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Abstract

During normal neuronal activity, ionic concentration gradients across a neuron’s membrane

are often assumed to be stable. Prolonged spiking activity, however, can reduce transmem-

brane gradients and affect voltage dynamics. Based on mathematical modeling, we investi-

gated the impact of neuronal activity on ionic concentrations and, consequently, the

dynamics of action potential generation. We find that intense spiking activity on the order of

a second suffices to induce changes in ionic reversal potentials and to consistently induce a

switch from a regular to an intermittent firing mode. This transition is caused by a qualitative

alteration in the system’s voltage dynamics, mathematically corresponding to a co-dimen-

sion-two bifurcation from a saddle-node on invariant cycle (SNIC) to a homoclinic orbit bifur-

cation (HOM). Our electrophysiological recordings in mouse cortical pyramidal neurons

confirm the changes in action potential dynamics predicted by the models: (i) activity-depen-

dent increases in intracellular sodium concentration directly reduce action potential ampli-

tudes, an effect typically attributed solely to sodium channel inactivation; (ii) extracellular

potassium accumulation switches action potential generation from tonic firing to intermit-

tently interrupted output. Thus, individual neurons may respond very differently to the same

input stimuli, depending on their recent patterns of activity and/or the current brain-state.

Author summary

Ionic concentrations in the brain are not constant. We show that during intense neuronal

activity, they can change on the order of seconds and even switch neuronal spiking pat-

terns under identical stimulation from a regular firing mode to an intermittently inter-

rupted one. Triggered by an accumulation of extracellular potassium, such a transition is

caused by a specific, qualitative change in of the neuronal voltage dynamics—a so-called

bifurcation—which affects crucial features of action-potential generation and bears conse-

quences for how information is encoded and how neurons behave together in the
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network. Also, changes in intracellular sodium can induce measurable effects, like a

reduction of spike amplitude that occurs independently of the fast amplitude effects attrib-

uted to sodium channel inactivation. Taken together, our results demonstrate that a neu-

ron can respond very differently to the same stimulus, depending on its previous activity

or the current brain state. This finding may be particularly relevant when other regulatory

mechanisms of ionic homeostasis are challenged, for example, during pathological states

of glial impairment or oxygen deprivation. Finally, categorization of cortical neurons as

intrinsically bursting or regular spiking may be biased by the ionic concentrations at the

time of the observation, highlighting the non-static nature of neuronal dynamics.

Introduction

Ever since the introduction of Hodgkin-Huxley’s famous neuron model for the squid giant

axon, the governing equations have been a useful tool to understand the mechanisms of spike

generation. The original model assumed fixed ionic concentrations inside and outside the cell,

establishing constant driving forces for ionic flux otherwise modulated only by the channels’

gating kinetics [1]. In the brain, however, ionic concentrations are not constant, and the ionic

composition of the extracellular space varies with behavioral states [2, 3] and as a function of

neuronal activity [4, 5].

The concentrations of sodium [Na+] and potassium [K+] ions—the two ionic species essen-

tial for sodium action potentials—are known to vary in response to neuronal activity in vitro
and in vivo at relatively slow timescales (on the order of seconds). Intracellular sodium concen-

tration has been found to increase with activity in mammalian pyramidal neurons responding

to physiologically relevant stimuli (on the order of 3–10 seconds) [5]. In the cat neocortex, the

concentration of extracellular potassium can oscillate in correlation with local field potentials

(LFPs) during slow wave (*1 Hz) sleep [3] or when presenting oscillating graded stimuli to

the cat’s retina on the order of seconds [4].

A number of simulation studies have analysed the slow ionic concentration dynamics and

their equilibria [6–10], portraying mechanistic explanations of the emergence of slow ionic

concentration oscillations (0.5–10 cycles per minute). These studies have particularly focused

on understanding how ionic homeostasis [7, 8, 10, 11] or stimulus properties [12] may shape

ionic concentration equilibria. However, only few have analysed the transient effect of these

concentration changes on neuronal excitability [6, 13]. The majority of the aforementioned

studies have adopted a static stimulation, except for [12] who showed that a periodic step cur-

rent injection can drastically alter ionic concentration equilibria. Thus, how stimulus-induced

changes in ionic concentration gradients impact ongoing neuronal activity is currently not

well understood.

In this study, we use conductance-based models to predict and experimentally test how

changes in transmembrane ionic concentration gradients that arise during periods of

increased neuronal activity impact action-potential generation. We find that prolonged stimu-

lation (*10 seconds) can generate ionic concentration changes substantial enough to modify

action potential generation in neurons. Intracellular sodium accumulation in particular alters

action-potential amplitude on slow timescales matching the ionic changes—an effect previ-

ously attributed primarily to the inactivation of sodium channels [13–16].

Extracellular potassium accumulation, in turn, can qualitatively switch the spike-generating

mechanism of type I neurons (i.e., with a smooth increase in firing rate from threshold), thus

changing fundamental properties of firing patterns, encoding, and network behaviour.
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Mathematically, the transition corresponds to a so-called co-dimension-two bifurcation, at

which the spike generating mechanism changes qualitatively from a regular saddle-node on

invariant cycle (SNIC), when extracellular potassium concentrations are low, to a homoclinic

orbit bifurcation (HOM), when extracellular potassium concentrations become high. The

switch in the firing regime most notably results in a transition from regular spiking to a burst-

like, intermittently interrupted firing mode in the HOM regime, caused by a so-called bistabil-

ity of the dynamical system. In the HOM regime, the options of a fixed, resting-like voltage

state and regular firing co-exist for the same input levels, resulting in stimulus- and noise-

induced switches between both states.

Prolonged electrical activity can, therefore, have significant effects on spiking patterns and

neuronal dynamics. We uncover these properties by first dissecting both potassium ion and

sodium ion contributions to spike generation and second testing predictions in in vitro
electrophysiological recordings.

Results

Model response to prolonged stimuli

In order to analyze how neurons respond to prolonged stimulation, we examined the temporal

evolution of activity-dependent changes in transmembrane ionic gradients and assessed their

impact on ongoing neuronal activity. To this end, we implemented a single-neuron, conduc-

tance-based model including dynamic ion concentrations (detailed in the Materials and

methods section). Ionic gradients determine the equilibrium (Nernst) potentials that in turn

influence the driving forces of spike-generating ionic currents. Accumulation of ions over

time consequently modifies the Nernst potentials as well as the spike generating currents and

therefore also spike generation. A regulation of concentration gradients ([Na+] and [K+]) is

mediated by the Na-K-ATPase pump: an electrogenic active-transporter whose activity inten-

sifies when [Na+]i accumulates. Due to its electrogenic nature (changing the net charges across

the membrane), activity of the Na-K-ATPase pump affects the membrane potential.

