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Abstract

Social distancing and stay-at-home are among the few measures that are
known to be effective in checking the spread of a pandemic such as COVID-
19 in a given population. The patterns of dependency between such measures
and their effects on disease incidence may vary dynamically and across differ-
ent populations. We described a new computational framework to measure
and compare the temporal relationships between human mobility and new
cases of COVID-19 across more than 150 cities of the United States with
relatively high incidence of the disease. We used a novel application of Opti-
mal Transport for computing the distance between the normalized patterns
induced by bivariate time series for each pair of cities. Thus, we identi-
fied 10 clusters of cities with similar temporal dependencies, and computed
the Wasserstein barycenter to describe the overall dynamic pattern for each
cluster. Finally, we used city-specific socioeconomic covariates to analyze the
composition of each cluster.
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1 Introduction

The year 2020 marks the centenary of birth of Professor Calyampudi
Radhakrishna Rao, on which we congratulate this living legend in the field
of statistics, and wish him a longer, healthy life. The same year will also
be remembered for the occurrence and phenomenal spread of the COVID-19
pandemic that has profoundly impacted all aspects of human life globally.
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In the absence of a treatment or vaccine to develop immunity against the
disease, governments around the world have adopted non-pharmaceutical
risk mitigation strategies such as lockdowns, shelter-in-place, school and
business closures, travel bans or restrictions to limit movement and prevent
contagion. The magnitude and effectiveness of such mitigation strategies in
preventing contagion and reducing the number of deaths has been noted in
parts of the world where such mitigation strategies have led to reduction
in the Reproduction Number of the disease over time to less than 1, thus
implying that the virus will gradually stop spreading. Since the beginning
of the pandemic, an estimated 3.1 million deaths were averted across 11
European countries attributable to these risk mitigation strategies by May
4, 2020 (Flaxman et al., 2020).

In the United States, the adoption, and enforcement of non-pharmaceutical,
risk mitigation strategies have varied by state and across time. The first
confirmed COVID-19 case was reported on January 21, 2020, in Washington
State (Ghinai et al., 2020). While transmissions were documented since,
a national emergency was declared later, on March 13 (DCPD-202000156,
2020). At that time, international travel restrictions were enforced. By
March 16, six “bay area” counties declared shelter-in-place orders and on
March 19, California was the first state to issue a state-wide order. Since
then, several communities and states have implemented stay-at-home orders
and social distancing measures. As of March 30, there were 162,600 con-
firmed COVID-19 cases in the U.S. DCPD-202000156 (2020) and 30 states
had announced shelter-in-place orders. On April 1, two additional states
and the District of Columbia (DC) issued statewide shelter-in-place orders
followed by 7 more states by April 6.

Historically, among the U.S. cities that were affected by the 1918 Span-
ish flu, social distancing played a pivotal role in flattening the pandemic
curve. In fact, the cities which delayed enforcing social distancing saw the
highest peaks in new cases of the disease. Policies aimed at reducing hu-
man transmission of COVID-19 included lockdown, travel restrictions, quar-
antine, curfew, cancellation and postponing events, and facility closures.
Measuring precisely the dynamic impact of such interventions is challenging
(Adiga et al., 2020; Das et al., 2020) and confounded by several factors such
as differences in the specific modes and dates of the policy-driven measures
adopted by or enforced across states, regions, and countries, and, of course,
the actual diversity of human behaviors at these locations.

Given the current ubiquitous usage of mobile devices among the U.S. pop-
ulations, social mobility as measured by aggregating the geospatial statistics
of their daily movements could serve as a proxy measure to assess the im-
pact of such policies as social distancing on disease incidence. Interestingly,
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in the context of the current pandemic, human mobility data could be es-
timated using geolocation reports from user smartphones and other mobile
devices that were made available by multiple providers including Google and
Apple, among others. In this study, we obtained such data from Descartes
Labs, which made anonymized location-specific time series data on mobil-
ity index freely available to researchers through their GitHub site: https://
github.com/descarteslabs/DL-COVID-19. Thus, we were able to analyze a
location-specific bivariate time series on daily mobility index and incidence
of new cases of COVID-19 in the U.S.

