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INTRODUCTION
In recent years, there has been a dramatic increase in 
research studies applying artificial intelligence (AI) 
approaches to a wide range of decision-making problems. 
In cancer imaging research, deep learning (DL) has shown 
promising performance in a wide range of tasks, including 
cancer screening, tumor characterization (which includes 
subtype classification), treatment response, and survival 
outcome assessment.

With respect to treatment response assessment, imaging 
has played an important role in this task for decades. The 
first attempt to establish standardized criteria for image-
based treatment response assessment dates back to the 
1970s, when the International Union Against Cancer and 
the World Health Organization (WHO) developed an 
evaluation scheme to classify treatment response of solid 
tumors based on bidimensional measurements of tumor 
size in the axial plane on imaging studies.1 Since then, four 

categories have been used to classify image-based treat-
ment response: complete response (CR), partial response 
(PR), stable disease (SD), and progressive disease (PD). In 
2000,2 the Response Evaluation Criteria in Solid Tumors 
(RECIST) was published, providing guidance on treat-
ment response classification based mainly on changes in 
tumor size. These criteria recommended unidimensional 
instead of bidimensional measurements to quantify tumor 
burden and have since become the most used criteria for 
estimating solid tumor burden and determining clin-
ical treatment response. However, RECIST is known to 
have certain intractable limitations, particularly when it 
comes to precision medicine approaches to cancer. For 
example, RECIST criteria are limited by large inter- and 
intraobserver variations, especially in tumors with irreg-
ular and complex shapes. Furthermore, when tumors are 
treated with targeted chemotherapy or immunotherapy, 
assessing tumor response based on changes in tumor size 
is likely inadequate. In such cases, tumor response would 
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ABSTRACT

Accurate evaluation of tumor response to treatment is critical to allow personalized treatment regimens according to 
the predicted response and to support clinical trials investigating new therapeutic agents by providing them with an 
accurate response indicator. Recent advances in medical imaging, computer hardware, and machine-learning algo-
rithms have resulted in the increased use of these tools in the field of medicine as a whole and specifically in cancer 
imaging for detection and characterization of malignant lesions, prognosis, and assessment of treatment response. 
Among the currently available imaging techniques, magnetic resonance imaging (MRI) plays an important role in the 
evaluation of treatment assessment of many cancers, given its superior soft-tissue contrast and its ability to allow multi-
planar imaging and functional evaluation. In recent years, deep learning (DL) has become an active area of research, 
paving the way for computer-assisted clinical and radiological decision support. DL can uncover associations between 
imaging features that cannot be visually identified by the naked eye and pertinent clinical outcomes. The aim of this 
review is to highlight the use of DL in the evaluation of tumor response assessed on MRI. In this review, we will first 
provide an overview of common DL architectures used in medical imaging research in general. Then, we will review the 
studies to date that have applied DL to magnetic resonance imaging for the task of treatment response assessment. 
Finally, we will discuss the challenges and opportunities of using DL within the clinical workflow.
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be better reflected by morphologic, functional, and metabolic 
changes, such as residual cancer cell amount, extent of necrosis 
and fibrosis, or cystic degeneration. An alternative response 
criterion—the Choi criteria—was proposed for computed tomo-
graphic (CT) imaging and incorporates measurements of both 
tumor size and density.3 Within the context of the Choi criteria, 
a patient is regarded as responding if CT images show a 10% 
reduction in tumor size or a 15% reduction in CT attenuation. 
Based on these criteria, Choi et al showed that response among 
patients with metastatic gastrointestinal stromal tumor showed 
significantly longer progression-free interval compared with 
nonresponses.