Noise-free analysis. First, we investigated the response of the model to a step input cur-

rent—a typical protocol in patch-clamp experiments. Stimulation of the model for almost 10

seconds (Fig 1A) led to an accumulation of intracellular sodium, [Na+]i, as well as an increase

in extracellular potassium, [K+]o (Fig 1B). The concentration changes resulted from the pro-

longed spiking activity and were indeed substantial enough to alter features of the generated

action potentials during the duration of the stimulation protocol. Three major changes that

have often been reported in experiments were observed in the model: (a) the emergence of a

slow after-hyperpolarization (AHP), (b) adaptation (i.e., a reduction) of spike frequency, and

(c) reduction of spike amplitudes (Fig 1A).

a) The slow AHP became visible when the stimulus was set back to baseline and neuronal

spiking stopped (Fig 1A). The slow AHP resulted from the hyperpolarising Na-K-ATPase

pump current: Na-K-ATPase pump activity was enhanced by the action-potential-driven rise

in intracellular sodium concentration because [Na+]i accumulation increases the pump activ-

ity. When the stimulation ended, the neuron stopped firing and the membrane potential

hyperpolarized with respect to the original resting membrane potential due to the transient

change in the Na-K-ATPase pump current. As ongoing Na-K-ATPase activity progressively

lowered the intracellular sodium concentration back to baseline levels, the hyperpolarization

slowly diminished (Fig 1A).

b) Spike frequency adaptation, evident in Fig 1A, also resulted from the activity-dependent

increase in Na-K-ATPase current, which effectively reduced the net excitatory drive of the

neuron. The model does not contain adaptation currents besides the Na-K-ATPase pump (e.g.,
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M-currents). Note that the pump current used in the model is only sensitive to Na+, which ide-

alizes the α3 isoform of the Na-K-ATPase. The pump α3 isoform is negligibly sensitive to K+

and the membrane potential (V), but highly sensitive to changes in intracellular sodium concen-

tration over the ranges simulated in this study [17, 18]. The impact of the pump current on

spike-frequency adaptation was, however, preserved in models of other pump isoforms.

c) In our model, reductions in spike amplitude were directly related to intracellular sodium

accumulation, see Fig 1C. Activity-dependent reduction of action potential amplitude has pre-

viously been attributed primarily to Na+-channel inactivation during prolonged stimulation

[13, 14, 19]. Our simulations, however, demonstrate that the time course of amplitude reduc-

tion mirrors the drop in sodium reversal potential (see Fig 1A), which is related to the time

course of sodium accumulation (see Fig 1B). The Na+-channel inactivation was more than an

order of magnitude faster than the timescale of spike-amplitude reduction; the slow spike

Fig 1. Response of the model to a step current of 2 μA/cm2 input as shown in the top. A. Voltage trace (V) with

reversal potentials for sodium (Orange) and potassium (Blue).B. Firing rate (Fr) of neuron model. C. Intracellular

sodium (Orange) and extracellular potassium (Blue) concentration (C) dynamics. D. Spike amplitude and reversal

potential for sodium (Orange) for the trace shown in A. E. First and last spike (peaks aligned).

https://doi.org/10.1371/journal.pcbi.1008510.g001
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amplitude decay was modulated by intracellular sodium. A dynamical system’s perspective of

this finding and an experimental confirmation are presented in the next sections.

Analysis in the presence of noise. The results so far reflect idealized model responses in

the absence of noise. To include the stochasticity of synaptic inputs that is typical for many

neurons in the central nervous system, we next added coloured noise with wide sense station-

ary statistics to the input current—a useful exercise that reveals an interesting property in the

response that was masked in the noise-free case discussed above.

Stimulating the model again with a step current in the presence of an additional colored

noise component (Fig 2), the model neuron’s response during the first second was comparable

to the noise-free case presented before: [Na+]i and [K+]o accumulated (resulting in changes in

the reversal potentials ENa and EK); spike frequency adaptation, and spike-amplitude reduction

were observed (compare to Fig 1A). Surprisingly, after the first second of stimulation, the

response exhibited a sudden transition from regular spiking to an intermittently-interrupted,

burst-like firing mode. Note that the stimulus statistics are in a wide-sense stationary such that

there was no qualitative change in the stimulus during the simulation duration. This means

that the qualitative switch in the firing pattern must arise from a bifurcation in the neuron’s

dynamics. The switch in firing pattern occurred 1.2 seconds after stimulus onset, a time scale

that largely exceeds the time scale associated with the dynamics of spike-generating conduc-

tances (which are about two orders of magnitude faster). Yet this time scale matches the time

scale of changes in ionic concentrations, suggesting that the switch is causally related to the ion

accumulation. Ion accumulation influences spike generation by changing ionic reversal poten-

tials and engaging the electrogenic Na-K-ATPase.

Separating the fast and the slow dynamics. To disentangle the origin of the transition, in

a next step, the fast spike-generating dynamics were separated from the slow ionic concentra-

tion dynamics using a slow-fast analysis. To this end, we systematically analyzed the fast sys-

tem with fixed ionic concentrations (i.e., constant values of the slow concentration variables).

The latter, however, were chosen from “snapshots” of the values that the concentrations had

exhibited in the full system (where concentrations were varying). This approach allowed us to

systematically determine how ionic concentration changes shaped the ongoing properties of

the fast sub-system. Time scale separation is valid because ionic concentration changes were

much slower (* seconds) than the spike generating currents (*milliseconds) (see the

Materials and methods section).

Analysis of the slow-fast system revealed that the qualitatively different spiking response

was triggered by a switch in the dynamics of action-potential generation. Mathematically, the

model started out in a setting where spiking is initiated via a saddle-node on invariant circle

bifurcation (SNIC) [20]. Models with SNIC dynamics can be distinguished by their fixed

points, that form an S-shape curve when projected in the V-Iapp plane [21]. This type of

dynamics is characterized by the existence of a unique stable attractor for each input level, i.e.,
only one, well-defined state that the system converges to. For low inputs this is a fixed point

(i.e., the resting state) while for high inputs it is a limit cyle attractor (i.e., the regular spiking

state). In models with fixed intra- and extracellular ionic concentrations, this type of dynamics

would persist as long as cellular properties remain constant, i.e., across the whole stimulation

period. Alterations in the level of ionic concentrations (and hence their transmembrane

gradients in terms of reversal potentials), however, can qualitatively switch the dynamics to

a different spike-generating bifurcation. A switch in the spike generating bifurcation can be

perceived in some qualitative characteristic features of spike trains. Such a transition can, for

example, be reflected in an increased or decreased number of attractors. Indeed, when moni-

toring the number of stable attractors of the corresponding fast system at each point in time,

their number changes exactly at the ionic concentrations reached at 1.2 seconds. Here, an

PLOS COMPUTATIONAL BIOLOGY Excitability switch due to prolonged stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008510 May 27, 2021 5 / 25

https://doi.org/10.1371/journal.pcbi.1008510


additional stable fixed point (i.e., a stable voltage) appears in parallel to the spiking mode for

the same size of input current; the system becomes bistable. Which of the two attractors (regu-

lar spiking or a fixed voltage) the system converges to depends on the initial conditions and/or

noise in the system. In Fig 1, initial conditions are such that the neuron keeps up regular spik-

ing because concentration changes are not substantial enough to reach the switch in spiking

dynamics (the emergence of an additional fixed point attractor). When ionic concentration

changes are substantial enough they reach the switching point, and the system displays bistable

Fig 2. Response of the model to a step current with colored noise filtered at 500Hz (mean input is 1μA/cm2 and

standard deviation 1.05μA/cm2, shown above). A. Voltage trace (membrane potential) of the model responding to a

noisy step current (Top of panel). B. Zoom of the voltage trace from panel A at the beginning and towards the end of

stimulation showing the evolution of the reversal potentials for sodium (orange) and potassium (blue), as in Fig 1. C.

