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Glioblastoma multiforme (GBM) is the most common and most 
deadly primary brain tumor affecting adults. Despite advance-
ments made in surgical, radiological and chemo-therapies for 
this grade IV astrocytoma, prognoses have remained very poor: 
median survival time from diagnosis remains at 9–15 mo, with 
less than 10% of patients surviving beyond 5 y.1,2

Caveolin-1 (Cav-1) is the principle structural protein responsi-
ble for the formation of caveolae, or invaginating microdomains, 
in the cell membrane. The capacity for Cav-1 to associate with a 
wide variety of proteins has implicated it in a number of processes, 
ranging from vesicular transport and cholesterol homeostasis to 
nitric oxide production and cell migration, among others.3-7 Its 
ability to regulate cell cycle progression and intracellular signal 
transduction have resulted in the substantial characterization of 
Cav-1 in many cancers, where it has been shown to act as both a 
tumor suppressor and tumor promoter depending on the tissue 
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type.8-11 In gliomas, expression of Cav-1 appears to increase pro-
portionally to tumor grade, with most GBM lesions exhibiting 
more intense Cav-1 immunoreactivity than their grade II and 
III counterparts.12-14 However, little is currently known as to the 
role of Cav-1 as it relates to GBM in vivo. Recent in vitro studies 
conducted using the GBM-derived cell line U-87MG have dem-
onstrated that Cav-1 acts as a putative tumor suppressor in GBM 
by downregulating α5β1 integrin expression and subsequent 
TGFβ/SMAD pathway activity.15,16 Consistent with these find-
ings, we here show that U-87MG cells stably overexpressing Cav-1 
exhibit diminished mitogenic signaling, upregulated activation of 
apoptotic pathways and a significantly decreased ability to form 
tumors in vivo. Additionally, we show that expression of Cav-1 
confers sensitivity to the alkylating agent temozolomide (TMZ), 
the most commonly used chemotherapy for GBM. These studies 
further support the role of Cav-1 as a putative tumor suppressor in 
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regulation of signal transduction, MAP-kinase activity, cell 
proliferation and transcription (Table 2; Table S1). Signatures 
related to caspase activation, apoptosis and the transforming 
growth factor β pathway were also highly enriched (Table 2; 
Table S1). When expression data was compared with a curated 
canonical pathway database, gene sets related to PI3K/AKT, 
mTOR and ERK signaling, as well as cell death and extracel-
lular matrix signaling, were found to be significantly enriched  
(Table 2; Table S1).

Cav-1 mediates major proliferative and cell-survival path-
ways. To validate the results obtained from our microarray 
analyses, we next sought to confirm Cav-1 mediated modula-
tion of intracellular signaling pathways at the protein level. 
Overexpression of Cav-1 in U-87MG cells results in abrogated 
activity of proliferative pathways as shown by reduced phosphory-
lation of ERK1/2 and decreased expression of the cell cycle driver 
cyclin D1 when compared with control as shown by western 
immunoblot (Fig. 2A). Overexpression of Cav-1 further reduced 
the activity of protein synthesis pathways as shown by reduced 
activation of the AKT/mTOR/ribosomal protein S6 (RPS6) sig-
naling pathways (Fig. 2B). Additionally, U-87MG cells overex-
pressing Cav-1 demonstrated increased presence of the apoptosis 
activator cleaved caspase 3 (Fig. 2C).

U-87MG cells stably overexpressing Cav-1 exhibit decreased 
tumor growth in vivo. To evaluate the ability of Cav-1 to regu-
late tumorigenicity in vivo, U-87MG cells infected with either 
Cav-1-expressing or control lentivirus were injected subcutane-
ously into the flanks of athymic nu/nu male mice. After 4 wk, 
mice were sacrificed and tumors were collected, weighed and 
measured. Importantly, mice harboring Cav-1 overexpress-
ing tumors demonstrated markedly reduced (~7-fold) tumor 
weights and volumes as compared with their control counterparts  
(p < 0.001, Fig. 3A and B).

Cav-1 overexpressing tumors show reduced signaling activ-
ity in vivo. Similar to results obtained in vitro, our immuno-
histochemical analyses show that explanted xenograft tumors 
overexpressing Cav-1 demonstrate fewer cells staining positive 
for phospho-ERK1/2 and cyclin D1 (Fig. 4). Additionally, RPS6 
and MTOR pathways were shown to be silenced in LV105 Cav-1 
tumors, as shown by the absence of their active, phosphorylated 
isoforms (Fig. 4).

