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The  ability of  pathogenic bacteria to adhere to epithelial cells is a prerequisite 
for the colonization of  mucosal surfaces and subsequent infection of  the host. 
Adherence is thought  to be mediated by pili, proteinaceous filaments that 
prot rude  from the bacterial outer  membrane,  or afimbrial adhesins. These bind 
specific "receptor" molecules on host epithelial cells. According to their respective 
receptor structure, uropathogenic Escherichia coli pili have been functionally 
classified as mannose-sensitive (MS)) Gal-Gal-binding (also termed p-fimbriae), 
and X-binding. GaI-Gal pili function as virulence determinants  by binding renal 
epithelial glycosphingolipids containing the D-Gal-p-a-(1-4)-D-Gal-p-13-(1- moiety 
(1, 2). Vaccines composed of  pure Gal-Gal pili confer homologous protection in 
the BALB/c mouse and primate pyelonephritis models (3, 4). However, al though 
Gal-Gai pili from heterologous uropathogenic E. coli are functionally and struc- 
turally similar, they exhibit antigenic heterogeneity.  Thei r  serologic diversity 
could impede the development  of  a broadly crossreactive pyelonephritis vaccine. 

The  complete primary structure of  GaI-Gal pili from a recombinant  strain 
(HU 849) was recently determined in our  laboratory by automated Edman 
degradation of  overlapping peptide fragments (5) and deduced from the DNA 
sequence of  the structural gene by Normark et al. (6). To  elucidate the serological 
properties of  Gal-Gal pili, synthetic peptides corresponding to linear regions of  
the HU 849 pilin amino acid sequence were used to identify the linear immu- 
nogenic and antigenic epitopes 2 o f  the molecule. 
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Abbreviations used in this paper: BSA, bovine serum albumin; ELISA, enzyme-linked immuno- 
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phosphate-buffered saline; SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 
SMCC, succinimidyl 4-(N-maleinimido-methyl)cyclohexane-l-carboxylate; t-Boc, tertiary butyl oxy 
carbonyl. 

Throughout this report, the term "immunogenic epitope" refers to a particular domain in the 
native protein that is recognized by the immune system and gives rise to antibodies able tQ bind 
synthetic peptides corresponding to this domain. "Antigenic epitope" is used to describe domains 
that are recognized in the native protein by antibodies engendered by synthetic peptides correspond- 
ing to that region of the protein. 
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M a t e r i a l s  a n d  M e t h o d s  
Bacteria. E. coli strain 3669 (02:K nontypable) was isolated from the urine of a girl 

with pyelonephritis. E. coli J 96 (04:K5:H51), also a human pyelonephritis isolate, is 
hemolytic, colicin V positive, motile, resistant to the bactericidal action of normal serum, 
and simultaneously expresses MS and GaI-Gal pili. HU 849 is a recombinant strain 
prepared from J 96 chromosomal DNA that expresses J 96 GaI-Gal pili and digalactoside- 
binding activity. The construction of this strain has been described elsewhere by Hull et 
al. (7). Briefly, a cosmid gene library was prepared f romJ 96 DNA. Bacteriophage lambda 
transducing particles carrying recombinant cosmid molecules with portions of the J 96 
genome were used to transduce the nonpiliated E. coli K-12 strain HB 101. A Gal-Gal 
hemagglutinating clone was identified and its genome subkloned into the vector 
pACYC184. The hybrid plasmid was transformed into the minicell producing E. coli K- 
12 strain P678-54. The resulting recombinant strain HU 849 and the parent strain J 96 
expressed Gal-Gal pili that were functionally, chemically, and serologically identical (8). 
Clinical isolates were also used in this study. They include 8 E. coli strains isolated from 
the feces of healthy, nonpregnant women, and 12 E. coli strains isolated from the urine 
of patients with acute pyelonephritis. All of the clinical isolates were shown to express 
Gal-Gal-binding adhesins. 