In 2009, RECIST 1.1,4 a revised version of RECIST, was published. 
Additional response criteria have also been developed, including 
modified RECIST (mRECIST) for the evaluation of hepatocel-
lular carcinoma (HCC) response to targeted therapy,5 immune-
related response criteria (irRC) for the assessment of response 
to immunotherapy,6 and immune-related RECIST (irRECIST), 
which combines characteristics of irRC and RECIST.7 The irRC 
are based on bidimensional measurements and new lesions are 
incorporated for the measurement of total measurable tumor 
burden.6 irRECIST, reported by Nishino et al, requires only one-
dimensional measurement and confirmation by two consecutive 
observations to judge complete response (CR), partial response 
(PR), or progressive disease (PD).7

DL methods have evolved since basic foundations were intro-
duced in the 1940s, with methodologies advancing tremendously 
over the past decade. Qualitative and quantitative measurements 
on magnetic resonance imaging (MRI) data offer a promising 
technique for the assessment of treatment and survival outcomes. 
MRI and the numerous imaging sequences often acquired yield 
valuable information that can potentially serve as biomarkers 
for the assessment of treatment and survival outcomes. Suitable 
applications for DL methodology to MRI have the potential to 
enhance the prognosis and mortality assessments of cancer. DL 
methods promise to explore the complex relationship between 
MRI data and cancer outcomes.

The aim of this review is to highlight the use of DL in the evalu-
ation of tumor response and survival outcome assessed on MRI. 
In this review, we will first provide an overview of common DL 
architectures used in general medical imaging research. Then, we 
will review published studies that have applied DL to MRI for the 
task of treatment response and survival outcome assessment in 
different types of cancer. Finally, we will discuss the challenges 
and opportunities of using DL within the clinical workflow.

Deep-learning architectures commonly used in 
medical imaging
DL is a machine-learning subset where features are learned 
directly from raw data rather than advanced specification.8 DL 
techniques can be divided into unsupervised and supervised DL 
techniques. Supervised DL pre-specifies desired outputs with 
associated inputs while training the neural network algorithm. 
Accordingly, the algorithm is trained to learn relationships or 
transformations that allow it to predict expected outputs when 

given new inputs. By contrast, unsupervised DL finds relation-
ships between variables in a given dataset without any labels. 
The algorithm discerns unlabeled data autonomously by relying 
on the extraction of inherent dominant features and patterns 
(Figure 1).

DL networks are characterized by hierarchical architectures 
consisting of multiple layers of non-linear information, whereby 
features in upper layers represent combinations of simpler 
features below. Neural networks use backpropagation as a 
learning algorithm to compute the gradient of the loss func-
tion for each weight in the network model. Subsequently, the 
gradient is used by an optimization algorithm to update model 
weights. In addition to calculating the gradient of a loss function 
with respect to variables of a model, a neural network model 
requires hyperparameter optimization or tuning of the learning 
algorithm. This task involves choosing a set of hyperparame-
ters for a learning algorithm that yields an optimal model, or 
a model which minimizes a predefined loss function. Finally, 
cross-validation is often used to estimate the generalized perfor-
mance of the model.

We will next review DL architectures commonly used in general 
medical imaging research. But it is important to first consider 
artificial neural networks (ANNs), the backbone of deep neural 
networks (DNNs). ANNs are inspired by the structure and 
function of the human brain. ANNs can be developed based on 
supervised, unsupervised, or semi-supervised learning. An ANN 
is composed of layers of connected nodes (also called artificial 
neurons), configured at multiple layers (depth) and in the order 
of hundreds to millions (Figure 2). The objective of this config-
uration is to maximize the correct output as compared with a 
reference value. This is accomplished on each forward propa-
gation by calculating the error and adjusting the weightings on 
each node. The process is repeated at each iteration (epoch), until 
a more accurate solution is converged.

One of the first, simplest, and most widely used ANN in prac-
tical application is the feedforward neural network (FFNN). In 
FFNN, information flow is always in a single and forward direc-
tion from the input nodes, through any hidden nodes, and up 
to the output nodes. The objective is to learn the relationship 
between independent variables that are network inputs and the 
dependent variables that are assigned as network outputs.