In this study, we are interested to (1) measure and compare the temporal
dependencies between mobility (M) and new cases (N) across 151 cities
in the U.S. with relatively high incidence of COVID-19 by May 31, 2010.
We believe that these dependency patterns vary not only over time (t) but
across locations and populations. For this purpose, we proposed a novel
application of Optimal Transport to compute the distance between patterns
of (N , M , t) and its variants for each pair of cities. This allowed us to
(2) group the cities into different hierarchical clusterings, and (3) compute
the Wasserstein barycenter to describe the overall dynamic pattern of each
identified cluster. Finally, (4) we used city-specific socioeconomic covariates
to analyze the composition of each cluster. A pipeline for our analytical
framework is described in the following section.

2 Data and Methods

2.1. Datasets
2.1.1. COVID-19 incidence and population data. Based on cumulative

COVID-19 cases data from the Johns Hopkins Coronavirus Resource Center
(https://coronavirus.jhu.edu/), for this study, we compiled time series data
on daily new cases of the disease for more than 300 U.S. counties from
32 states and the District of Columbia and matched by unique five-digit
FIPS code or county name to dynamic and static variables as collected from
additional data sources described below. Since a single county may consist
of multiple individual cities, we include the list of all city labels within each
aggregate group to represent a greater metropolitan area. A total of 151 of
such metropolitan areas that had at least 1,000 reported cases of COVID-19
by May 31, 2020, were selected for this study. Population covariates for these
areas were collected from the online resources of the U.S. Census Bureau and
the U.S. Centers for Disease Control and Prevention (CDC) (https://www.
census.gov/quickfacts/, https://svi.cdc.gov/).

2.1.2. Human mobility index data. Anonymized geolocated mobile phone
data from several providers including Google and Apple, timestamped with
local time, were made available for analysis of human mobility patterns
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during the pandemic. Based on geolocation pings from a collection of mo-
bile devices reporting consistently throughout the day, anonymous aggre-
gated mobility indices were calculated for each county at Descartes Lab.
Mobility traces are aggregated as nodes representing typical members of a
given population. The maximum distance moved by each node, after ex-
cluding outliers, from the first reported location was calculated. Using this
value, the median across all devices in the sample is computed to generate
a mobility metric for select locations at county level. Descartes Labs fur-
ther defines a normalized mobility index as a proportion of the median of
the maximum distance mobility to the “normal” median during an earlier
time-period multiplied by a factor of 100. Thus, the mobility index provides
a baseline comparison to evaluate relative changes in population behavior
during COVID-19 pandemic (Warren and Skillman, 2020).

2.2. Methods Below, we list the steps of the overall workflow of our
framework, and briefly describe each in the following paragraphs of this
section.
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2.2.1. Temporal patterns of mobility. To better understand the tempo-
ral patterns of mobility, in addition to the given non-negative mobility index
M , we also use two variants: delta mobility ΔM and local derivative M ′

defined as follows:

ΔM(t) = M(t)−M(t− 1) (2.1)

and

M ′(t) = {(M(t)−M(t− 1)) + 0.5 ∗ (M(t+ 1)−M(t− 1))}/2. (2.2)

Here ΔM is the first difference, and M ′ approximately the local derivative
(Keogh and Pazzani, 2001), of the time series M , and yet, unlike M , these
variants are not restricted to be non-negative.

2.2.2. Representing a city as discrete set of points. With the above
definitions, the temporal relationship between mobility (and its variants) and
new cases of each city in our data can be depicted as triplets (M/ΔM/M ′,
N , t). We represent the time series by performing a normalized ranking of
the variables so as to represent each city by a discrete set of points in unit
cube [0, 1]3. This normalized ranking is frequently used as a estimator for
empirical copulas with good convergence properties (Deheuvels, 1980). The
cities can have different representations by considering the three definitions
of mobility metrics, and in each case, we can have different groupings of
cities. A comparative analysis of all groupings can provide a correlation
structure between groups of cities from different perspectives.

2.2.3. Comparing cities using optimal transport. To distinguish between
the temporal dependence between mobility and new cases of a given pair of
cities, we used Wasserstein distance from optimal transport theory. We com-
puted Wasserstein distance between two discrete sets of points in unit cube,
corresponding to two cities, as the minimum cost of transforming the dis-
crete distribution of one set of points to the other set. It can be computed
without the need of such steps as fitting kernel densities or arbitrary binning
that can introduce noise and artefacts to data.

