity of llama trophoblastic vesicle
different CPAs, with there being no difference in
survival rate in either 10% EG or propylene gly
24 hours culture, but then only those in EG were
progressively expand in culture. This result confi
own previous finding that EG is the most effective
freezing camelid embryos [18,27].
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Vitrification is currently widely used for cryop
tion of human and bovine oocytes and embryos be
its simplicity of use and efficacy [38]. A combin
higher concentrations of CPAs and an increased
warming rate reduces ice crystal formation a
improves the survival of biological material. A
current vitrification methods differ considerably
nical detail between laboratories or clinics, fo
components are similar in all disciplines:

I. Equilibration and vitrification media: 7.5%
and DMSO, and 15% to 16% (v/v) EG and DM
sucrose, respectively.



II. Equilibration and vitrification temperature: Room
temperature (22 �C–27 �C) or mammalian body
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temperature (37 �C) are used, with a princip
higher the temperature, the faster the loadin

III. Exposure duration: Embryos are exposed
equilibration media for times ranging fro
15 minutes, and then vitrification is achieve
40 to 60 seconds.

IV. Warming: Direct warming of carrier tools in
media with sucrose (w1 M) at 37 �C (w2 m
and then, embryos are equilibrated sequen
a series of solutions with decreasing co
tions of sucrose, preferably at room tem
(22 �C–25 �C) for up to 15minutes to ensure c
rehydration.

There are different types of carrier tools that can
in vitrification, but Open Pulled Straw (OPS) is t
commonly used tool in embryo vitrification of
species because of low cost and ease of use [15,30
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The first study of embryo vitrification and trans
the OPS method failed to produce a pregnancy [10
ever, the use of 0.25-mL French straws along
complicated equilibration media (20% glycerol
EG þ 0.3-M sucrose þ 0.375-M glucose þ 3% poly
glycol) in three steps did produce reasonable viabi
Day 6, 7, and 8 embryos. The embryo age/size app
be an influencing factor for viability, with the small
embryos being more resistant to cryoinjuries. The
of the smaller embryos resulted in a 38% pregna
(8/21), whereas no pregnancies were achieved w
larger Day 7 or 8 embryos [10]. In 2005, the first b
live calf was reported from the transfer of 20 vitri
bryos (5% success), using high concentrations
(7.0 mol/L) and sucrose (0.5 mol/L) [27].

Recently, to develop a more effective cryopres
procedure for camels, the current authors have at
to modify a protocol originally designed for human
and embryos [15,39], to make it suitable for freezin
hatched embryos. After a thorough examina
different parameters, an optimized protocol (7.5% E
M sucrose for 1 minute, a second equilibration solu
EG þ 0.5 M sucrose for 2 minutes, followed by two
30% EG þ 1 M sucrose vitrification solution for 20
each) was established [27]. Unfortunately, despit
survival rate (91%) as judged by the morphologic
ance of embryos after warming and in culture, the
of 18 vitrified embryos (Day 7 or 8) into six recipien
each) during the breeding season resulted in no pr
(unpublished data). In a subsequent experiment,
fied embryos were transferred into five recipien
each), who had received 75 mg progestero
(intramuscularly) for 3 days before transfer
another 14 days after transfer when the pregnancy
identified by ultrasonography. This exogenous pr
one was injected in case the frozen/thawed emb
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lack of developmental competence of those vitri
bryos (unpublished data). The frustrating results
transfers imply that the current protocol still need
modification, and importantly, that the morph
integrity of frozen embryos cannot be used to pre
success of ET outcome [27].

Similar to our observations that most vitrified
embryos exhibited normal morphology and expa
culture, and then become dormant in culture, it
esting to note that pig morulae and early blastocy
which intracellular lipids had been removed by
gation and micromanipulation before subsequen
cation, were able to develop in culture, but then
dormant at the blastocyst stage [27]. However, the
of those embryos produced healthy offspring wit
rate of success (9/11, 82%). Therefore, it is reaso
speculate that removal of lipids from embryo
cryopreservation may be vital not only for surv
most importantly to retain developmental com
[29].
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Similar to the results in dromedary came
although the morphology and re-expansion
vitrified embryos in 40% EG was acceptable, tran
such embryos did not result in pregnancy. The high
of intracellular lipids in embryos may be a reason
survival rate [28]. In 2002, the first pregnancy was
from embryos vitrified in French straws with a th
equilibration in 20% glycerol þ 20% EG þ 0.3 M
þ 0.375 M glucose þ 3% polyethylene glycol [8]. H
the birth of live offspring is not reported.
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cation is a simple and advantageous techniqu
becoming the dominant approach for cryopreserv
reproductive cells [15,17,27,29]. Recent achieveme
in vitro survival of hatched blastocysts from the dro
camel after vitrification are promising [27]. Howev
work is required to clarify the reasons for the
different requirements for in vitro and in vivo devel
To optimize further parameters, the following pro
or techniques might be considered.