The construction of an ANN involves training the network on 
a large dataset and subsequently validating the inferences of the 
network on a test set. Training and optimization are achieved 
through a loss index measuring algorithm-associated errors. 
Regularization refers to strategies employed to reduce the error 
of the test set at the expense of increasing training error. To tune 
an ANN, a loss index consisting of the sum of the error and 
regularization term is measured, and an optimization algorithm 
applied to adjust the weights and bias by backpropagating the 
errors from the output layers in the direction of the input layers. 
This iterative process is repeated until the loss index is mini-
mized or until a predetermined value is reached. A key difference 
between ANN and DNNs is that DNNs entail a greater number 
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of hidden neurons, more layers, and innovative training para-
digms to process larger amounts of data.

Convolutional neural network
In 2012, Krizhevsky et al developed a convolutional neural 
network (ConvNet/CNN) that markedly improved image classi-
fication9 (Figure 3). CNNs are the most widely used DL architec-
tures for medical image analysis, having been developed for tasks 
including image recognition, image analysis, image segmen-
tation, video analysis, and natural language processing. The 
best-known CNN architectures developed to date are ZFNet,10 
VGGNet,11 GoogLeNet,12 AlexNet,13 and ResNet.14

CNNs are multilayered neural networks with three layer types: 
convolutional layers, pooling layers, and fully connected layers. 
CNNs are designed to extract features that capture the spatial 
and temporal patterns of the input images. Using convolutional 
and pooling layers, CNNs mimic the mathematical operations 
of convolution and pooling. The convolution layer constitutes 
the essential feature of CNNs and refers to the networks’ oper-
ation based on a set of learnable filters to merge the input values 
and filter values onto the feature map. Pooling layers are used 
to reduce the dimensions of feature maps. The standard CNN 
employs a rectified linear unit (ReLU) as an activation function 

and a supplemental step to convolution. Another activation func-
tion which is very popular for neural networks is the sigmoid acti-
vation function, also called the logistic function. ReLU will give 
an output of zero for negative inputs but otherwise preserve the 
input. ReLU is the most used activation function in DL models 
due to its computational simplicity, representational sparsity, and 
linearity. As compared to the sigmoid activation function, ReLU 
are easier to train. The representational sparsity feature implies 
that the ReLU function, unlike the tanh and sigmoid activation 
functions, is capable of outputting a true zero value.

Further along in the network architecture, the pooling layers 
work to downsample the features in the convolved feature map, 
typically using max pooling, so that dominant features that are 
rotationally and positionally invariant are extracted. Finally, fully 
connected layers at network’s end generate the required class 
prediction by taking the flattened matrix from the pooling layers 
as input.

The main advantage of CNNs is that it captures important 
image features (through a backpropagation algorithm) without 
any human supervision. Compared with alternative network 
designs like FFNN, CNNs capture the spatial dependencies in 
an image, hence better capturing its composition. The primary 

Figure 1. A general framework (based on deep learning algorithms) for the processing of images by classifying high and low risk 
of survival, thus assessing probability of treatment response. (A) Patient MRI images are input into a deep learning model for the 
purpose of training the model; (B) A deep-learning system developed and trained to characterize outcome assessment, such as 
survival probability; (C) The outcome of the deep-learning model is used to predict cancer outcome.
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disadvantages of CNNs are that they require large training data, 
and that they do not encode the position and orientation of the 
object.

Many variants of the CNN architecture have been developed. 
For example, U-Net is a fully convolutional network developed 
by Ronneberger et al. in 2015 for medical image segmentation.15 

Figure 2. Illustration of an artificial neural networks (ANNs), the backbone of deep neural networks (DNNs). In this figure, we show 
a fully connected neural network where all the nodes, or neurons, in one layer are connected to the neurons in the next layer. When 
the input increases, fully connected networks tend to be computationally expensive, resulting in poor scalability.