Phase portraits of the steady state of the fast spike generating sub-system, when imposing the average reversal

potentials for sodium (orange) and potassium (blue) of panel B as parameters. Vertical axes show the voltage and the

horizontal axes show the potassium current gating-variable (nK). Empty dots are the unstable nodes, filled dots the

stable nodes, and the orbits are stable limit cycles. D. Evolution of the maximum voltage of the system attractors.

Empty dots represent the unstable nodes, filled dots the stable nodes, and the black line denotes the maximum voltage

of the stable limit cycles (action potential peak).

https://doi.org/10.1371/journal.pcbi.1008510.g002
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dynamics (at *1.2 sec). In the presence of noise (like in Fig 2) the system continuously

receives perturbations and, therefore, when entering the bistable dynamics only temporarily

settles onto one of the two attractors before being kicked into the other one. This dynamical

state results in a long-lasting, stochastic back-and-forth between periods of spiking and silence

(Fig 2). The transition from single attractor to bistability *1.2 seconds after stimulation onset

is confirmed in the corresponding phase portraits of the fast system (Fig 2C).

Bistable vs. uni-stable states lead to qualitatively very different responses. The natural ques-

tion that follows is: what generates the bistability? Mathematically, the bistability is caused by

the emergence of a separatrix attached to a saddle point, i.e., a trajectory in phase space that

separates the so-called basins of attraction of the two attractors. Depending on which side of

the separatrix the system is located at a given point in time, it will converge towards the respec-

tive attractor unless noise or an input fluctuation kick the system across the separatrix to the

other side. Dynamics in this region are strongly affected by the reversal potential for potassium

(see Fig 2C). Therefore, we next systematically explored the effects of extracellular potassium

on the fast system.

Consequences of extracellular potassium accumulation

Dynamical systems analysis. We analyzed the dynamics of the fast system (i.e., the neu-

ron model with fixed ionic concentrations) for different values of extracellular potassium. Fig

3 shows the resulting two-parameter bifurcation diagram, which depicts the dynamical state as

a function of extracellular potassium concentration and size of the applied input current (for

details see the Materials and methods section). Four different dynamical regimes can be found:

a silent subthreshold state, a regularly spiking state, a bistable state, and a silent state of depo-

larization block (when the model is depolarized so strongly that spiking cannot occur any

more).

Let’s look at the diagram (Fig 3) in more detail, starting at lower extracellular potassium val-

ues (i.e., the bottom of the diagram). Depending on the input strength, the system here either

remains subthreshold or exhibits regular firing. The transition to spiking corresponds to a

SNIC bifurcation (See Supplementary material S1 Fig). When elevating the levels of extracellu-

lar potassium (to *12 mM), the situation changes. Here, an additional (bistable) region

appears between the subthreshold and the regular spiking areas. The transition is marked by a

codimension-two bifurcation called a saddle-node loop (SNL) [22]. The width of the bistable

region increases for higher values of extracellular potassium concentration (dashed lines in Fig

3). The firing threshold corresponds to the left border of the bistable region. The transition to

spiking now corresponds to a HOM bifurcation. In the bistable zone, in the presence of noise,

intermittently-interrupted firing can be observed. Moreover, at elevated extracellular potas-

sium values, the depolarization block (as the name suggests, usually occurring at very large

depolarization levels) can be observed at progressively lower input currents. At very high

extracellular potassium values, it directly borders the bistable zone.

The full system (with variable concentrations and pump activity), as analyzed in Fig 2,

“lives” in the bottom part of the bifurcation diagram (Fig 3) at the onset of the stimulation, as

here the values of extracellular potassium are moderate. Over time, extracellular potassium

accumulates and the switching point to HOM dynamics is passed. Here, the bistable range is

entered and the burst-like, intermittently interrupted firing mode can be observed in Fig 2 due

to the presence of noise. The diagram shows that extracellular potassium is the bifurcating

parameter that leads to the qualitative switches in spiking.

Experimental manipulation of extracellular potassium. To experimentally test whether

elevated levels of extracellular potassium can induce HOM dynamics of action potential
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generation, a verification of the model-predicted intermittently-interrupted burst-like firing

mode suggests itself. In vitro, activity-driven accumulation of extracellular potassium is diffi-

cult to reproduce due to the continuously perfused bathing solution that constrains extracellu-

lar ion concentrations. We therefore recorded current-induced activity in mouse cortical

pyramidal neurons exposed to different fixed concentrations of extracellular potassium.

Action potentials were induced by constant-current stimulation in baseline conditions (3 mM

extracellular potassium), and after increasing the concentration of extracellular potassium to

10 or 12 mM (see Materials and methods section). Neurons were stimulated with somatic cur-

rent injection sufficient to maintain the membrane potential close to spiking threshold (see

first panel of Fig 4), which in terms of dynamical system analysis, is close to limit cycle onset

and for HOM dynamics, also to the bistable region, see Fig 3.

Our experimental results support the model prediction portrayed in Fig 3, in which an

increase in extracellular potassium concentration switches the spike generating mechanism.

When extracelluar potassium is low (3 mM), the neuron shows very rhythmic (regular) action

potential generation over time (see Fig 4 upper panel). In contrast, when extracellular

Fig 3. Characteristic phase portraits in the extracellular potassium / applied current space. Different combinations

of extracellular potassium and input current yield different phase portraits of the fast spike generating sub-system. A.

The background color represents the characteristic response of that area; Subthreshold or depolarization block: White;

Bistable: Dashed; Spiking: Gray. The different regions are separated by the disappearance of the stable node (gray line)

and the limit cycle onset (black dots). Examples of phase portraits in each region of the extracellular potassium—input

current plane are portrayed; B. subthreshold, C. bistable, and D. spiking state.

https://doi.org/10.1371/journal.pcbi.1008510.g003
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potassium is increased to 10 or 12 mM, action potential generation in the same neuron

becomes irregular (see Fig 4 lower panel). In 7 out of 8 neurons tested, we observed an increase

in spiking irregularity when potassium levels were increased from 3 mM to 12 mM (see sup-

plementary material Figs F and G in S3 Text). In 3 out of 10 neurons tested, we observed an

increase in spiking irregularity when potassium levels were increased from 3 mM to 10 mM

(see supplementary material Fig I in S3 Text), confirming a crucial prediction of the model. To

Fig 4. Rodent cortical neurons exposed to high extracellular potassium show intermittently interrupted firing.