Cav-1 confers chemosensitivity in U-87MG cells. To fur-
ther examine the effect of Cav-1 on chemotherapeutic-induced 
apoptosis, U-87MG cells were stained for the cell death marker 
Annexin V and measured by flow cytometry. Cav-1-overexpressing 
U-87MG cells cultured for 72 h in the presence of 500 μM of 
temozolomide (TMZ), the most commonly used chemotherapeu-
tic for GBM, showed significant reductions in cell viability when 
compared with TMZ-treated LV105 control cells (5.5%, p < 0.01, 
Fig. 5A). This effect was found to be most pronounced among 
cells initiating apoptosis, as Cav-1-overexpressing U-87MG 
cells treated with TMZ demonstrated > 400% increase in early 
apoptotic cells compared with TMZ-treated LV105 control cells 
(p < 0.01, Fig. 5B). Interestingly, although not statistically sig-
nificant, overexpression of Cav-1 yielded expanded late-apoptotic 
and dead cells after 72 h of TMZ treatment (Fig. 5C and D).

gliomas and serve to underscore the potential of Cav-1 to serve as 
a favorable prognostic factor in GBM.

Results

Stable expression of Cav-1 in U-87MG cells. In order to estab-
lish durable expression of Cav-1 over time in a cell line model, we 
chose to use a lentiviral transduction approach over the transient 
transfection methods used in previous in vitro studies.15,16 After 
selection with puromycin, U-87MG cells transduced with lenti-
viral constructs stably expressing full length Cav-1 cDNA (LV105 
Cav-1) were shown to effectively upregulate Cav-1 compared with 
an empty control lentivirus (LV105 Control) as demonstrated by 
western immunoblot (Fig. 1A). Changes in Cav-1 protein expres-
sion were also confirmed by immunofluorescence, where overex-
pressing cells demonstrated increased cytoplasmic and membrane 
localization of Cav-1 following lentiviral transduction (Fig. 1B).

Cav-1 regulates cancer-associated gene expression. Using a 
microarray consisting of > 20,000 transcript probes, we were able 
to identify 2,001 genes (~10%) significantly modulated by Cav-1 
overexpression (Tables 1 and 2; Tables S1–3). Gene set enrich-
ment analyses performed on microarray expression data obtained 
from LV105 control and LV105 Cav-1 U-87MG cells indicates 
that Cav-1 expression corresponds to changes in a variety of can-
cer-associated gene signatures. Specifically, by comparing expres-
sion data to biological process gene ontology sets, it was found 
that Cav-1-overexpressing U-87MG cells demonstrated signifi-
cant (p < 0.001) enrichment among gene sets related to negative 

Figure 1. Stable expression of Cav-1 in U-87MG cells. (A) Expression 
levels of Cav-1 measured by immunoblot analyses of U-87MG cells 
transduced with either LV105 control or LV105 Cav-1 lentivirus. (B) Im-
munofluorescent staining of Cav-1 in transduced U-87MG cells  
(magnification = 40×).
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Table 1. Differential gene expression of Cav-1 overexpressing U-87MG cells

Probe Fold change p-value Description

CCDC3 94.19 0.00E+00 coiled-coil domain containing 3

COL3A1 75.99 0.00E+00 collagen, type III, α 1

MTUS1 46.14 2.77E−10 microtubule associated tumor suppressor 1

NUP210 34.18 5.08E−24 nucleoporin 210 kDa

COL4A1 30.33 1.38E−22 collagen, type IV, α 1

APOE 24.59 0.00E+00 apolipoprotein E

LRRC17 21.54 0.00E+00 leucine rich repeat containing 17

PRL 16.66 1.07E−22 prolactin

SULF1 16.35 5.88E−20 sulfatase 1

UBE2QL1 15.93 0.00E+00 ubiquitin-conjugating enzyme E2Q family-like 1

FAT3 14.40 0.00E+00 FAT tumor suppressor homolog 3 (Drosophila)

CSAG1 13.78 0.00E+00 chondrosarcoma associated gene 1

SOX4 12.86 1.89E−26 SRY (sex determining region Y)-box 4

CTNNA2 12.75 0.00E+00 catenin (cadherin-associated protein), α 2

GPM6B 11.94 1.51E−14 glycoprotein M6B

CSAG1|CSAG2|CSAG3 11.88 1.42E−15 chondrosarcoma associated gene 1|CSAG family, member 2|CSAG family, member 3

COL1A2 11.26 0.00E+00 collagen, type I, α 2

RCAN2 11.10 7.01E−45 regulator of calcineurin 2

MAF 10.52 2.69E−11 v-maf musculoaponeurotic fibrosarcoma oncogene homolog (avian)

CGNL1 10.41 5.06E−26 cingulin-like 1

ARHGAP28 10.03 4.15E−29 Rho GTPase activating protein 28

MGAT4A 9.69 7.01E−45 mannosyl (α-1,3-)-glycoprotein β-1,4-N-acetylglucosaminyltransferase, isozyme A