Pili Purification. Gal-Gal pili from strains HU 849 and 3669 were purified from 
organisms grown on tryptic soy agar for 24 h at 37°C by a modification of the method of 
Brinton (9). The organisms were harvested into ice-cold 0.005 M Tris-HCI buffer, pH 
8.3 (T buffer), homogenized (4,000 rpm) for 30 rain at 4°C in a Sorvall Omnimixer 
(Dupont Instruments-Sorvall, Dupont Co., Newton, CN), and the sheared bacteria 
removed by centrifugation at 12,000 g for 30 min. Pilus filaments were precipitated in 
0.05 M Tris-HCl buffer, pH 7.0, containing 0.15 M NaCI, by the addition of MgCI~ to 
0.1 M (TSM buffer), collected by centrifugation at 12,000 g for 45 min, and the pellet 
dissolved in T buffer. Insoluble contaminants were removed by centrifugation at 12,000 
g for 60 min and the pili precipitated from the supernatant in TSM buffer. After six 
successive cycles of solubilization and crystallization by exposure to T buffer and TSM 
buffer, respectively, the pili were dialyzed against water and their purity assessed by 
electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- 
PAGE), amino-terminal amino acid sequence analysis, and isopycnic ultracentrifugation. 
The 163 amino acid, HU 849 pilin sequence was determined by Edman degradation of 
overlapping pilus peptides (5) and also deduced from the DNA sequence of pap A, the 
pilus structural gene (6). 

Selection of Synthetic Peptides. The choice of peptides corresponding to segments of the 
HU 849 pilus subunit sequence for synthesis was biased with regard to secondary structure 
and hydrophilicity predictions according to the algorithms of Chou and Fasman (10) and 
Hopp and Woods (11), respectively. Regions were selected that were predicted to incor- 
porate hydrophilic beta-turns at either end of the peptide sequence. A natural or additional 
cysteine residue was placed at the N- or-C- terminal, distal to the predicted reverse turn, 
so that the peptide could be coupled in a unique orientation to the carrier protein with a 
heterobifunctional crosslinker (see below). 

Synthesis and Characterization of Pepticles. Peptides were synthesized by solid phase 
techniques (12) using tertiary butyl oxy carbonyl (t-Boc)-protected amino acids and amino 
acid polystyrene resins (Peninsula Laboratories, Inc., Belmont, CA). As side chain pro- 
tecting groups, O-benzyl esters were used for Asp, Glu, Thr, and Ser, and tosyl groups 
were used for Arg and His. Cys was protected by p-methoxybenzyl, Lys by 0-chloroben- 
zyloxy-carbonyl, and Tyr  by 2,6-dichlorobenzyl. Couplings were performed with a 2.5- 
3-fold molar excess of t-Boc amino acid and dicyclohexylcarbodiimide (DCC). If  Asn or 
Gln was to be coupled, a 2.5-fold molar excess of N-hydroxytriazole was also included. 
The coupling of each amino acid was monitored with ninhydrin (13) and, if necessary, 
the amino acid was recoupled until >99% efficiency was achieved. Anhydrous hydrogen 
fluoride in the presence of dimethylsulfide and anisol was used to cleave the protecting 
groups and the resin simultaneously. The cleaved peptide was extracted with ether to 
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remove side products and residual organic solvents, isolated from the resin by extraction 
with 5% acetic acid, and subsequently lyophilized several times. The purity of the final 
product was determined by reverse phase high performance liquid chromatography on 
Lichrosorb RP-18 (E. Merck AG, Darmstadt, Federal Republic of Germany) and amino 
acid analysis. The peptides used in our experiments were found to contain >90% of the 
expected product and were thus not further purified. 

Conjugation of Peptides to Carrier Proteins. Each peptide was conjugated to both 
thyroglobulin and bovine serum albumin (BSA) using m-maleinimidobenzoyl N-hydroxy- 
succinimide ester (MBS) and succinimidyl 4-(Nomaleinimido-methyl) cyciohexane-l-car- 
boxylate (SMCC), respectively, as heterobifunctional crosslinkers. Briefly, 10 mg of the 
carrier protein were dissolved in 3 ml phosphate-buffered saline (PBS)(pH 7.4) and mixed 
with 1 ml distilled N,N-dimethyiformamide containing 5 mg of the respective crosslinker. 
After 2 h with occasional stirring at ambient temperature, the conjugate was separated 
from unreacted crosslinker by gel filtration on Sephadex G-25 in 0.1 M phosphate buffer 
(pH 6.0). To ensure a free sulfhydryl group on the peptide, reduction with sodium 
borohydride was carried out for 15 min on ice and the excess borohydride subsequently 
destroyed with HCI. The neutralized and reduced peptide was combined with the carrier- 
crosslinker conjugate and stirred overnight at room temperature. The resulting peptide 
carrier conjugate was subsequently isolated by gel filtration on Sephadex G-25 in 0.1 M 
ammonium bicarbonate buffer (pH 7.4). The molar ratio of conjugated peptides to carrier 
protein was determined by comparing the amino acid composition of the carrier before 
and after conjugation. 