Example cell; Response of a neuron to a just suprathreshold stimulus in low (3 mM; Top) and high (10 mM; Bottom)

extracellular potassium conditions. The suprathreshold current is taken as the current needed to elicit the first spike

when injecting a ramp with a shallow slope. The small spikelets visible in the current trace are artifacts resulting from

limited capacitive coupling of two channels at the digitizer (i.e., of the action potentials present in the voltage trace),

and are not reflective of current injected into the neuron.

https://doi.org/10.1371/journal.pcbi.1008510.g004
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rule out that irregularity came from network effects, we repeated the experiment while block-

ing synaptic input, and in 8 out of 12 neurons we observed an increase in spiking irregularity

(Fig H in S3 Text). We hypothesize that not all neurons exhibited the same qualitative behavior

because the distance to the switching point depends on other parameters as well [22] and

hence is likely to be variable across cells [23]. It remains to be determined whether the activity

of a single neuron generates a sufficient increase in [K+]o to induce the SNL bifurcation. Pre-

sumably such transitions would be more likely when there are multiple neurons activated

simultaneously, which would generate a larger [K+] flux to the extracellular space.

Consequences of intracellular sodium accumulation

The dynamical system analysis described above provides a mechanistic explanation for the

emergence of intermittently-interrupted firing. However, the only concentration we varied for

the analysis was that of potassium ions. Yet long periods of spiking accumulate both extracellu-

lar potassium and intracellular sodium ions. In the following section, we therefore describe

physiological features that are altered by sodium accumulation. The space of sodium concen-

trations is explored to determine whether our results described above regarding extracellular

potassium accumulation hold up under conditions of parallel intracellular sodium

accumulation.

Sodium accumulation shapes two main properties of spike generation: spike amplitude and

spiking threshold, which are determinant features for information transmission and encoding,

respectively.

Intracellular-sodium-dependent spike amplitude reduction. As outlined above, action

potential amplitude is reduced as intracellular sodium accumulates during spiking (Figs 1 and

2), reducing ENa and hence the driving force for sodium current. This effect is also reflected in

the phase portraits (Fig 2C). The height of the stable limit cycle is squeezed during stimulation,

correlating with the ENa reduction (Fig 1A). We tested this model prediction in mouse cortical

neurons in vitro during extended periods of current-induced spiking.

Extended activation of rodent cortical neurons led to a slow spike amplitude reduction (see

Supplementary material Fig D in S2 Text). Rodent cortical neurons were activated for 40 sec-

onds using short (2 ms) depolarizing current pulses (3 nA) generated at 40 Hz. These neurons

exhibited a slow and progressive reduction in spike amplitude that was best fit by a double

exponential decay with an average fast time constant (τfast) of 480 ms and an average slow time

constant (τslow) of 17.7 s (n = 50) (see supplementary material Fig E and Table A in S2 Text for

details). The observed slow spike amplitude decay fits the prediction of the model, given that

sodium accumulation occurs on the order of seconds, and the faster time scale coincides with

the previously reported effects of sodium inactivation [13, 24].

More than one process contributes to spike amplitude decay: a fast process (sodium chan-

nel inactivation) and a slow process (sodium accumulation). In order to disentangle the contri-

bution of the two, we punctuated prolonged somatic current application with progressively-

longer (100 to 1000 ms) breaks sufficient to reset (deinactivate) sodium channels, but not long

enough for the Na-K-ATPase to clear activity-dependent increases in intracellular sodium (Fig

5). We observed a progressive reduction in action potential amplitudes that was not rescued

by hyperpolarizations as long as one second. Further, the slow time constant of spike ampli-

tude decay was found to coincide with that measured in the previous protocol, τslow = 15.7s
(Fig E, and Tables A and B in S2 Text). These observations suggest that the slow component of

amplitude decay cannot result from sodium channel inactivation, and instead is likely driven

by intracellular sodium accumulation and the resulting decrease in ENa.
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Intracellular sodium accumulation shifts the spiking threshold in the model. Given

that an accumulation of intracellular sodium ([Na+]i) is likely to affect spike generation, we

next systematically evaluated the dynamical regimes identified in the bifurcation diagram (Fig

3) at different, fixed [Na+]i concentrations.

We found an identical bifurcation structure and splitting into different dynamical regimes

for a wide range of [Na+]i levels, with the exception of a shift towards higher input currents

with larger [Na+]i (Fig 6). In other words, as [Na+]i accumulates, the spiking threshold is

shifted to higher inputs. This shift can be attributed to the dependence of the Na-K pump on

[Na+]i; accumulation of [Na+]i thus strengthens the hyperpolarizing pump current, counter-

acting the input current and reducing the net excitatory drive. Consequently, the bistable

region was shifted along the current axis. Neither a significant change in the area of the bistable

region, nor in the location of the transition point towards bistability (i.e., the SNL bifurcation)

on the [K+]o axis were observed.

Consequences of simultaneous [Na+]i and [K+]o changes

The effect of ionic concentrations on neuronal voltage dynamics unfolds via changes in the

respective reversal potentials, ENa and EK. Fixing the input current, we can summarize how the

spiking regime depends on the concentrations ([Na+]i and [K+]o) in a plot that depicts the

spiking regime (reached in the steady-state of the fast subsystem) as a function of the two cor-

responding reversal potentials (Fig 7). The regime was determined via the phase plane of each

system (Fig 3B–3D) and can be classified as bistable, regularly spiking, or stable-resting (i.e.,

either subthreshold or in depolarization block). To relate the reduced fast subsystem with the

complete system including slow concentration dynamics, three example trajectories of the

complete system at different initial conditions in the space of reversal potentials are shown on

Fig 5. Activity-dependent decrement in action potential amplitudes. A. Membrane potential of a rodent cortical

neuron (lower trace), subjected to prolonged DC current punctuated by brief hyperpolarizing pulses with different

durations (top trace). B. Plot of peak voltage for each action potential shown in A. Note that action potential peaks fail

to recover after even 1 second long breaks in current stimulation. C. Overlay of the first and last action potentials

shown in A (aligned at 5 ms).

https://doi.org/10.1371/journal.pcbi.1008510.g005
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top of the steady states of the fast subsystem. Each trajectory represents the evolution of ionic

concentrations during 10 seconds of stimulation with a fixed current in the presence of noise

(as in Fig 2). The corresponding voltage traces are presented for comparison (Fig 7B–7D).

Traces that started at a higher firing rate (and, consequently, were accompanied by larger

changes of ionic concentrations) moved farther than the ones that started out at a lower rate.

Which spiking regime a model neuron enters during stimulation can be read off the corre-

sponding trajectory in the complete system. The trajectory depends on the initial ionic concen-

trations at stimulation onset. A neuron starting with a very low EK yet high ENa tends to move

from regular spiking either to a resting state or to a lower firing rate within the regularly spik-

ing regime (yellow trajectory in Fig 7D). Biophysically, spike-frequency adaptation results

from the activity of the electrogenic pump, which generates a progressively larger hyperpolar-

izing current as levels of intracellular sodium increase. Trajectories initialized at low EK do not

reach the bistable region. They tend to a quiescent mode, remaining close to the border to reg-

ular firing. If the initial EK is more elevated, however, a neuron that starts in the regularly spik-

ing regime can reach the bistable region (orange trajectory in Fig 7C, similar to the example

trace in Fig 2). Very high initial extracellular potassium concentrations promote depolariza-

tion block, but, depending on initial conditions, the bistable regime may also be encountered

as an intermediate state (magenta trajectory in Fig 7B).