WISP2 9.27 4.48E−44 WNT1 inducible signaling pathway protein 2

SULF2 9.21 4.22E−15 sulfatase 2

CBLN2 8.73 1.58E−39 cerebellin 2 precursor

CELF2 8.36 0.00E+00 CUGBP, Elav-like family member 2

QPRT 8.31 3.44E−39 quinolinate phosphoribosyltransferase

CALCA 7.63 3.89E−12 calcitonin-related polypeptide α

ALX4 7.62 8.08E−32 ALX homeobox 4

EPHA3 7.53 0.00E+00 EPH receptor A3

CD33 7.53 1.37E−40 CD33 molecule

TNFRSF9 7.12 0.00E+00 tumor necrosis factor receptor superfamily, member 9

KIT 6.96 7.30E−37 v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog

FOXO1 6.82 1.16E−14 forkhead box O1

F2RL2 6.59 4.88E−33 coagulation factor II (thrombin) receptor-like 2

ZNF229 6.58 0.000241 zinc finger protein 229

CCDC69 6.55 2.06E−28 coiled-coil domain containing 69

MEX3A 6.51 3.28E−21 mex-3 homolog A (C. elegans)

CKB 6.47 4.76E−42 creatine kinase, brain

THY1 6.30 8.38E−18 Thy-1 cell surface antigen

ABLIM1 6.12 1.62E−30 actin binding LIM protein 1

PCDH7 6.04 1.54E−29 protocadherin 7

SLC9A3R1 6.02 0.00E+00 solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1

BIRC7 5.98 2.51E−17 baculoviral IAP repeat-containing 7

MEF2C 5.86 6.40E−43 myocyte enhancer factor 2C

Top 100 microarray hits demonstrating the most significantly up- and downregulated genes in Cav-1 overexpressing U-87MG cells. For a complete list 
see Table S2. (n = 3 samples from each group).
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Probe Fold change p-value Description

PIK3R3 5.80 2.36E−18 phosphoinositide-3-kinase, regulatory subunit 3 (gamma)

CD24 5.61 4.33E−22 CD24 molecule

CALCB 5.58 0.00E+00 calcitonin-related polypeptide β

UGT2B4 5.56 9.90E−13 UDP glucuronosyltransferase 2 family, polypeptide B4

SGCD 5.55 7.22E−35 sarcoglycan, delta (35 kDa dystrophin-associated glycoprotein)

DLX4 5.50 0.00E+00 distal-less homeobox 4

TP53 5.49 1.54E−28 tumor protein p53

BCL2L11 5.33 1.26E−27 BCL2-like 11 (apoptosis facilitator)

MDK 5.33 2.69E−32 midkine (neurite growth-promoting factor 2)

COL14A1 5.30 1.96E−19 collagen, type XIV, α 1

DPP4 5.25 8.24E−31 dipeptidyl-peptidase 4

FRMPD4 5.12 1.69E−10 FERM and PDZ domain containing 4

SORL1 5.06 5.16E−10 sortilin-related receptor, L(DLR class) A repeats-containing

RCOR2 5.02 1.79E−18 REST corepressor 2

LCP1 −4.95 1.89E−14 lymphocyte cytosolic protein 1 (L-plastin)

EPHB2 −4.99 3.43E−18 EPH receptor B2

LOC100509788… −5.04 1.15E−14 hypothetical LOC100509788|hypothetical LOC100507248

ID1 −5.06 4.56E−35 inhibitor of DNA binding 1, dominant negative helix-loop-helix protein

IL13RA2 −5.25 0.00E+00 interleukin 13 receptor, α 2

NAV2 −5.25 0.00E+00 neuron navigator 2

TOX2 −5.28 1.60E−37 TOX high mobility group box family member 2

HLA-DRB1… −5.30 9.97E−19 major histocompatibility complex, class II, DR β 1…

FST −5.32 5.01E−29 follistatin

KRT15 −5.33 3.11E−35 keratin 15

CRYM −5.40 6.12E−17 crystallin, mu

AFF3 −5.52 7.41E−14 AF4/FMR2 family, member 3

NAMPT −5.54 0.00E+00 nicotinamide phosphoribosyltransferase

COL4A6 −5.56 1.74E−21 collagen, type IV, α 6

HS3ST2 −5.63 8.54E−29 heparan sulfate (glucosamine) 3-O-sulfotransferase 2

DNER −5.92 9.79E−12 delta/notch-like EGF repeat containing

C3orf14 −5.94 4.38E−22 chromosome 3 open reading frame 14

TXNIP −6.02 5.66E−32 thioredoxin interacting protein

IL8 −6.44 1.49E−36 interleukin 8

GALNT12 −6.73 4.86E−30
UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 12 

(GalNAc-T12)