Specific Pili and Peptide Antisera. All hyperimmune sera were prepared in female New 
Zealand White rabbits. 50-150 #g of the peptide-carrier conjugate or purified pili in PBS 
were emulsified with complete Freund's adjuvant and injected subcutaneously and intra- 
muscularly at multiple sites. Booster injections with the same dose were prepared with 
incomplete Freund's adjuvant and administered 5-6 wk later. 8 d later the animals were 
bled by cardiac puncture. For the preparation of specific antipeptide sera, rabbits were 
solely immunized with the peptide-MBS-thyrogiobulin conjugate. The resulting sera were 
subsequently evaluated in a solid phase binding assay (see below) using the homologous 
peptide-SMCC-BSA conjugate as antigen. 

Solid Phase Antigen-binding Assay. Peptide-protein conjugates or pili were coated on 
polystyrene or polyvinyl microtiter plates. The plates were washed with PBS containing 
0.1% Brij 35, treated with dilutions of antisera in 0.1% BSA, and washed again, and the 
bound antibody was detected enzymatically with alkaline phosphatase-conjugated second 
antibody, followed by p-nitrophenylphosphate as substrate, or radioactively with ~2~I- 
protein A. The enzyme reaction was evaluated by determining the optical density at 405 
nm and the radio-binding assay by determining the counts per minute (cpm) of microtiter 
wells that had been cut from the plate and subjected to gamma counting. All assays were 
repeated several times in duplicate or triplicate. 

Western Blotting. The electrophoretic transfer of proteins from SDS-polyacrylamide 
gels to nitrocellulose paper was performed in 25 mM Tris buffer (pH 7.2) essentially as 
described by Towbin et al. (14) and Burnette (15). After electrophoretic transfer, the 
nitrocellulose was blocked with 2.5% gelatin in PBS at 37 °C overnight. Subsequently, the 
antiserum was applied in a 1:200 dilution in PBS containing 0.1% nonfat dry milk. After 
2 h at room temperature the paper was washed several times with 25 mM Tris buffer (pH 
7.2) containing 0.1% nonfat dry milk, and incubated with 125I-protein A at 50,000 cpm/ 
ml in PBS/0.1% nonfat dry milk for 2 h. After washing with 0.1% Brij 35]25 mM Tris/ 
0.1% nonfat dry milk, the blot was dried and developed on Kodak XAR-5 film overnight. 

Gal-Gal-specific Agglutination by Clinical E. coil Isolates. E. coil clinical isolates (see 
above) were assessed for Gal-Gal-binding activity after overnight growth on L-agar by 
determining their capacity to agglutinate latex beads adsorbed with Syn Gal-Gal (Chem- 
biomed Ltd., Edmonton, Canada) and by hapten inhibition of hemagglutination by Syn 
Gal-Gal (4% wt/vol) as described by O'Hanley et al. (8). 
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Results 

Choice and Synthesis of Peptides. To identify linear immunogenic and antigenic 
determinants within the 163 amino acid, HU 849 pilus subunit sequence, nine 
peptides were prepared by solid phase Merrifield synthesis, corresponding to 
residues R 5-12, R 25-38, R 38-50, R 48-61, R 65-75, R 93-104, R 103- 
113, R 119-131, and R 131-143. Each peptide contained a predicted beta-turn 
(Fig. 1). Three of these peptides correspond to segments of the GaI-Gal pilus 
disulfide loop subtended by cysteine residues at positions 21 and 61. They were 
synthesized because the single gonococcai pilin disulfide loop has been shown to 
encode immunodominant, strain-specific epitopes (16). The Gal-Gal loop pep- 
tides contained small areas of overlapping sequence and correspond to R 25-38, 
R 38-50, and R 48-61. All peptides were synthesized with either a natural or 
an additional cysteine residue as the C- or N-terminus, distal to the predicted 
reverse turn, thus providing a unique orientation by which the peptide was 
conjugated to its carrier protein. The complete amino acid sequences of the nine 
synthetic peptides, and the four amino acids predicted to constitute the reverse 
turn in each, are depicted in Table I. 