The three example trajectories displayed in Fig 7, illustrate that neurons with identical ion

channels and stimulation can generate extremely different responses depending on the extra-

cellular environment. Recent spiking activity of neurons alters their response, even when stim-

ulation is unchanged; the rate of change of ionic concentrations strongly depends on neuronal

firing rate. Consequently, neurons receiving strong and prolonged stimulation are more likely

to experience dynamical regime changes due to ionic accumulation than neurons with weaker

stimulation.

Discussion

In this study, we show that activity-dependent changes in ionic gradients during prolonged

neuronal activation can qualitatively change the underlying neuronal dynamics. This is most

Fig 6. Extracellular-potassium- and intracellular-sodium-dependent bistable area. Same bifurcation diagram

portrayed in Fig 3 for different intracellular sodium concentrations [Na+]i. [Na+]i controls the input current required

to transition from resting to spiking regimes. [Na+]i accumulation shifts the bistable region to higher current values.

https://doi.org/10.1371/journal.pcbi.1008510.g006
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apparent when spiking patterns change from regular firing to the intermittently interrupted

mode as extracellular potassium accumulates. Intracellular sodium accumulation in contrast

mediates a long-lasting spike-frequency adaptation via engagement of the sodium potassium

pump and lowers spike amplitude by its effect on the reversal potential ENa.
We claim that for highly active neurons, an assumption of stationarity of neuronal dynam-

ics is not precise; neurons are intrinsically affected by their recent electrical activity, beyond

any other changes that may arise from network feedback. Prolonged periods of spiking activity

Fig 7. Consequences of simultaneous [Na+]i and [K+]o slow dynamics on the fast spike generating dynamics. A.

Characteristic response of the reduced model (receiving a constant input current stimulus of 1μA/cm2) along the

reversal potential plane. The characteristic response can be split in three categories; stable-resting state (purple areas in

the lower left corner and top of the graph, representing the subthreshold regime and depolarization block,

respectively), the spiking state (green), and the bistable state (yellow). Three example trajectories of the complete

system (Including the slow activity-dependent concentration dynamics) simulated during 10 seconds with an irregular

input (mean of 1μA/cm2 and standard deviation of 1μA/cm2). Initial conditions represented by a circle, and the state of

the system 10 seconds later with a triangle. B. Membrane potential trace of the trajectory with initial conditions EK =

−55.1mV and ENa = 66.7mV displayed in A. Left panel shows the first 400ms of simulation (marked with a circle), and

the right panel shows the last 400ms out of the 10 seconds simulation (marked with a triangle). C. Membrane potential

trace of the trajectory with initial conditions EK = −63.9mV and ENa = 75.7mV displayed in A. B. Membrane potential

trace of the trajectory with initial conditions EK = −74.2mV and ENa = 69.3mV displayed in A.

https://doi.org/10.1371/journal.pcbi.1008510.g007
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result in modifications of the intracellular and extracellular concentrations of sodium and

potassium respectively, and triggers homeostatic mechanisms that regulate ionic gradients at

time scales much slower than action potential genesis. The non-stationarity of neurons bears

consequences for neural computation.

Switching to the HOM firing regime

We demonstrate that neuron models that start out with SNIC dynamics (i.e., the classical type

I dynamics that has been thought to underlie the firing of most cells with a smooth onset of fir-

ing at threshold) can flip to HOM dynamics only seconds after the onset of the spike-inducing

stimulation. This transition most obviously manifests in the spiking pattern, which turns from

a regular firing mode to an intermittently interrupted one. Our bifurcation analysis shows that

an accumulation of extracellular potassium drives this change, instantiating a bistability of the

membrane potential. This finding is consistent with previous modelling work that studied the

effect of extracellular potassium concentration changes [8, 25–27].

In this particular setting, an increase in the Nernst potential for potassium (EK) and the

Nernst potential for the leak (EL) by constraining the magnitude of the potassium (IK) and leak

(IL) currents, respectively, shift the spike (limit cycle orbit) towards more depolarized mem-

brane potentials and farther from the resting state (stable node). When both attractors are suf-

ficiently far from each other, both can coexist. The stable node does not lose its stability due to

the hyperpolarizing current that is received by the neuron model, either via an external input

(Fig 3), or via the hyperpolarizing pump current (Fig 6). Interestingly, other parameters such

as temperature and capacitance can also induce the same bistability reported here [22] via a

different biophysical mechanism, yet an identical bifurcation structure.

In the presence of a fluctuating input (be it noise or signal), the bistability renders neurons

susceptible to switches between the two stable states, giving rise to an irregular, intermittently

interrupted firing pattern of short firing phases and pauses of different durations. It has been

shown that combining multistable systems, similar to the one reported here, with noise can

have unexpected information transmission consequences such as “inverse stochastic reso-

nance” [28], as well as drastic alteration in spiking statistics [29].

Long periods of silence that can be prominent in this mode resemble the ones observed

during deterministic bursting reported by [8, 9, 27, 30–33]. In contrast to the deterministic

bursting reported by the previous authors, however, the burst-like firing we describe here is

driven by the input fluctuations and the bistable state. Thus, neurons in an environment with

high extracellular potassium concentration, promoting HOM dynamics, may be more sensi-

tive to input variability.

The SNIC and the HOM regimes yield very different neuronal encoding properties. For

instance, the relationship between the input current and the neuronal firing rate (i.e., the gain)

depends on the dynamical regime. The gain function of a neuron in the SNIC regime is con-

tinuous, the firing rate of such neuron is a continuous function of the input current. The gain

function of a neuron in the HOM regime is discontinuous when irregular input is injected,

meaning that the firing rate does not smoothly increase as a function of the input current but

transitions from no spikes to high frequency spiking abruptly. The phase response curve

(PRC), which captures the temporal sensitivity to inputs, also differs between the two regimes.

In the SNIC regime, neurons display symmetric PRCs. As PRC symmetry predicts the syn-

chronization of the neurons in the network [22, 34, 35], the switch in firing regime and the

underlying bifurcation must also impact the propensity of the neuron to synchronize with

other cells in its local network and beyond. Encoding capabilities (such as the profile of fre-

quencies transmitted) are likely to be affected, as they also depend on the PRC characteristics.
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Interestingly, intracellular sodium accumulation only quantitatively modulates the qualita-

tive change in spiking regime, underlining the importance of potassium accumulation in this

process. The effect of extracellular potassium on neuronal activity has been widely studied

[36–38]. Experimental observations have found extracellular potassium dependent bursting

[38] and its influence on other dynamical features [25, 26, 39]. While a bistability has been pre-

viously observed “in passing” [25, 26], we report a systematic effect and provide mechanistic

explanations for the activity-driven changes.