I. Cytoskeleton stabilization: Cytoskeleton-st
agents, such as the cytochalasins (cyto-b
been used in pig embryo vitrification to
cytoskeletal disruption during and after cry
vation. The landmark success of live piglet pro
from embryos frozen by stabilized vitrificatio
the importance of the cytoskeleton struc
retaining developmental competence of
[29]. However, the effect of cyto-b on the ou
vitrification appears to be dependent on th
opmental stage of embryos (e.g., hatched em



pig), with a narrow size range (e.g., 325–375 mm). This
feature may limit its broader application in vitrifica-
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tion, but it can be circumvented by culturi
stage embryos in vitro to meet these requi
[29]. In a preliminary experiment, Day 7 ca
bryos (n ¼ 36) were recovered and cultured
without pretreatment with 7.5-mg/mL cyto-b
embryos were vitrified after cyto-b treatmen
straw method, [10]), and 16 embryos were no
but used to determine if prefreezing treatme
caused cell damage. Without freezing, cyto-b
affect cell viability as 12/16 (75%) tra
embryos resulted in pregnancies. Howev
cryopreservation, 0/11 (0%) embryos pretrea
cyto-b and 3/9 (33%) without cyto-b pretr
resulted in a pregnancy (unpublished dat
obvious that cyto-b treatment does not h
lasting detrimental effects on embryo develo
competence, but that the treatment also d
provide protection for the embryo cytoskele
ing vitrification. A similar effect of cyto-b tr
on embryos has also been observed in an
study [40].

II. Development of modified carrier tools: Carr
that are better adapted to the larger size an
structure of zona-free camel embryos may
results. Although a direct comparison of OP
versus 0.25 mL French straws was not car
[10], it appears that a relatively larger vitr
volume is beneficial for embryo survival (
personal communication).

III. Delipidation: Removal of intracellular li
centrifugation and subsequent micromani
has been shown to be effective in the vitrifi
pig morulae and early blastocysts [29]. W
dertaking ET of camelids, for example, in dro
camels, the uterus is flushed 7 to 8 days afte
to enhance the recovery rate; however, emb
hatched at this stage. Without the protectio
zonae pellucidae, it would be difficult to ce
hatched blastocysts and to perform delipatio
may be possible to collect expanded blastocy
Day 6 donors, with two flushes at inte
12 hours. Collection and cryopreservation
atched embryos will have to be established
national exportation and transportation is i
as current regulations allow only pathogen-
bryos with an intact zona pellucida to be e
[41].

IV. Embryo size: To overcome the problems as
with the large variation of embryo size from
ovulated donors, the selection of a supero
protocol appears to be an option for produc
form embryos. For example, superovula
dromedary camels with two injections of
solved in hyaluronan solution produces mor
sized embryos compared to other protocols

V. A novel nonpenetrating CPA, carboxylated ε

Lysin (PLL): A Japanese group has recently
that the addition of PLL in vitrification s
significantly improved the survival rate o
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currently collaborating with this group to s
can improve the survival rate of dromedar
embryos after freezing.

VI. Automation of freezing procedures: Incons
in the manual handling of samples and dif
between individual embryologists can only
inated by full automation of the establishe
duredan unavoidable task of the next
applicable to cryopreservation for all
including humans, and for all procedures in
reproduction [44].

VII. Synchrony between donor and recipient: Ap
the quality of embryos, the optimal pregnan
of ET may depend on various other factors,
the preparation of the recipient females. Th
of ovulation synchrony between donor and r
appears to be of paramount importance for
cess of an ET program. In the dromedary ca
example, the pregnancy rate was highest (67
embryos were transferred into the recipients
ovulated 24 hours after the donor, whe
pregnancy rates dropped sharply to less tha
embryos were transferred to the recipients
ovulated 72 hours behind the donor [45].

VIII. Inhibition of luoteolysis in recipient females
the lack of the cyclical CL and a relative
luteal lifespan of only 8–10 days in camel
longation of the lifespan of the CL appea
beneficial for establishing pregnancy by
more time for the embryos to secrete the im
maternal recognition of pregnancy signa
mother. The oral administration of the
glandin synthetase inhibitor, meclofenam
can prevent both the luteolytic action of ex
PGF2a and the normal increase in per
plasma PMSG concentrations in late
thereby prolonging the luteal phase and im
the pregnancy rate of ET [46].

On current evidence, we will continue to f
vitrification of dromedary camel embryos with th
ously mentioned approaches and believe that
through of embryo cryopreservation in the dro
camel will lead to success in other camelid specie
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