Wasserstein distance between two distributions on a given metric space
M is conceptualized by the minimum “cost” to transport or morph one pile
of dirt into another – the so-called ‘earth mover’s distance’. This “global”
minimization over all possible ways to morph takes into consideration the
“local” cost of morphing each grain of dirt across the piles (Peyré et al.,
2019).
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Given a metric space M, the distance optimally transports the proba-
bility μ defined over M to turn it into ν:

Wp(μ, ν) =

(
inf

λ∈τ(μ,ν)

∫
M×M

d(x, y)pdλ(x, y)

)1/p

, (2.3)

where p ≥ 1, τ(μ, ν) denotes the collection of all measures on M×M with
marginals μ and ν. The intuition and motivation of this metric came from
optimal transport problem, a classical problem in mathematics, which was
first introduced by the French mathematician Gaspard Monge in 1781 and
later formalized in a relaxed form by L. Kantorovitch in 1942. More recently,
the use of Wasserstein distances in machine learning (also known as Earth
Mover Distances) highlighted the advantages of cross-bin distances between
histograms especially in computer vision (Rubner et al., 2000). Here, we
used Wasserstein distance to cluster temporal dynamics as it preserves the
overall geometry of the compared distributions without being sensitive to
small variations or “wiggles” therein.

2.2.4. Clustering the cities. Upon computing optimal transport based
distances for each pair of cities, hierarchical clustering of the cities was per-
formed using Ward’s minimum variance method (Nielsen, 2016). For the
3 variants of mobility (M/ΔM/M ′), we obtained 3 different hierarchical
clusterings: HC1, HC2 and HC3 respectively. Given a dendrogram and a
prescribed number of k clusters, we can “extract” from the dendrogram a flat
partition of the data into k clusters by using dynamic programming (Nielsen,
2016). The dendrogram is drawn on the plane using the height function aris-
ing from the linkage function. A typical cut consists in finding the height h
so that a line y = h cuts the dendrogram into k tree edges. A “best cut”
(e.g., minimizing the sum of cluster variances like in k-means) can be cal-
culated efficiently from dynamic programming. Then we get a x-monotone
polyline cutting the embedded dendrogram into k locations (Nielsen, 2016).

2.2.5. Comparing the clusterings. The resulting clusters are compared
using a visualization tool called HCMapper (Marti et al., 2015). HCMapper
can compare a pair of dendrograms of two different hierarchical cluster-
ings computed on the same dataset. It aims to find clustering singularities
between two models by displaying multiscale partition-based layered struc-
tures. The three different clustering results are compared with HCMapper to
sought out the structural instabilities of clustering hierarchies. In particular,
the display graph of HCMapper has n columns, where n represents the num-
ber of hierarchies we want to compare (here n = 3). Each column consists of
the same number of flat clusters, which are depicted as rectangles within the
column. The rectangle size is proportional to the number of cities within the

S172 F. Nielsen et al.



clusters, while an edge between two clusters depicts the number of shared
cities between them. Thus, a one-to-one mapping between the clusters of
two columns likely depicts a perfectly similar clustering whereas too many
edges crossing between two columns describe a dissimilar structure.

We also checked the spatial homogeneity of a clustering in terms of the
average number of clusters in which the cities of each state were assigned to,
over all states that are represented in our data. Moran’s I statistic to assess
the spatial correlation among the cluster labels was also computed.

2.2.6. Summarizing the distinctive cluster patterns. We summarize the
overall pattern of each identified cluster by computing its barycenter in
Wasserstein space. It efficiently describes the underlying temporal depen-
dence between the measures of mobility (here we use M ′) and disease in-
cidence within each cluster. Wasserstein distances have several important
theoretical and practical properties (Pele and Werman, 2009; Villani, 2008).
Among these, a barycenter in Wasserstein space is an appealing concept
which already shows a high potential in different applications such as, in
artificial intelligence, machine learning and statistics (Benamou et al., 2015;
Carlier et al., 2015; Cuturi and Doucet, 2014; LeGouic and Loubes, 2017).