FAM133A −6.93 4.20E−45 family with sequence similarity 133, member A

ACPP −7.14 5.48E−32 acid phosphatase, prostate

PTX3 −7.23 1.76E−35 pentraxin 3, long

DCC −7.24 6.16E−23 deleted in colorectal carcinoma

FARP1 −7.26 1.40E−24 FERM, RhoGEF (ARHGEF) and pleckstrin domain protein 1 (chondrocyte-derived)

BDKRB1 −7.27 0.00E+00 bradykinin receptor B1

TFPI2 −7.56 0.00E+00 tissue factor pathway inhibitor 2

IL1RN −8.00 5.74E−19 interleukin 1 receptor antagonist

FOXF1 −8.20 0.00E+00 forkhead box F1

DDIT4L −8.25 2.01E−37 DNA-damage-inducible transcript 4-like

Top 100 microarray hits demonstrating the most significantly up- and downregulated genes in Cav-1 overexpressing U-87MG cells. For a complete list 
see Table S2. (n = 3 samples from each group).

(continued)
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whereas its forced overexpression conferred the opposite effects.15 
In line with previous studies, we here show that Cav-1 functions 
as a putative tumor suppressor in glioblastoma. Using a novel len-
tivirus transduction system we created a stable Cav-1 overexpress-
ing cell line based on the U-87MG background.

By subjecting transiently transfected U-87MG cells to a panel 
of reverse transcription-PCR primers, Martin et al. identified 
genes pertaining to cell invasion, metastasis and cell adhesion as 

Discussion

Although it has been demonstrated that Cav-1 expression in gli-
oma increases variably in accordance with grade, little is currently 
known about its biological effects on tumor onset and progres-
sion.12-14,17-19 Previous in vitro studies using transient transfection 
techniques have shown that loss of Cav-1 in U-87MG cells resulted 
in the adoption of a more proliferative and invasive phenotype, 

Table 1. Differential gene expression of Cav-1 overexpressing U-87MG cells

Probe Fold change p-value Description

COL13A1 −8.38 0.00E+00 collagen, type XIII, α 1

VAT1L −8.62 2.06E−29 vesicle amine transport protein 1 homolog (T. californica)-like

PLAU −9.17 4.46E−25 plasminogen activator, urokinase

BEX1 −9.73 4.20E−45 brain expressed, X-linked 1

MGC87042 −13.51 2.14E−20 STEAP family protein MGC87042

TFAP2C −13.77 0.00E+00 transcription factor AP-2 gamma (activating enhancer binding protein 2 gamma)

STC1 −15.24 2.80E−45 stanniocalcin 1

SBSN −16.74 0.00E+00 suprabasin

MMP3 −19.01 0.00E+00 matrix metallopeptidase 3 (stromelysin 1, progelatinase)

IL1B −25.20 0.00E+00 interleukin 1, β

MMP1 −37.04 0.00E+00 matrix metallopeptidase 1 (interstitial collagenase)

Top 100 microarray hits demonstrating the most significantly up- and downregulated genes in Cav-1 overexpressing U-87MG cells. For a complete list 
see Table S2. (n = 3 samples from each group).

(continued)