Peptides as Antigens. The synthetic peptides recognized by polyclonal HU 849 
pilus antiserum are defined in this report as "immunogenic HU 849 pilus 
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FIGURE I. Predictive analysis of the secondary structure and local average hydrophilicity of 
the HU 849 pilin amino acid sequence, based on the Chou and Fasman (10) and Hopp and 
Woods (11) algorithms, respectively. The hydrophilicity values are derived from a hexapeptide 
moving average and are plotted at the midpoint of the particular segment. Hydrophilic regions 
appear as positive peaks above 0. The synthesized amino acid sequences are indicated, with 
the cysteine conjugation site depicted as (----O). The intramolecular disulfide bridge is denoted 
by a bracket between cysteine residues 22 and 61. 
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TABLE I 

Amino Acid Sequences of the Synthetic Peptides and Their Location in 
the HU 849 Pilin Sequence 

Reverse turn 
Residues Sequence probability 

5-12 P Q G Q G K V T-C* 1.86 x 10 -4* 
25-38 C - S Q K S A D Q S I D F Q G L  1.00x 10 -4 
38-50 L S K S F L E A G G V S K - C  1.12x 10 -4 
48-61 V S K P M D L D I E L V N C  1.04x 10 -4 
65-75 A F K G G N G A K K G - C  2.52x 10 -4 
93-104 L D T N G G T G T A I V - C  2.05 X 10 -4 

103-116 C - I V V Q G A G K N V V F D G  0.33 x 10 -4 
119-131 G D A N T L K D G E N V L - C  1.68x 10 -4 
131-143 C - L H Y T A V V K K S S A V  0.55x 104 

* -c, non-natural cysteine residues added for conjugation purposes. The 
underlined four amino acids constitute beta-turns as predicted by the 
Chou and Fasman algorithm (10). 

* Probability of each turn. 
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FIGURE 2. Reaction of anti-HU 849 pilus antiserum with peptide-BSA conjugates in an 
ELISA as described in Materials and Methods. The pilus antiserum was assayed for its ability 
to bind peptides R 25-38 (O), R 38-50 (Q), and R 48-61 (R), corresponding to the cysteine 
loop (A); peptide R 65-75 (B); and peptide R 103-116 (C) coupled via SMCC (0) and via 
water-soluble carbodiimide 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) (&) to 
BSA. The absorbance at 405 nm was corrected for nonspecific binding due to BSA and 
preimmune sera as indicated (~). Peptides R 5-12, R 93-104, R 119-131, and R 131-143 
were not bound by anti-HU 849 antiserum. 

epi topes ."  Each o f  the  n i n e  BSA-pep t ide  con juga te s  was assessed by enzyme-  
l i nked  i m m u n o s o r b e n t  assay (ELISA) with d i lu t ions  o f  H U  849 a n t i s e r u m .  As 
dep ic t ed  in Fig. 2, A-C,  five ou t  o f  the  n i n e  pept ides  R 2 5 - 3 8 ,  R 3 8 - 5 0 ,  R 4 8 -  
61,  R 6 5 - 7 5 ,  a n d  R 1 0 3 - 1 1 6 ,  were  b o u n d  by polyc lonal  H U  849 pilus a n t i s e r u m ,  
i n d i c a t i n g  tha t  the  c o r r e s p o n d i n g  sequences  in the  pi lus  s u b u n i t  e n c o d e  i m m u -  
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nogenic epitopes. The antigenicity of R 103-116 (Fig. 2 C) was compared as the 
peptide-BSA conjugate coupled through the N-terminal cysteine by SMCC or 
through free amino and/or  carboxyl groups by water-soluble carbodiimide 
(EDAC). The EDAC-coupled conjugate was not bound by HU 849 antiserum, 
indicating that the lysine (R 110) and/or  the aspartate (R 115) residues might be 
required for antigenicity. This result also indicates that recognition of the 
biological properties of some peptide-carrier conjugates can be significantly 
influenced by the coupling strategy used. 