Figure 3. An illustration of a simple convolutional neural network including convolutional, pooling, and fully connected layers. 
The two-dimensional input data undergoe multiple rounds of convolution and subsample layers. Feature extraction by filters 
are learned through back projection. The pooling operations, including max or mean, in a region are used to reduce the number 
of pixels in each layer of the network. Each operation increasingly extracts higher order discriminative features. Ultimately, the 
output layer is a class probability based on these higher order features.
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U-Net consists of a contracting path (also known as the encoder 
path) that downsamples the image into a feature map, followed by 
an expansion path (i.e., decoder path) that upsamples the feature 
map to the target such as the output segmentation map. During 
downsampling, feature information is extracted while spatial 
information is reduced. During upsampling, feature and spatial 
information are combined through a sequence of up-convolu-
tions and concatenations, generating high-resolution features. 
The resultant neural network yields more precise segmentations 
with fewer training images. The workflow for a U-Net network is 
illustrated in Figure 4.

Another CNN architecture is the VGG16, which was used to win 
ILSVR competition in 2014.16 The VGG16 network improves 
upon AlexNet by replacing large kernel-sized filters with multiple 
3 × 3 kernel-sized filters. The network applies the same kernel 
size of 3 × 3 filter throughout the feature extraction part and 
always uses the same padding and max pool layer of 2 × 2 filter of 
stride 2. This arrangement of convolution and max pool layers is 
consistently followed throughout the network (Figure 5).

Transfer learning
Often, training an entire network from scratch is impractical 
since this requires large training datasets. Should a large training 
dataset be unavailable, transfer learning can be employed. In 
transfer learning, information obtained through a pre-trained 

Figure 4. The U-net network structure has a deep-learning 
encoder-decoder architecture. The CNN is termed “U-net” due 
to the u-shaped structure. The network consists of encoder 
layers where there is first downsampling in the image size 
followed by upsampling in the expansive or decoder layer.

Figure 5. The VGG-16 architecture. The VGG16 consists of 13 convolutional layers, five max-pooling layers, and three fully connected 
layers. Consequently, the number of tunable parameters is 16 (13 convolutional layers and three fully connected layers).



6 of 12 birpublications.org/bjro BJR Open;4:20210072

BJR|Open  Mazaheri et al

model using a large dataset (such as ImageNet) is transferred to 
a smaller dataset. For CNNs, one transfer learning strategy is to 
modify training in the convolutional layers, such that training 
occurs only during the last few convolutional layers to perform 
a prediction. This is based on the premise that the early convo-
lutional layers extract low-level features that can be generalized 
across images, whereas the later convolutional layers are geared 
toward identifying high-level features within an image. Low-level 
features are local and include features such as edges and blobs. 
High-level features include objects, their states, and events in 
images, which are extracted using machine-learning techniques. 
Further strategies include fine-tuning all layers of the CNN by 
adjusting the weights of the pre-trained network or utilizing a 
pre-trained model that includes the CNN checkpoints and fine-
tuning the network weights. Checkpoints allow pre-trained 
models to be used for inference without retraining. Alternatively, 
checkpoints allow model training to resume in case it was inter-
rupted or for the purpose of model fine-tuning.

Recurrent Neural Network
Recurrent neural networks (RNNs) are employed to process 
sequential or time series data, whereby the nodes in RNNs are 
connected along the data sequence. RNNs are derived from 
transfer learning FFNNs. While FFNNs allow signals to travel 
in one direction from input to output only, RNNs allow infor-
mation to cycle in loops allowing dependencies between data 
points. Consequently, RNNs possess internal state (memory), 
where they retain information about past inputs based on its 
weights and on input data, allowing them to harness past infor-
mation to predict a later event (Figure 6). RNNs are commonly 
used for speech and language tasks, such as speech recogni-
tion and natural language processing. Of note, long-short-term 
memory (LSTM) networks are a subtype of RNN that extend the 
memory of RNNs.