Table 2. Cav-1 regulates cancer-associated gene expression

A. Gene ontology: Biological process

Gene Set Enrichment Score (ES) Normalized ES Nominal p-value FDR q-value

NEGATIVE_REGULATION_OF_SIGNAL_TRANSDUCTION 0.500 2.023 < 0.001 0.092

REGULATION_OF_TRANSFORMING_GROWTH_FACTOR_BETA_
RECEPTOR_PATHWAY

0.619 1.846 < 0.001 0.071

CASPASE_ACTIVATION 0.566 1.748 < 0.001 0.067

NEGATIVE_REGULATION_OF_MAP_KINASE_ACTIVITY 0.521 1.537 < 0.001 0.160

NEGATIVE_REGULATION_OF_CELL_PROLIFERATION 0.331 1.460 < 0.001 0.190

NEGATIVE_REGULATION_OF_TRANSCRIPTION 0.340 1.367 < 0.001 0.211

APOPTOSIS_GO 0.313 1.338 < 0.001 0.227

POSITIVE_REGULATION_OF_CELL_ADHESION 0.501 1.308 < 0.001 0.243

B. Canonical pathways

Gene set Enrichment score (ES) Normalized ES Nominal p-value FDR q-value

BIOCARTA_AKT_PATHWAY 0.647 1.965 < 0.001 0.137

SA_PROGRAMMED_CELL_DEATH 0.739 1.923 < 0.001 0.142

KEGG_ECM_RECEPTOR_INTERACTION 0.496 1.857 < 0.001 0.158

KEGG_MTOR_SIGNALING_PATHWAY 0.487 1.831 < 0.001 0.125

REACTOME_PI3K_AKT_SIGNALING 0.479 1.682 < 0.001 0.144

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS 0.423 1.592 < 0.001 0.142

BIOCARTA_ERK_PATHWAY 0.493 1.583 < 0.001 0.151

KEGG_APOPTOSIS 0.360 1.521 < 0.001 0.169

ES, enrichment score; NES, normalized enrichment score; FDR, false discovery rate. q-value for selected gene sets enriched in LV105 Cav-1 cells vs. 
control using (A) gene ontology: biological process and (B) canonical pathway molecular signature databases (n = 3 samples from each group). For a 
detailed list of genes see Table S1.
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negative regulation of signal transduction, particularly within 
ERK, PI3K/AKT and mTOR pathways. Although it has long 
been known that Cav-1 serves to negatively regulate the activity 
of p42/p44 (ERK1/2) signaling proteins of the MAPK pathway, 
our evidence also suggests it has the capability to sequester PI3K 
and mTOR activity.20-26 This is notable due to the fact that ERK, 
PI3K and mTOR signaling axes are frequently upregulated in 
GBM, suggesting that loss of Cav-1 could lead to unchecked acti-
vation of these pathways.27-31 Two of the most commonly silenced 
genes in GBM are the tumor suppressor proteins PTEN and 
TP53, which serve to antagonize the PI3K/AKT/mTOR path-
way and regulate cell cycle response to DNA damage and cell 
death, respectively.32 Of note is that these two genes were among 
the most upregulated in cells overexpressing Cav-1, which would 
likely explain the gene signatures corresponding to downregula-
tion of signaling pathways and reduced invasiveness.

A major hallmark of GBM is the ability of tumor cells to 
invariably metastasize to distant sites in the CNS despite aggres-
sive treatment. This is often attributed to the excessive release of 
matrix metallopeptidases and urokinase plasminogen activator.33 
Here we show that the genes MMP1, MMP3 and PLAU (uro-
kinase plasminogen activator) are highly downregulated in our 
Cav-1-overexpressing U-87MG cells, which is consistent with 
reports that Cav-1 negatively regulates tumor invasiveness.15,34-36 
These genes have been shown to be regulated by Erk and TP53, 
therefore, their reduction may be secondary to Cav-1 modula-
tion of these pathways.37-40 Of note, we also found that genes 

those being the most differentially regulated by Cav-1 expression. 
Particularly, they showed that the integrin genes ITGA1, ITGA3, 
ITGA5, ITGAV, ITGB1 and ITGB5 were significantly downreg-
ulated in Cav-1-overexpressing cells, with cells treated with Cav-
1-specific siRNA demonstrating marked upregulation of these 
same genes. Matrix metallopeptidase genes MMP1 and MMP2 
as well as transforming growth factor β receptor I (TGFRBI) 
were also shown to be significantly modulated by Cav-1.15 A fol-
low-up study using Cav-1-silenced U-87MG cells further clari-
fied a mechanism in which Cav-1 acts as a negative regulator of 
integrin signaling by inhibiting the expression of these integrins 
themselves as well as sequestering downstream TGFβ/TGFβRI/
SMAD2 and ERK pathways.16 Here, we implemented a similar, 
albeit much more expansive, microarray-based approach to study 
gene perturbations as a result of Cav-1 overexpression. Using 
gene set enrichment analyses, we indeed show similar expression 
profiles to those found previously, with gene sets related to inte-
grin interactions, as well as regulation of TGFβ receptor/SMAD 
pathways showing significant enrichment. In our study, however, 
we detected a multitude of other significantly enriched gene sets 
that have not been demonstrated previously in Cav-1-expressing 
GBM cells. For instance, U-87MG cells overexpressing Cav-1 
demonstrated significant upregulation of genes responsible for 

Figure 3. U-87MG cells stably overexpressing Cav-1 exhibit decreased 
tumor growth in vivo. (A) Tumor weight and (B) tumor volume of U-
87MG xenografts grown in athymic nu/nu male mice after 4 wk (n = 30 
per group, ***p < 0.001).