To compare the relative antigenicity of these peptide conjugates for polyclonal 
anti-HU 849 serum, a solid phase binding assay was conducted using 125I-protein 
A to detect bound antibody. The relative number of  counts bound are indicated 
in Table lI. Peptides R 25-38, R 38-50, R 48-61, and R 103-116 bound 
between 11.5 and 21.7% of the total bound counts and thus constitute only 
weakly immunogenic HU 849 pilus epitopes. With respect to the three peptides 
that jointly compose the disulfide loop, the strongest response was directed 
against the middle segment (peptide R 38-50), which bound 21.7% of the 
counts. The disulfide loop peptides flanking R 38-50 (R 25-38 and R 48-61) 
bound 11.6 and 11.5%, respectively. A more prominent immunogenic epitope 
was found to reside in a peptide just distal to the disulfide loop (residues R 65-  
75) that accounted for more than 37% of the bound radioactivity. 

Peptides as Immunogens. Polyclonal peptide antisera were engendered by 
immunizing rabbits with peptide-MBS-thyroglobulin conjugates and were then 
tested for their capacity to bind the immunizing peptide and intact pili, thus 
defining the peptide as an antigenic epitope. As shown in Fig. 3, all peptides 
elicited a strong specific immune response as judged by ELISA, where the 
corresponding peptide-SMCC-BSA conjugate was used as the solid phase antigen. 
However, only four antipeptide sera crossreacted with solid phase, intact HU 
849 pili (Fig. 4). The most strongly crossreacting antisera were elicited by 
peptides R 5-12 and R 93-104 (Fig. 4, A and C). Antisera against peptides R 
65-75 and R 119-131 bound HU 849 pili to a lesser extent (Fig. 4, B and D). 
Therefore,  peptides R 5-12 and R 93-104 appear to encompass two prominent 
antigenic epitopes, and peptides R 65-75 and R 119-131, two minor antigenic 
epitopes. R 65-75 was the only peptide encompassing an immunogenic as well 
as an antigenic HU 849 pilus epitope. 

Recognition of Antigenic Epitopes by Western Blotting. To determine if the 
peptide antisera bind pilus subunits under denaturing conditions, HU 849 pili 
were boiled in 2-mercaptoethanol and SDS according to the method of Laemmli 

TABLE II 
Binding of Anti-HU 849 Polyclonal Serum to Synthetic Peptides Corresponding to the Amino 

Acid Sequence of the HU 849 Pilus Subunit 

BSA 5-12 25-38 38-50 48-61 65-75 93-104 103-116 119-131 131-143 

cpm* 519  881 1,073 2 ,003  1,062 3,461 713 1,612 863 700 

Bind ing  - - + ] -  + + / -  + - + - 
Relative percent  - -  - -  I 1.6 21.7 11.5 37.5 - -  17.5 - -  - -  

* Wells were  sensit ized with a solut ion o f  the various pept ide-BSA conjugates  (1 m g / m l ) ,  washed,  t rea ted with  a 1:50 d i lu t ion  o f  a n t i -  
H U  849  polyclonal an t i serum,  exposed to 50 ,000  cpm o f  J ~ l - p r o t e i n  A, and  washed; the wells were then  cut  f rom the plate and  

counted .  Data are  averages  of  several expe r imen t s  done  in duplicate,  
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FIGURE 3. Reaction of antiserum against peptide-MBS-thyroglobulin conjugates with ho- 
mologous peptide-SMCC-BSA conjugates. The ELISA data for R 93-104 (A) and R 65-75 
(0) are exemplary of the other antipeptide antibody/peptide reactions. The reactions were 
corrected for nonspecific binding to BSA (E]). The reactivity of the preimmune sera (pi) is also 
indicated (~). 
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FIGURE 4. Reaction of antipeptide sera with intact HU 849 pili by ELISA. Antipeptide sera 
to R 5-12 (A), R 65-75 (B), R 93-104 (C), and R 119-131 (D) showed significant binding. 
Nonspecific binding to BSA and by each preimmune serum is indicated ~ ) .  