Interpreting these results, we speculate that activity-dependent extracellular potassium

accumulation can contribute to, or even induce, epileptiform activity as it has been proposed

before [32]. Furthermore, epileptiform activity can be induced by manipulating extracellular

potassium concentrations [40]. Both the bursting nature of HOM dynamics [41, 42], as well as

their comparatively high susceptability to synchronization in inhibitory networks because of

the HOM-characteristic PRC [22], favour synchronized, hyperexcitable states. In vivo, Singer

and Lux observed that extracellular potassium accumulates in the visual cortex when a rapidly

changing visual stimulus is presented to the cat’s retina [4]. Remarkably, similar visual stimuli

elicit reflex seizures in 4–7% of human epilepsy patients [43]. Reflex seizures could be pro-

moted by extracellular potassium accumulation occurring throughout the visual cortical

region that is activated by visual stimulation.

Indeed, the observed drastic consequences of potassium accumulation might occur more

frequently in vivo than in vitro. In vitro, extracellular potassium concentrations are clamped.

The tissue is perfused with a solution that has a fixed [K+]o concentration, analogue to an infi-

nite buffer. In vivo, however, extracellular potassium concentration undergoes stimulus-

induced changes. In the cat visual cortex, for instance, extracellular potassium accumulates

when a graded stimulus is presented to the cat’s retina [4]. Regarding the universality of the

dynamical changes described here, we expect these to generalize beyond the specific model

choice of this study. Specifically, the bistability of conductance based models arises from a

slow-down of hyperpolarization, which pushes the limit cycle trajectory to approach the saddle

node through a very attractive path (i.e., a strong manifold). This feature can be expected in

any neuron model that starts out with SNIC dynamics and ubiquitously favours a switch to

HOM dynamics [22, 44]. The exact reversal potential at which the bistability is induced could

be shifted by other parameters such as the leak conductance (refer to Fig A in S1 Text). Thus,

the exact switching point between the two dynamical regimes can vary between neurons, as

their properties are diverse [23, 45]. Therefore, we expect that the exact location of the switch-

ing point (i.e., the potassium concentration at which the switch is to be expected) will depend

on cellular characteristics, both in neuron models as well as in neurons in vivo. Along these

lines, milder extracellular potassium accumulations could suffice to induce the transition in

cells with a lower critical value, singling out cells with a higher likelihood to switch their

dynamics.

Attenuation of the spike amplitude

Next to the very promiment change in spiking regime, accumulation of ions are also reflected

in the shape of action-potentials, namely the reduction of their peak amplitudes. Such attenua-

tion is a regular feature observed in electrophysiological recordings. It has, however, been pre-

viously attributed to inactivation of sodium channels [14, 24]. Our data now suggest that

activity-induced changes in the sodium reversal potential contribute substantially to the atten-

uation of spike peaks, especially during long periods of activity, as they far outlast the effects of

inactivation. Our deinactivation experiments with hyperpolarizing current steps support this

hypothesis and confirm that the larger and slower component of spike amplitude reduction
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persist even when sodium channel inactivation is largely diminished. Moreover, the timescales

over which ENa and peak amplitudes are reduced are close to identical for long recordings.

Concentration-change induced spike-frequency adaptation

Spike-frequency adaptation resulted from an activity-dependent increase in the hyperpolariz-

ing sodium pump current (again mediated by sodium accumulation). This observation was

previously reported for leech mechanoreceptor neurons [46] as well as for rodent cortical neu-

rons [5]. The later study [5] demonstrated not only that the pump current produces a slow

afterhyperpolarization (AHP) as a consequence of neural activity, but that its time-course mir-

rors the time-course of intracellular sodium decay. Results from our model are consistent with

this finding.

Interestingly, for both spike amplitude attenuation and spike frequency adaptation, ion-

channel-mediated equivalent effects on short timescales are well known. The dynamics of con-

centrations seem to smoothly extend these effects in time.

Limitations

We note that our model does not consider extracellular uptake of potassium by glial cells. The

latter maintain the ionic homeostasis of the extracellular environment and serve as extracellu-

lar potassium buffers [47]. Experimental work Dallerac et al. [48] has shown that glial buffering

of extracellular potassium saturates when changes are relatively fast. Yet the presence of glial

cells in vivo is likely to slow the timescale of potassium accumulation. Another aspect that we

did not include in the model is spatial ionic diffusion, which implies the assumption of a peri-

odic boundary, meaning that all the neighboring neurons are undergoing the same transition

in a synchronized fashion. Thus, including spatial diffusion would slow down and probably

also shorten the periods of high accumulation. The effects described here are expected to hold

on the order of seconds after activity onset, but given the lack of homeostatic mechanisms, the

model does not account for ionic concentration recovery. The predictions presented here can

be expected to arise most prominently in pathological conditions, be it glial dysfunction,

injury, or energy-deprivation that impairs the pumps and thus facilitates accumulation of both

extracellular potassium and intracellular sodium.

Conclusion

Our analysis shows that a consideration of the slow ionic concentration dynamics inherent to

in vivo brain activity unravels the nonstationary nature of neurons as computational units.

Cortical neurons are typically grouped as either intrinsically bursting, regular spiking, or fast

spiking [49]. Here, we reveal a more dynamic situation: by accumulation of ions during pro-

longed activity, regularly spiking neurons may transition to an intermittently firing mode, or

even resemble intrinsically bursting neurons, via activity-induced switches in the underlying

bifurcation structure of its dynamics. Neuronal firing patterns are dynamical even in the

absence of network changes and strongly depend on the concentrations in the extracellular

and intracellular medium. In particular, HOM-type dynamics are likely to be induced in situa-

tions of impaired ionic homeostasis, such as glial pathologies or reduced energetic supplies,

affecting neural encoding and potentially the network state.

Materials and methods

With the purpose of understanding the effect of different ionic concentrations on the neuron’s

response, we used two approaches: simulations of a single-neuron mathematical model with
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dynamic concentrations, and whole-cell recording of rodent cortical neurons while perfusing

the medium to control the extracellular ionic concentrations.

Ethics statement

Physiological experiments were approved by the Institutional Animal Care and Use Commit-

tee of Dartmouth College.

Computational model

Our goal is to understand the effects of ionic concentration dynamics on the excitability of

neurons. Two ingredients are needed: an excitable system (capable of generating spikes) for

which we use the Traub-Miles formulation [50], and a description for the slow ionic concen-

tration dynamics. For the excitable system we chose the Traub-Miles model because it is one

of the simplest mammalian models with type I dynamics (which display continuous and

smooth FI curves). A summary scheme of the spike kinetics (Eqs (1)–(4)) and the concentra-

tion dynamics (Eqs (9)–(11)) is depicted in Fig 8. The action potential dynamics at a mem-

brane is governed by a current balance equation involving the following ionic currents,

Cm
dV
dt
¼ Iapp � INa � IK � IL � Ipump: ð1Þ

INa ¼ gNam3
NahNaðV � ENaÞ ð2Þ

IK ¼ gKn4
KðV � EKÞ ð3Þ

IL ¼ gLðV � ELÞ ð4Þ

Fig 8. Summary of the dynamics represented in the model. The figure illustrates the flux of ions through the fast

sodium (INa), the delayed rectifier IK spike generating currents, the Na-K-ATPase pump, and through the neuronal

membrane (IL). The mathematical representation of the currents flowing through proteins can be found in Eqs (2), (3),

(8) and (4). The change of the membrane potential due to those currents is represented by Eq (1).

https://doi.org/10.1371/journal.pcbi.1008510.g008
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EK ¼
RT
F

ln
½Kþ�o
½Kþ�i

� �

ð5Þ

ENa ¼
RT
F

ln
½Naþ�o
½Naþ�i

� �

ð6Þ

The leak potential (EL) is described as an approximation of the Goldman–Hodgkin–Katz

(GHK) equation for the membrane potential;

EL ¼
RT
F

ln
PK½K

þ�o þ PNa½Na
þ�o

PK½K
þ�i þ PNa½Na

þ�i

� �

: ð7Þ

Given that we don’t consider chloride dynamics, IL ¼ ILK þ ILNa . Where

ILK ¼ gLPKðV � EKÞ, and ILNa ¼ gLPNaðV � ENaÞ.