A Wasserstein barycenter (Agueh and Carlier, 2011; Cuturi and Doucet,
2014) of n measures ν1 . . . νn in P ∈ P (M) is defined as a minimizer of the
function f over P, where

f(μ) =
1

N

N∑
i=1

W p
p (νi, μ). (2.4)

A fast algorithm (Cuturi and Doucet, 2014) was proposed to minimize
the sum of optimal transport distances from one measure (the variable μ)
to a set of fixed measures using gradient descent. These gradients are com-
puted using matrix scaling algorithms in a considerable lower computational
cost. We have used the method proposed in Cuturi and Doucet (2014) and
implemented in the POT library (https://pythonot.github.io/) to compute
the barycenter of each cluster.

2.2.7. Analysis of the clusters using static covariates. To characterize
the composition of the identified clusters, i.e., what could explain the sim-
ilarity in the temporal dependence between mobility and new cases of the
cities that belong to a cluster, we used different city-specific population co-
variates from the U.S. census and CDC data, while checking their relative
contributions to discriminating the clusters. These covariates include (a)
date of Stay-at-home order, (b) population size, (c) persons per household,
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(d) senior percentage, (e) Black percentage, (f) Hispanic percentage, (g) poor
percentage, (h) population density in 2010, (i) SVI ses (j) SVI minority, (k)
SVI overall, and (l) Gini index of income inequality (Farris, 2010). Here
SVI stands for Social Vulnerability Index of CDC, and “ses” socioeconomic
status. In addition, we also compute the ‘reaction time’ (RT) of each city
as the number of days between the stay-at-home-order at a given city and a
common reference starting point date, which was taken as March, 15, 2020.

This step also provided a form of external validation of the clustering
results as none of the covariates were used for our unsupervised clustering.
We demonstrated this step with the clustering results of HC3.

Using the covariates as features of the cities, a random forest classifier
is trained to learn the cluster labels. The aim is to see how the clustering
could be explained by the covariates. To find which of the features contribute
most to discriminate the clusters of cities we computed the mean Shapley
values (Lundberg and Lee, 2017). A Shapley value quantifies the magnitude
of the impact of the features on the classification task. The ranking of the
covariates/features based on the mean Shapley values determines the most
relevant features in this regard.

3. Results

In this study, we analyzed a bivariate time series on daily values of mo-
bility index and COVID-19 incidence over a 3-month time-period (March
1 to May 31, 2020) for 151 U.S. cities that had reported at least 1,000
cases by the end of this period. By transforming the data of each city to
a corresponding discrete set of ranked points on the unit cube, we com-
puted the Optimal Transport distance as measure of temporal dependency
between mobility and new cases for each pair of cities. Three variants of
mobility (M/ΔM/M ′) allowed us to generate 3 hierarchical clusterings: (a)
HC1, (b) HC2 and (c) HC3, as shown in Fig. 1. Each clustering yielded
10 clusters of cities, which were compared for their sizes, singularities and
divergences by the tool HCMapper, as shown in Fig. 2.

Among the clusterings, HC3 appeared to have clusters of consistent sizes,
and also the fewest singularities and divergences. Further, when we mapped
the counties representing the cities with cluster-specific colors, as shown in
Fig. 3, we observed that the HC3 clusters showed high spatial correlation
(Moran’s I giving p-value of 0). They also showed the least disagreements
among the cluster assignments of cities with each state, although some states
like California and Florida contained cities from more than one cluster (see
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Figure 1: The dendrograms show 3 hierarchical clusterings of cities a HC1
(N , M , t), b HC2 (N , ΔM , t), and c HC3 (N , M ′, t) using Ward’s linkage.
Based on visual inspection of the seriated distance matrix, 10 clusters were
identified in each case, as shown on the heatmaps
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Figure 2: HCMapper is used for comparing 3 hierarchical clusterings:
HC1(N , M , t), HC2(N , ΔM , t) and HC3(N , M ′, t). The cluster sizes
and divergences across the clusterings are shown with blue rectangles and
grey edges respectively

all clusters in Table 1). We looked into possible explanations of such cluster-
specific differences using local covariates, as shown in the boxplots of Fig. 4.