Figure 2. Cav-1 mediates major proliferative and cell survival pathways. 
Western immunoblot analysis of LV105 control and LV105 Cav-1 U-87MG 
cells showing cyclin D1 and cleaved caspase-3 expression as well as 
phosphorylation status of ERK1/2, AKT, mTOR and RPS6 pathways, with 
respective total protein levels for loading controls. Total caspase-3 and 
GAPDH serve as loading controls for cleaved caspase-3 and cyclin D1, 
respectively.
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associate with P-gp and negatively regulate its activity; therefore, 
overexpression of Cav-1 most likely results in improved access of 
TMZ to the intracellular compartment of U-87MG cells in our 
model.49,50 Interestingly, a separate study showed that treatment 
with TMZ resulted in upregulation of Cav-1 expression in vivo 
using orthotopic GBM xenograft models.47 In light of our data, 
this could suggest a positive feedback loop exists in which treat-
ment with TMZ serves to auto-sensitize GBM cells through a 
Cav-1 dependent mechanism. This finding implicates Cav-1 as 
a potential biomarker predicting response to chemotherapies for 
GBM, as it has been shown for other cancers such as breast, lung 
and oral squamous cell carcinomas.51-53

responsible for sequestering cell cycle progression and 
transcription were overexpressed in LV105 Cav-1 cells 
(FOXN3, HDAC5, VHL, CDKN1C, among oth-
ers). Conversely, genes responsible for progression 
through cell cycle, such as CCND1 (cyclin D1), were 
found to be significantly downregulated in Cav-1-
overexpressing cells, consistent with previous reports 
that Cav-1 transcriptionally represses cyclin D1.8 
Perhaps our most notable finding, however, is that a 
substantial number of genes involved in the activa-
tion of apoptotic and cell death pathways are increased 
as a result of Cav-1 overexpression (TP53, MOAP1, 
CASP3, CASP9, BCL2L11, BAK1, BID among oth-
ers). Although the role of Cav-1 in apoptosis is conten-
tious, with reports indicating both pro- and anti-cell 
death roles, it may be possible that expression of Cav-1 
promotes apoptotic activity in U-87MG cells by inhib-
iting the BIRC5 gene product, survivin, as is suggested 
here and in previous reports.41-45 In support of these 
microarray data, we were able to demonstrate, at the 
protein level, silencing of ERK, AKT, mTOR, RPS6 
and cyclin D1 pathways with corresponding activation 
and cleavage of the key apoptosis initiator caspase 3.

Importantly, we here show for the first time that 
forced expression of Cav-1 in vivo results in a dra-
matic reduction of tumor burden in U-87MG xeno-
grafts. Although Cosset et al. have demonstrated that 
explanted human glioma tissue lacking Cav-1 expres-
sion results in increased expression of α5β1 integrin 
subunits, we were able to demonstrate a direct inverse 
relationship with Cav-1 expression and cell prolifera-
tion in an animal model.16 In line with our in vitro 
data, these xenograft tumors displayed reduced activ-
ity of ERK, RPS6 and mTOR pathways. As these path-
ways have been previously shown to play major roles in 
glioma progression, it is likely that Cav-1 could act as a 
critical regulator of tumor growth and protein synthe-
sis in a clinical setting. As examples of this, studies have 
shown that exogenous administration of cavtratin, or 
a soluble peptide consisting of the Cav-1 scaffolding 
domain fused to an internalization domain, results in 
reduced MAPK activity in oligodendroglial cells in 
vivo, as well as reduced tumor volumes in a xenograft 
model of Lewis lung carcinoma.23,46 A separate study 
demonstrated that in vitro administration of full-length Cav-1 
prevented invasion of three different GBM-derived cell lines 
using a Boyden-chamber assay.47 In this regard, it may be sug-
gested that Cav-1 be explored as a therapeutic agent in GBM.

Lastly, we have also demonstrated that expression of Cav-1 
confers sensitivity to the most commonly used chemotherapeutic 
in GBM, temozolomide. This could be due in part to the action 
of the permeability glycoprotein (P-gp) transporter, a multidrug 
exporter that normally prevents the influx of drugs across the 
blood brain barrier. However, cancerous cells can also express 
this protein, rendering treatment of GBM with conventional 
chemotherapeutics less effective.48 Cav-1 has been shown to 

Figure 4. Cav-1-overexpressing tumors show reduced signaling activity in vivo. 
Immunohistochemical staining of explanted tumors for Cav-1, cyclin D1 and phos-
phorylated ERK1/2, mTOR and RPS6 (magnification = 60×).
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were used: mouse anti-Caveolin-1 (2297, BD Bioscience), rab-
bit anti-Caveolin-1 (N-20, Santa Cruz Biotechnology), mouse 
anti-cyclin D1 (DCS-6, Santa Cruz Biotechnology), rabbit 
anti-phospho mTOR (Se2448, D9C2, Cell Signaling), rab-
bit anti-phospho-ERK1/2 (Thr202/Tyr204, Cell Signaling), 
rabbit anti-phospho-AKT (Ser473, D9E, Cell Signaling), 
rabbit anti-phospho-ribosomal S6 (Ser235/236, 91B2, Cell 
Signaling) rabbit anti-ERK1/2 (Cell Signaling), rabbit anti-
AKT (Cell Signaling), rabbit anti-ribosomal S6 (5G10, 
Cell Signaling), rabbit anti-cleaved caspase 3 (Asp175, Cell 
Signaling), rabbit anti-caspase 3 (Cell Signaling) and mouse 
anti-GAPDH (6C5, Fitzgerald Industries).