(17), electrophoresed in 15% SDS-polyacrylamide gels, and transferred to nitro- 
cellulose (Fig. 5). Antisera elicited by peptides R 5-12 and R 93-104 bound the 
HU 849 pilus subunit under  these conditions. However, anti-R 65-75 and anti-  
R 119-131 did not bind the denatured pilus subunit, indicating that their 
epitopes were destroyed by this treatment and thus that the antigenicity of these 
regions may depend on their conformation in native HU 849 pili. Antisera 
elicited by two of the loop peptides (R 25-38 and R 38-50) crossreacted weakly 
with the denatured pilus subunit. 

Shared Antigenicity between Heterologous Gal-Gal Pili. The  E. coli pyelonephritis 
isolate 3669 (18) expresses GaI-Gal pili that exhibit about 80% amino acid 
sequence homology with the HU 849 pilus subunit (D. A. Low, personal com- 
munication). Further,  a 3669 pilus peptide corresponding in part to the region 
R 65-75 of the HU 849 pilus sequence also constitutes a prominent  immunogenic 
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FIGURE 5. Western blot of HU 849 pili with antipeptide sera. The peptide antisera were 
diluted 1:200 in 0.1% nonfat milk/PBS. 1251-protein A was used to detect bound antibody. 
(1) Ant i -HU 849 serum (dilution, 1:5000); (2) anti-R 5-12; (3) anti-R 25-38; (4) ant i -38-  
50; (5) anti-R 65-75; (6) anti-R 93-104; (7) anti-R 119-131; (8) preimmune serum. 

epitope of the 3669 pilus subunit, analogous to this region in the HU 849 
sequence (Table II). However, antibody to purified HU 849 and 3669 Gal-Gal 
pili does not bind the heterologous peptide from this region (data not shown), 
indicating that these peptides may encode strain-specific immunogenic epitopes. 
The shared antigenicity between the two pilus proteins was examined in greater 
detail with each of the HU 849 synthetic peptide antiserum. Despite the sequence 
homology between the HU 849 and 3669 pilus subunits, none of the nine HU 
849 synthetic peptides engendered antibodies that recognized isolated 3669 pili 
in a solid phase binding assay, indicating that the two pilus proteins share few or 
no linear epitopes that are antigenic in intact pili. When single Gal-Gal-binding 
E. coli colonies from clinical isolates were subjected to Western blotting, none 
was recognized by polyclonal ant i -HU 849 serum. However, a protein with a 
molecular weight similar to that of  a pilus subunit was detected by anti-R 93- 
104 in 4 of the 8 Gal-Gal-specific fecal strains and in 7 of the 12 Gal-Gal-specific 
pyelonephritis isolates subjected to Western blotting. In 8 of the 10 Gal-Gal- 
binding pyelonephritis isolates, anti-R 5-12 serum detected a protein with a 
molecular weight similar to that of a pilus subunit. This indicates that common 
linear epitopes may be antigenic in denatured pilus subunits. In all strains, 
however, R 93-104 antibody also detected several other apparently non-pilus 
bands of higher molecular weight, whereas anti-R 5-12 serum bound only pilin. 

Discussion 

Uropathogenic E. coil exhibit a constellation of pathogenic features: they 
usually belong to a restricted number of O and K antigen serogroups (19, 20); 
they are resistant to the bactericidal action of normal human serum (2t, 22); 
they secrete hemolysin (23, 24) and produce colicin V (25, 26); and they attach 
to uroepithelial cells in vitro (27, 28). Epithelial cell adherence is the in vitro 
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FIGURE 6. Mapping of linear immunogenic and anugenic epntopes in the HU 849 pilus 
subunit. The linear depiction of the H U 849 pilus subunit shows the location of the synthesized 
peptides (A), location of immunogenic epitopes (B), location of antigenic epitopes (C), and the 
recognition of denatured HU 849 pilin by antisera engendered by synthetic peptides, detected 
by Western blotting (D). The thickness of the bar represents the relative amount of binding. 

analogue of mucosai colonization, an event that appears to precede and be a 
prerequisite for subsequent pathogenic steps. It is mediated by bacterial adhesions 
and the epithelial cell surface molecules to which they bind. 