Ipump ¼

0 ½Naþ�i � ½Na�s
Imaxp

1þ expðkNað½Na
þ�i � ½Na�sÞÞ

½Naþ�i > ½Na�s

8
><

>:
ð8Þ

The pump model in Eq (8) constitutes a homeostatic mechanism that counteracts the

movement of ions due to chemical gradients during neuronal spiking activity. Specifically, the

sodium potassium pump (Na-K-ATPase) pumps 3 sodium ions out of the cell, while 2 potas-

sium ions enter the cell every pump cycle. The pump is represented by sigmoidal function of

the intracellular Na+ concentration in Eq (8) [31, 51]. Imaxp is the maximum pump rate which

was chosen such that the neuron does not run into depolarization block for a broad range of

stimulus intensities. Here, the pump’s dependence on potassium and on voltage is ignored.

This is an analog of the α3 isoform of the Na-K-ATPase, which reacts very strongly to intracel-

lular sodium changes, but is rather insensitive to potassium in the range we study ([K+]o 4–20

mM) [17].kNa is the sodium sensitivity of the pump to sodium, and [Na]s is the target sodium

concentration. Both values were set to 0.1/mM and 20 mM respectively, to match the range of

highest pump α3 affinity to intracellular sodium [18].

Other modelling studies use pump models that resemble more closely the Na-K-ATPase α2

isoform [6, 11, 12]. The main difference between both isoforms is that α2 has a much higher

sensitivity to extracellular potassium and membrane potential than α3 isoform [18]. Develop-

mental studies of isoform expression in the brain have shown that neuronal cells from new-

born mice express mainly α2, whereas adult animals express mainly α3 [52]. And given that

our our physiological experiments were performed in neurons from adult mice, we found α3

isoform more appropriate.

To understand how our pump choice determines the qualitative results presented here, we

performed a bifurcation analysis to the model described above with a pump expression that

resembles pump isoform α2, refer to Fig C in S1 Text. The main difference between the pump

expression in Eq 8 and the one used to resemble α2 (Fig C in S1 Text), is the pump sensitivity

to extracellular potassium. Fig C in S1 Text illustrates how the pump sensitivity to [K+]o shifts

the spiking threshold towards higher input currents as [K+]o accumulates.
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The concentration dynamics is influenced by the transmembrane currents due to ion chan-

nels and the pump as follows.

d½Naþ�i
dt

¼
r

F
ð� 3Ipump � INa � ILNaÞ ð9Þ

d½Kþ�i
dt
¼
r

F
ð2Ipump � IK � ILK Þ ð10Þ

d½Kþ�o
dt
¼ �

d½Kþ�i
dt

Voli
Vole

ð11Þ

Where ρ represents the surface to volume area, and here is set to 4000/cm [31],
Voli
Vole

is set to 0.2

(note that this is a very small value mainly because we are not including extracellular regula-

tion mechanisms, thus we assume glial cells, blood vessels, myelin, and other structures are

part of the extracellular volume. Previous experimental measurements yield a
Voli
Vole

of approxi-

mately 0.4 [53], however we decreased it to compensate for the lack of other homeostatic

mechanisms and allow reproducibility of experimental observations. All expressions and

parameters used in the simulations can be found in Tables C-F in S4 Text.

Time scale separation. Simulating the model dynamics with an ODE solver is very time

consuming (this was done for voltage traces in Figs 1, 2 and 7). Therefore, in order to charac-

terize the system’s response to a broad set of initial conditions using shorter simulation times,

we used time scale separation for the analysis. This technique is particularly useful for our set

of equations because the system contains variables changing in very slow and very fast time

scales.

Ionic concentration dynamics change with a time scale in the order of seconds, while spike

generating currents are changing in the order of milliseconds. Thus, we can split the system

into two subsystems. The fast subsystem (Eqs 1, 2, 3, 4, 7 and 8) receives ionic concentrations

([Na+]i, [K+]i, [K+]o,) as fixed parameters. For each parameter combination the steady states

are portrayed in phase portraits (See Fig 2 bottom panel). A parameter combination that yields

a phase portrait containing only one stable node is characterized as resting state, one contain-

ing only a stable limit cycle is characterized as regular firing, and one with a stable node and a

stable limit cycle is characterized as bistable (See Fig 7A).

Bifurcation analysis. The numerical bifurcation software AUTO [54] was used to find the

limit cycle onset (spike onset), the disappearance of the steady state, and the hopf bifurcation

(depolarization block). The analysis was repeated for different ionic concentrations (See in

Figs 3 and 6). First a particular combination of ionic concentrations is chosen and the steady

states of the dynamical system with the combination of parameters are calculated with a regu-

lar ODE, secondly the applied current is used as the continuation parameter. AUTO, detects

the stable/unstable nodes and limit cycles, it also points where the stability of such objects

changes (bifurcations). For this work the most relevant ones are; the points where the stable

node transitions from being stable to unstable (saddle-node bifurcation), the point where a sta-

ble limit cycle orbit emerges (HOM), and the point where the stable limit cycle disappears

(Hopf bifurcation). Such points can be continued along all the model parameters efficiently in

AUTO. Fig 6 is constructed by continuing the 3 points mentioned above, in the extracellular

potassium—applied current plane.
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Experimental protocol

Physiological experiments were approved by the Institutional Animal Care and Use Commit-

tee of Dartmouth College. Female and male adult (3- to 4-month-old) C57BL/6J mice were

bred in facilities accredited by the Association for Assessment and Accreditation of Laboratory

Animal Care and maintained on a 12h-12h light-dark cycle with continuous free access to

food and water.

On the day of experiments, mice were anesthetized with vaporized isoflurane and decapi-

tated, with brains rapidly removed into an artificial cerebral spinal fluid (aCSF) composed of

(in mM): 125 NaCl, 25 NaHCO3, 3 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 6 MgCl2 and 25 glucose

(saturated with 95% O2–5% CO2). Coronal brain slices (250 μm thick) of the frontal cortex

were cut using a Leica VT 1200 slicer and stored in a holding chamber filled with aCSF con-

taining 2 mM CaCl2 and 1 mM MgCl2. Slices were maintained in the holding chamber for 45

minutes at 35˚C, and then at room temperature (*25˚C) until use in experiments.