Given a cluster C consisting of n cities’ temporal relationships, how does
one determine its “typical” relationship? A Wasserstein barycenter allows us
to summarize n distributions, or the points sets corresponding to the cities
in C, essentially by converting them to quantiles and averaging. Given the
assumption of this study is that there are dynamic relationships between
mobility and COVID-19 incidence that changed not only over time but also
across locations and populations, we computed Wasserstein barycenters of
the 10 identified clusters, as shown in Fig. 5, to describe the overall depen-
dency structure that is specific to each cluster. The temporal changes in the
dependencies are shown in 3-dimensional plots, as the shading changes from
light (early points) to dark green (later points) along the z-axis (time).

Finally, to understand potential factors underlying the dynamic patterns
of each cluster, we used the local covariates, as described above. Using Ran-
dom Forest (RF) classification, we identified socioeconomic characteristics
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Figure 3: The geographic distribution of the 10 clusters of COVID-19 af-
fected U.S. cities as identified by HC3 are shown. The county corresponding
to each city is mapped in its cluster-specific color

(based on the covariates) of each of the cities that could discriminate among
the assigned cluster labels. The most significantly discriminating covariates
are shown in Fig. 6, along with their cluster-specific contributions of each
covariate. We performed sensitivity analysis using the Mean Decrease in Im-
purity (MDI) feature importance measure embedded in RF (Louppe et al.,
2013), and the results are shown in Panel (a). In addition, we also computed
the mean Shapley values (SHAP) to measure the relative cluster-specific con-
tributions to identify the most discriminating features, as shown in Panel (b).
While these two approaches do not measure the exact same effect, the results
are nonetheless quite consistent. For example: reaction time is the most sig-
nificant feature in both, and the 3 least significant features also appear in
the same order. The ranks hardly change for most features, and some like
Hispanic percent and persons per household are highly correlated. Thus,
despite the minor differences in the two measures, we find the feature se-
lection results to be quite consistent. Importantly, none of these covariates
were used to guide our clustering, and yet, are able to discriminate among
the clusters. Indeed, Fig. 4 shows the distinctive distributions of the 8 most
significant of these covariates across the 10 clusters identified by HC3. Re-
action time is robustly the first and major contributor, which is indicative of
the effects of stay-at-home on the different patterns of COVID-19 dynamics.
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Table 1: Details of the 10 clusters of COVID-19 affected U.S. cities as iden-
tified by HC3
Id Size Members (FIPS code of the corresponding counties)

1 9 4027, 6001, 6013, 6019, 1073, 4019, 1097, 1101, 4013
2 11 12011, 10003, 11001, 9003, 9009, 9001, 8059, 8123, 8005, 8031,

8041
3 14 6029, 6037, 6059, 6065, 6073, 6067, 6071, 6075, 6081, 6083, 6085,

8001, 6107, 6111
4 16 55101, 55059, 55079, 53053, 55009, 53061, 53077, 49035, 49049,

53033, 51510, 51760, 48201, 48375, 48439, 48453
5 26 39153, 40109, 41051, 39095, 39099, 39049, 39061, 46099, 47037,

47149, 47157, 42101, 44003, 44007, 45079, 42095, 42069, 42077,
42003, 42011, 48157, 48113, 48121, 48141, 48029, 48085

6 16 34021, 34031, 34039, 35001, 36001, 36029, 36061, 39035, 37183,
38017, 37119, 37067, 37081, 36067, 36119, 37063

7 19 22071, 23005, 24510, 25005, 25009, 25013, 25017, 25021, 25023,
26049, 25025, 25027, 27123, 26163, 27053, 26125, 26161, 26081,
26099

8 10 33011, 34007, 34013, 34017, 28049, 29510, 31055, 31109, 32003,
32031

9 13 12031, 12057, 12095, 12099, 12071, 12086, 12103, 12105, 17043,
13089, 13095, 13121, 17031

10 17 22033, 22051, 19153, 19193, 20209, 21111, 22017, 17089, 17201,
17097, 17197, 18003, 18057, 18089, 18097, 18141, 19013