Stable lentiviral transduction of U-87MG cells. Plasmids 
Ex-Neg-LV105 (empty control vector) and Ex-D0159-LV105 
(Cav-1 cDNA vector) were obtained from Genecopoeia and 
transfected into the packaging cell line Genecopoeia 293Ta 
using the Lenti-Pac HIV Expression Packaging Kit as per 
manufacturer’s instructions. Forty-eight h post-transfection, 
lentivirus containing supernatants were collected and centri-
fuged at 500 × g for 10 min to clear cellular debris. U-87MG 
cells were cultured in viral supernatants supplemented with 
5 μg/ml polybrene (Santa Cruz) for 24 h prior to changing 
back into complete medium containing 2.5 μg/ml puromycin 
hydrochloride (Santa Cruz) to select for lentiviral-transduced 
cells. After 1 wk of selection, cells were allowed to grow in 
complete medium without puromycin.

Western immunoblot. Cells at 70% confluence were col-
lected, pelleted at 300 × g, washed twice with Dulbecco’s PBS 
(DPBS) and resuspended in RIPA lysis buffer (50 mM Tris, 
150 mM NaCl, 0.5% sodium deoxycholate, 1% Triton X-100, 
0.1% SDS, pH 7.5) including Complete Protease Inhibitor 
Cocktail (Roche Diagnostics) and Halt Phosphatase Inhibitor 
Cocktail (Thermo-Scientific). Lysates were sonicated and cen-
trifuged at 10,000 × g for 10 min to clear cellular debris prior 
to protein quantification by BCA assay (Thermo-Scientific) 

as per manufacturer’s instructions. Proteins were separated by 
sodium dodecyl sulfate PAGE (SDS-PAGE; 8–12% acrylamide), 
transferred to nitrocellulose membranes (Whatman) and blocked 
for 1 h in TBST (10 mM Tris, 150 mM NaCl, 0.05% Tween-20, 
pH 8.0) with 5% bovine serum albumin (BSA). Membranes were 
incubated with primary antibodies diluted in TBST + 1% BSA 
overnight at 4°C followed by incubation in either horseradish 
peroxidase (HRP) conjugated anti-mouse (Thermo-Scientific) 
or anti-rabbit (BD Biosciences) antibodies. Detection of bound 
antibodies was accomplished with the use of Supersignal chemi-
luminescent substrates (Thermo-Scientific).

Immunofluorescence analysis. U-87MG cells grown on glass 
coverslips in 6-well plates were fixed in ice-cold methanol for 20 
min, washed with PBS and incubated with anti-Cav-1 primary 
antibody (BD Bioscience) in immunofluorescence (IF) buf-
fer (PBS + 5% BSA, 0.5% NP40) for 30 min at 37°C before 
incubation with secondary fluorescein isothiocyanate (FITC)-
conjugated anti-mouse antibody (Jackson Labs) in IF buf-
fer. Cells were counterstained with Hoechst nuclear dye (Life 
Technologies) prior to coverslipping and visualization with a 
Zeiss LSM 510 confocal microscope (Carl Zeiss Microscopy).

Taken together, these studies confirm and expand upon pre-
vious work identifying Cav-1 as a putative tumor suppressor in 
GBM. We here show that stable overexpression of Cav-1 in a 
widely used model of GBM results in silencing of key prolifera-
tive and cell survival pathways in vitro as well as in vivo (Fig. 6). 
Additionally, we have demonstrated its ability to modulate sensi-
tivity to commonplace chemotherapeutics for GBM. These find-
ings highlight the potential of Cav-1 to serve as a novel biomarker 
indicating potential response to therapy and also a candidate 
therapy for treatment of GBM.