Slices were transferred to a recording chamber on a fixed-stage microscope (Olympus), and

continuously perfused (* 7 ml/min) with oxygenated aCSF heated to 35–36˚C. Layer 5 pyra-

midal neurons in the prelimbic cortex were visually targeted using a 60X water-immersion

objective, and whole-cell recordings made with patch pipettes (5–7 MO) filled with a solution

containing the following (in mM): 135 potassium gluconate, 2 NaCl, 2 MgCl2, 10 HEPES, 3

Na2ATP and 0.3 Na2GTP, pH 7.2 with KOH. Data were acquired using a BVC-700 amplifier

(Dagan Corporation) connected to a HEKA 8+8 digitizer or an ITC-18-USB digitizer driven

by AxoGraph software (AxoGraph Scientific; RRID: SCR—014284). Membrane potentials

were sampled at 50 to 100 kHz and filtered at 5 or 10 kHz. Voltage measurements were cor-

rected for a +12 mV liquid junction potential. Concentrations of KCl (3, 10, or 12 mM) and

NaCl (125, 118, or 116 mM, respectively) were adjusted as indicated to test the impact of extra-

cellular potassium concentration on action potential dynamics. In some experiments fast syn-

aptic transmission was blocked with continuous bath-application of the AMPA receptor

blocker DNQX (25 μM; Tocris), the NMDA receptor blocker D-AP5 (25 μM; Tocris), and the

GABAA receptor blocker picrotoxin (50 μM; Tocris).

Data analysis

Data analysis was done in python.

Spiking irregularity. Spiking irregularity is measured as

CV ¼
s

m
; ð12Þ

where σ is the standard deviation of the interspike interval (ISI), and μ is the mean. In the

experiment in which synaptic input was blocked we excluded cells that showed patterns differ-

ent from regular type I neurons in the baseline condition to rule out pathological firing

(CV> 0.5).

Time scale of spike amplitude decay. The fast and the slow components of the spike

amplitude decay were calculated by fitting the time dependent spike-voltage-peak to a double

exponential function,

Dfast exp �
t
tfast

� �

þ Dslow exp �
t
tslow

� �

þ Dss: ð13Þ

The distribution of the parameters that yield the best fit across all traces measured are

shown in Fig E in S2 Text, and Tables A and B in S2 Text.
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Supporting information

S1 Fig. Transition from rest to spiking (limit cycle onset bifurcations) for different extra-

cellular potassium concentrations. From bottom to top; SNIC (saddle-node on invariant cir-

cle): Purple, SNL (Saddle-node-loop): Blue; HOM (saddle homoclinic orbit): Green. In the

SNIC regime the stable node collides with an unstable node, giving rise to a saddle node. The

limit cycle orbit passes through the saddle node, the trajectory leaves the saddle node along the

semi-stable manifold. After one period trajectory approaches the saddle node along the same

semi-stable manifold. At the SNL point, trajectories leave the saddle node along the semi-stable

manifold as in the SNIC case, but after one period those trajectories approach the saddle node

along the strongly stable manifold. Notice that the SNL orbit is smaller than the SNIC orbit,

and has a shorter period. In the HOM regime a stable node and a limit cycle coexist. External

perturbations shift the state of the system from the stable node to the attraction domain of the

limit cycle attractor.

(TIFF)

S1 Text. Fig A. Changes in the conductance of the delayed rectifier potassium current (gK)

distorts the bistable region portrayed in Fig 3A. Same bifurcation diagram portrayed in Fig

3A for different gK. Here the curves correspond to the delayed rectifier conductance of gK; 100,

200, 300, and 340 msiemens/cm2. As gK increases, the limit cycle onset, and the depolarization

block lines are shifted towards higher extracellular potassium concentrations. Fig B. Changes

in the leak conductance (gL) distorts the bistable region portrayed in Fig 3A. Same bifurca-

tion diagram portrayed in Fig 3A for different gL. Here the curves correspond to leak conduc-

tances of gL; 0.01, 0.1, 0.5, and 1.0 msiemens/cm2. As gL increases, the bistable region is shifted

towards higher extracellular potassium concentrations. Another effect of more leaky neurons,

is that the dependence of the spiking threshold on extracellular potassium is more prominent.

Fig C. Extracellular potassium and [K+]o pump’s sensitivity (Ksens) dependent bistable

area. Same bifurcation diagram portrayed in Fig 6 for different [K+]o pump’s sensitivity. Here

0,0.1,0.2 and 0.5 1/mM sensitivities to [K+]o (Ks) are portrayed and [K+]s is fixed to 4mM for

all curves, the expression of the pump that was used here resembles isoform α2 (eq A in S1

Text). Ks distorts the saddle node bifurcation line, curving it towards more depolarized cur-

rents, i.e., shifting the spiking threshold towards higher input currents.

(PDF)

S2 Text. Fig D. Slow decay of spike amplitudes. Voltage recording of a neuron experiencing

depolarizing pulses applied at 40 Hz. The fast and slow time constants of amplitude decay

were τfast = 410(ms) and τslow = 13.6(sec), respectively. Notice that the peak of the last spike

fails to recover to the initial amplitude after the one-second-long hyper-polarizing pulse. Fig

E. Distribution of time scales of the double exponential decay (Eq 13) of the spike ampli-

tude. Two protocols were used to measure the time scales of spike amplitude decay, an exam-

ple of the “40 Hz Depolarizations” is shown in Fig D in S2 Text, and an example of the

“Hyperpolarization” is shown in Fig 5. Notice that the distribution of τslow is independent of

the protocol used. Table A. Summary of the distribution of the best fit of the parameters

for each of the 50 traces. Depolarizing pulses applied at a 40Hz rate. Table B. Summary of

the distribution of the best fit of the parameters for each of the 73 traces. Hyperpolarizing

pulses.

(PDF)

S3 Text. Fig F. Spiking variability calculated as the coefficient of variation (CV ¼ s

m
) for all

cells sampled, when stimulating with white noise added to the baseline input. An increase

from 3mM to 12mM in extracellular potassium increased the spiking variability of 5 out of 6
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cells measured. Fig G. Spiking variability calculated as the coefficient of variation (CV ¼ s

m
)

for all cells sampled, when stimulating with baseline input. An increase from 3mM to

12mM in extracellular potassium increased the spiking variability of 2 out of 2 cells measured.

The main source of stimuli irregularity was the network activity. Fig H. Spiking variability

calculated as the coefficient of variation (CV ¼ s

m
) for all cells sampled after blocking syn-

aptic input, under baseline input stimulation. An increase from 3mM to 10mM in extracel-

lular potassium increased the spiking variability of 8 out of 12 cells measured. Fig I Spiking

variability calculated as the coefficient of variation (CV ¼ s

m
) for all cells sampled. An

increase from 3mM to 10mM in extracellular potassium increased the spiking variability of 3

out of 10 cells measured. The main source of stimuli irregularity was the network activity.

(PDF)

S4 Text. Table C. Gating dynamics used for the excitable portion of the model. Table D.

Expressions used for the excitable portion of the model. Table E. Parameters used for the

excitable portion of the model. Table F. Parameters used for the ionic concentration

dynamics portion of the model.

(PDF)
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