Two major classes of chromosomally encoded E. coli adhesins have been 
defined functionally by the receptor specificity of their associated pili. MS pili 
bind Tamm-Horsfall uromucoid, and their agglutination of guinea pig red cells 
is blocked by D-mannose. Gal-Gal pili agglutinate human red cells in the presence 
of mannose by binding glycosphingolipids that contain the D-Gal-p-ol-(1-4)-p-~8- 
(1- . . . )  moiety. Of  these Gal-Gal pill appear to be significant determinants of 
uropathogenicity: (a) Gal-Gal pili are expressed by most pyeionephritis isolates 
(29); (b) renal epithelium contains Gal-Gal pilus receptor compounds (3); (c) Gal- 
Gal, but not MS, piliated recombinants colonize renal epithelium in the absence 
of acute ureteric reflux (3); and (d) Gal-Gal, but not MS pilus vaccines prevent 
pyelonephritis in the unobstructed murine and primate urinary tract (3, 4). 

In the present studies, we used synthetic peptides corresponding to nine 
segments of the HU 849 recombinant E. coli Gal-Gal pilus sequence (5, 6). Linear 
antigenic and immunogenic epitopes were identified with these reagents and are 
mapped onto the Gal-Gal pilus amino acid sequence as depicted in Fig. 6. Three  
immunogenic determinants were identified that collectively bound >75% of the 
HU 849 antibodies directed against the nine peptides: one within the disulfide 
loop (R 38-50); one adjacent to the disulfide loop between R 65-75,  which is 
the most prominent;  and one towards the C-terminal (R 103-116). Only R '65-  
75 proved also to be an antigenic epitope; i.e., antibodies to peptide R 65-75 
bound native HU 849 pili. In addition, two prominent  (R 5-12 and R 93-104) 
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and one minor (R 119-131) antigenic epitopes were detected. These results 
indicate that an immunogenic Gal-Gal pilus epitope is not necessarily also an 
antigenic epitope, a result concordant with the analysis of the antigenic structure 
of gonococcal pili (16). 

The use of synthetic peptides to identify the immunogenic epitopes of a protein 
is applicable only to epitopes encoded by linear segments of the sequence. In 
most proteins, including pili (16), "linear" epitopes appear to comprise a relatively 
small fraction of the molecule's entire antigenicity. Most of  the antigenicity seems 
to be determined by residues that are not contiguous in sequence, but are 
juxtaposed in space as a result of  secondary, tertiary, and, in polymeric proteins 
like pill, quaternary structural features. Antibodies to synthetic peptides can be 
successfully used to identify antigenic epitopes and as sequence-specific immu- 
nological reagents for structure-function analysis, provided they elicit crossreact- 
ing antibodies of sufficiently high affinity. Only if a synthetic peptide adopts, or 
can be induced to adopt, a conformation that is identical or very similar to the 
conformation of the corresponding sequence in the parent protein, will it 
engender high affinity antibodies to the parent protein or be recognized by 
antibodies elicited by the parent protein. 

These considerations led to the selection of synthetic Gal-Gai pilus peptides 
derived from regions of the pilus sequence that were predicted to contain 
hydrophilic beta-turns. In contrast to alpha-helices or beta pleated sheets, beta- 
turns are the feature of secondary structure formed principally by forces con- 
tained in the linear amino acid sequence, particularly by the four residues actually 
comprising the beta-turn. Therefore,  peptides corresponding to beta-turn re- 
gions of the protein should be thermodynamically prone to also adopt a beta- 
turn conformation. Furthermore, beta-turn structures appear to be present in 
immunodominant regions of several other proteins (30-32). Consistent with this 
notion, all synthetic pilus peptides (Table I) that contain a stretch of four amino 
acids with a calculated probability for a reverse turn > 1.3 × 10 -4 (10) engendered 
antibodies that crossreacted with HU 849 Gal-Gal pili, thus defining the corre- 
sponding domain as an antigenic epitope. 