Materials and Methods

Cell lines and reagents. The human glioblastoma-derived 
cell line U-87MG was obtained from American Type Culture 
Collection (ATCC) and cultured in Eagle’s modified essential 
medium (EMEM, ATCC) supplemented with 10% fetal bovine 
serum and 1% penicillin/streptomycin (Life Technologies). Cells 
were cultured in the presence of 5% CO

2
 at 37°C. Temozolomide 

(TMZ) was obtained from Sigma-Aldrich and dissolved in 
DMSO to a concentration of 100 mM. The following antibodies 

Figure 5. Cav-1 confers chemosensitivity in U-87MG cells. Annexin V and 
propidium iodide staining of U-87MG cells treated with either DMSO con-
trol or 500 μm TMZ reveals percentages of (A) live cells, (B) early apoptotic 
cells, (C) late apoptotic cells and (D) dead cells as measured by flow cytom-
etry. Each group is normalized to its own DMSO control (*p < 0.05 and **p 
< 0.01 vs. internal DMSO control, †p < 0.01 vs. TMZ treated LV105 control, 
n = 3 per group).
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and compared statistically to existing gene sets at a resolution of 
1,000 permutations. Statistical significance of gene set enrich-
ment was assumed at nominal p < 0.05, with a false discovery 
rate (FDR) q < 0.25.

Tumor xenografts. All animal studies were conducted in 
accordance with the guidelines set forth by the National Institutes 
of Health and the Thomas Jefferson University Institutional 
Animal Care and Use Committee (IACUC). Briefly, U-87MG 
cells were washed with DPBS, trypsinized, counted and resus-
pended in a volume of complete medium yielding 1 × 106 
cells/50 μl, which was subsequently injected subcutaneously into 
the flanks of 6–8-wk-old male athymic nu/nu mice (NCI). After 
4 wk, mice were sacrificed and tumors were excised, weighed and 
measured prior to further processing.

Immunohistochemistry. Explanted xenograft tumors were 
fixed in 10% phosphate buffered formalin solution for 24 h prior 
to dehydration in 70% ethanol, paraffin embedding and section-
ing onto slides. Following xylene deparaffinizaiton and rehydra-
tion, slides were subjected to 10 min of heat antigen retrieval in 
10 mM sodium citrate buffer pH 6.0 and endogenous peroxide 
quenching in 3% hydrogen peroxide for 20 min. Tissues were 
blocked in 10% normal goat serum (NGS, Vector Labs) for 1 h 
at room temperature and incubated overnight with primary anti-
body in 10% NGS at 4°C. Slides were then washed in PBS and 
blocked with Biotin-Blocking System (Dako) before incubating 
with the appropriate secondary antibody in PBS and developing 

Gene array. DNA microarray analysis was performed using 
the Human Whole Genome OneArray v2 (Phalanx Biotech). 
RNA quality and integrity were determined utilizing an Agilent 
2100 Bioanalyzer (Agilent Technologies) and absorbance at 
A260/A280. Only high quality RNA, having a RIN of > 7.0 
and an A260/280 absorbance ratio of > 1.8, was utilized for fur-
ther experimentation. RNA was synthesized to double-stranded 
cDNA and amplified using in vitro transcription that included 
amino-allyl UTP, and the aRNA product was subsequently 
conjugated with Cy5 NHS ester (GE Healthcare Lifesciences). 
Fragmented aRNA was hybridized at 42°C overnight using 
the HybBag mixing system with 1× OneArray Hybridization 
Buffer (Phalanx Biotech), 0.01 mg/ml sheared salmon sperm 
DNA (Promega), at a concentration of 0.025 mg/ml labeled 
target. After hybridization, the arrays were washed according to 
the OneArray protocol. Raw intensity signals for each microar-
ray were captured using a Molecular Dynamics™ Axon 4100A 
scanner, measured using GenePixPro™ Software. Significantly 
up or downregulated genes in LV105 Cav-1 cells were identified 
as having normalized intensities above background (> 50), a fold 
change of ± 1.5 compared with control and p < 0.05.

Gene set enrichment analyses. Pre-processed expression 
data was subjected to Gene Set Enrichment Analysis using 
C5.BP.V3.0 (gene ontology: biological processes) and C2.CP.
V3.0 (canonical pathways) MSigDB gene sets.54,55 Genes 
expression data were ordered based on a Signal2Noise metric 

Figure 6. Schematic representation of the role of Cav-1 in glioblastoma. Gliomas are highly heterogeneous tumors that have been demonstrated to 
contain populations of cells with varied levels of Cav-1 expression. In this case, enhanced Cav-1 expression among a tumor cell prevents the activation 
of the TGFBRI/SMAD pathway, which, in turn, suppresses expression of integrin subunits at the transcriptional level and their subsequent signaling 
activity. Increased Cav-1 expression is also correlated with a decrease in the availability of matrix metallopeptidases, downregulated activity of the 
Erk1/2, PI3K/Akt and mTOR signaling pathways as well as the inhibition of the trans-membrane drug exporter p-gp. Together, this may implicate that 
tumors with increased Cav-1 levels are less likely to progress through the cell cycle or invade into surrounding tissues and are primed to undergo P53 
mediated apoptosis, making these cells more easily targeted by standard chemotherapy regimens.
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