4. Discussion

Wasserstein metrics are useful in machine learning and computer vi-
sion because they allow us to compute dissimilarity between two empirical
distributions usually with non-matching supports, or between a continuous
distribution and an empirical distribution (see Peyré et al. (2019) for several
examples). In contrast, the common distances between discrete distribu-
tions such as Kullback-Leibler (KL) divergence (and more generally Csiszár
f -divergences) on normalized histograms require aligned bins, and are in-
variant to permutations of the sample space. Further, the KL divergence
becomes infinite when the distribution supports do not match. For com-
putational purposes, an entropy-regularization of the Wasserstein distance
known as Sinkhorn divergence allows fast calculation of an upper bound of
the Wasserstein distance (Cuturi, 2013). In fact, Wasserstein distances be-
long to the wider family of Integral Probability Metrics (Amari et al., 2019;
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Figure 4: The boxplots show the differences across the identified 10 clusters
of cities identified by HC3 in terms of the values of the 8 most significant
covariates: a Reaction Time (RT), b Hispanic percent, c Black percent, d
population size, e senior percent, f population density 2010, g persons per
household, and h SVI ses. We jittered the overlapping RT points for easy
visualization
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Figure 5: The overall temporal pattern of dependency between normalized
measures of mobility and COVID-19 incidence for each cluster of cities iden-
tified by HC3 is shown along 3 dimensions (N , M ′, t). The Wasserstein
barycenters of the 10 clusters are depicted within the unit cube with the
darker dots representing later points in time (z-axis)
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Figure 6: The most significant of the static city-specific covariates in dis-
crimination of the 10 clusters identified by HC3. The contributions towards
each cluster are measured by a the embedded method of RF classifier (MDI),
and b the mean Shapley values for each covariate

Sriperumbudur et al., 2010). The present study is a novel application of this
metric to identify patterns of infectious disease dynamics.

The U.S. was alone among the countries in the industrialized world where
the expected “flattening of the curve” did not take place by mid-2020. Yet,
45 states in the U.S. were in various phases of re-opening and 5 states did
not have shelter-in-place orders. By mid-June, a “second wave” of cases had
started to rise in the U.S. with the weekly average exceeding 20 infections
per 100,000 inhabitants for the first time. By June 26, there were 2.5 million
confirmed cases and over 120,000 deaths. Some states that had begun to
re-open parts of their economy paused or delayed opening in the face of a
surge of new cases.

Estimating the impact of mitigation strategies on cases and deaths in the
U.S. is challenging particularly due to the lack of uniformity in their timing,
implementation, enforcement, and adherence across states. Nevertheless,
early observations point to the utility of such measures, particularly shelter-
in-place orders in reducing infection spread and deaths (as per data from
California and Washington State) (COVID-19 projections 2020). Counties
implementing shelter-in-place orders were associated with a 30.2% reduc-
tion in weekly cases after 1 week, 40% reduction after 2 weeks, and 48.6%
reduction after 3 weeks (Fowler et al., 2020) Conversely, model projections
estimated a steady rise in cases and over 181,000 deaths if such mitigation
strategies were to be eased and not re-enforced before October 1 (COVID-19
projections 2020).
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As a result, many researchers worldwide are currently investigating the
changes in social and individual behaviors in response to the sudden yet pro-
longed outbreaks of COVID-19, e.g., Adiga et al. (2020), Badr et al. (2020),
Das et al. (2020), Warren and Skillman (2020), & Xiong et al. (2020). As
the pandemic progresses, and until medical treatments or vaccination are
commonly available, new and diverse patterns of human mobility, be they
voluntary or via policy interventions, may emerge in different societies. It is,
therefore, of great importance to epidemiologists and policy-makers to un-
derstand the dynamic yet location-specific patterns of dependency between
human mobility and COVID-19 incidence in order to evaluate the impact
of such measures as precisely as possible. In this study, we have shown
that such dependencies not only change over time but across locations and
populations, and are likely to be determined by underlying socioeconomic
characteristics. Our analytical approach is particularly relevant considering
the high socioeconomic costs of such measures.

We understand that our study has some limitations. We note that each
step of our framework could be improved in isolation or as a pipeline, which
we aim to do in our future work. We also draw attention to the so-called
ecological fallacy in inferring about individual health outcomes based on data
or results that are obtained at either city or county levels. Such inference may
suffer from incorrect assumptions and biases, which, however unintentional,
must be avoided. Any views that might have reflected on the analysis or
results of our study are those of the authors only, and not the organizations
they are associated with.
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