Synthetic peptides have also been used to determine the linear antigenic 
structure of gonococcal pili (16). Two peptides that jointly compose the gono- 
coccal pilus intramolecular disulfide loop and correspond to regions of sequence 
heterogeneity were found to encode separate strain-specific, immunodominant 
epitopes. In contrast, the disulfide loop in Gal-Gal E. coli pili seems not to be an 
area of particular immunological interest, since only a minor immunogenic and 
no antigenic epitope was detected in this region. Instead, the region between R 
65 and R 75 was found to encode a prominent immunogenic and antigenic 
determinant. A corresponding region in Gal-Gal pili prepared from E. coli strain 
3669 contains stretches of unconserved sequence and also constitutes a major 
immunogenic epitope (M. A. Schmidt, P. O'Hanley, D. A. Low, unpublished 
observation). Therefore,  the most prominent linear immunogenic epitopes of E. 
coli Gal-Gal pili from strains HU 849 and 3669 and gonococcai pili reside in 
areas of hydrophilic beta-turns that contain regions of sequence heterogeneity. 
For both organelles, the immunodominance of unconserved regions may have 
arisen under the selective pressure of the host immune system. 
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Gal-Gal pili used as pyelonephritis vaccines have prevented infection by the 
homologous strain in the BALB/c mouse and monkey models (3, 4). Heterolo- 
gous challenge studies have not been reported; however, serological crossreactiv- 
ity among GaI-Gal pili from different strains was investigated with polyclonal 
anti-pili sera by Western blotting and ELISA and was found to be rather limited 
(M. A. Schmidt, unpublished observation). Similarly, peptides corresponding to 
the HU 849 amino acid sequence elicited few antibodies that bound heterologous 
pili. Except for the anti-R 93-104 and the anti-R 5-12 sera, none of the peptide 
antisera recognized other Gal-Gal pili by Western blotting. This suggests that 
antigenic variation may be even more profound among E. coli Gal-Gal pili than 
gonococcal pill, where several peptides have been found to elicit crossreacting, 
receptor-blocking antibodies (16, 33). 

Mutational analysis of the GaI-Gal pilus operon by Lindberg (34) and Norgren 
(35) may lead to a more crossreacting GaI-Gal adhesin vaccine. They have 
determined that cistrons encoding the pilus subunit and the adhesin per se are 
distinct and, by inference, that the GaI-Gal adhesin may be a heteropolymer 
composed of the adhesin protein, the pilus subunit, and perhaps the gene product 
of an additional cistron. Preliminary evidence indicates that the putative adhesin 
may be highly conserved. Synthetic peptides corresponding to regions of this 
gene product are currently under study by our laboratories. 

S u m m a r y  
The linear immunogenic and antigenic structure of E. coli Gal-Gal pili from 

the recombinant strain HU 849 was investigated with nine synthetic peptides 
corresponding to regions of the pilus sequence predicted to contain hydrophilic 
beta-turns. Five peptides, as bovine serum albumin conjugates, were found by 
anti-HU 849 pilus serum and were thus designated "immunogenic epitopes." 
Peptides corresponding to R 25-38, R 38-50, and R 48-61 (which jointly 
comprise the single intramolecular disulfide loop), and R 103-116, were bound 
in low titer. A prominent immunogenic epitope was specified by a peptide 
corresponding to R 65-75. Four peptides, as thyroglobulin conjugates, elicited 
antisera in rabbits that bound intact HU 849 pili. These were designated 
"antigenic epitopes." Two prominent antigenic epitopes were localized to pep- 
tides corresponding to R 5-12 and R 93-104, whereas peptides corresponding 
to R 65-75 and R 119-131 represented two minor antigenic epitopes. None of 
the peptide antisera bound GaI-Gal pili from heterologous strains except anti-R 
93-104 and anti-R 5-12. In 8 of the 10 GaI-Gal-binding pyelonephritis isolates 
tested, anti-R 5-12 detected a protein with an apparent molecular weight of 
18,000 co-migrating with several Gal-Gal pili. Anti-R 93-104 detected a corre- 
sponding protein in 4 of 8 fecal and 7 of 12 pyelonephritis Gal-Gai-binding 
isolates; however, it also bound apparently unrelated proteins of higher molecular 
weight. 

We thank Dr. Stanley Falkow for recombinant E. coli strain HU 849, Dr. Catharina 
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in this study. 
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