Autoencoder and deep autoencoder
In the 1980s, Geoffrey Hinton designed the autoencoder (AE) to 
solve unsupervised learning problems. Autoencoders are a type 
of feedforward neural network for learning representation, in 
which the network receives the input and deconstructs it into 
an internal latent representation or code before reconstructing 
the input as closely to the original image as possible. Autoen-
coders consist of an input, an output, and multiple hidden layers 
(Figure  7). The training of the network can be unsupervised, 
with the goal of reconstruction error minimization: a measure 
of the differences between the original input and the reconstruc-
tion. Types of autoencoder include the multilayer autoencoder; 
the convolutional autoencoder, intended to reduce image noise 
or detect video anomalies; and the regularized autoencoder, 
intended to learn representations for subsequent classification 
tasks. Regular autoencoders have one layer between the input 
and output layer, whereas deep autoencoders have multiple 
hidden layers.

Generative adversarial network
Generative adversarial networks (GANs) are a branch of DL that 
I. Goodfellow introduced in 2014.17 GANs have been success-
fully applied to unsupervised image translation, domain adapta-
tion, image in-painting, and semi-supervised classification. They 
have also been studied for medical image synthesis.18,19

GANs entail simultaneous training of two adversarial models. 
The GAN architecture is composed of two networks, a Generator 
(G) and a Discriminator (D), which are trained in competition 
based on the two-person zero-sum game in game theory (one’s 
win is another’s loss). The Generator is responsible for generating 
data, and the Discriminator for estimating the probability that 
an image was drawn from the training data (is real) or produced 

Figure 6. Illustration for the architecture of recurrent neural network (RNN). RNNs are a class of neural network commonly used 
for text and sequence data. They allow previous outputs to be used outputs to be used as inputs while having hidden states. An 
important class of RNNs are long-short-term memory (LSTM) which have feedback connections are often used for time series 
analysis.
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by the generator (is fake). The objective of these models is to 
learn the training data distribution and subsequently generate 
realistic data samples indistinguishable from the input data. 
They perform this task by minimizing the loss function through 
a second adversarial network. During training, the Generator 
increasingly improves image generation until the Discrimi-
nator can no longer distinguish between the real and fake data 
(Figure 8).

TREATMENT RESPONSE APPLICATIONS
Brain cancer
Nie et al20 used multimodal images of 68 patients with high-
grade gliomas to develop a 3D DL framework to predict the 
survival time (long vs short) of patients with high-grade glioma. 
An independent dataset of 25 patients was used to validate the 
model. Their approach consisted of a multichannel architecture 
of 3D CNNs to identify and extract high-level features from 
T1-weighted MRI, resting-state functional MRI, and diffusion 
tensor MRI. Using extracted features as well as demographic 
and tumor-related features like gender, age at diagnosis, tumor 

Figure 7. Illustration of a basic autoencoder. An autoencoder is an unsupervised learning model assigned the task of trans-
forming the input image into a latent or compressed representation by minimizing the reconstruction errors between input 
and reconstructed images of the network. An autoencoder performs two tasks. It first encodes an image, and subsequently it 
decodes it. Encoding an image in this context means that the autoencoder generates a compressed representation of the original 
image. Conversely, the decoder takes the output from the bottle neck (latent space representation) and attempts to recreate the 
input image. For the autoencoder to reconstruct an image, it will need to learn some latent representation of the image. Latent 
representation refers to a set of compressed features of the image which are learned by the network through an iterative process 
of training, and which are subsequently used to reconstruct the desired image.

Figure 8. In Generative adversarial networks (GANs) consists of two models: the discriminator and the generator. GANs learn 
through deriving backpropagation signals through a competitive process involving a pair of networks.
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location, tumor size, and WHO grade, a support vector machine 
was used to predict overall survival time. The combination of 
deeply learned as well as demographic and tumor-related features 
resulted in a classification accuracy of 90.66% with threefold 
cross-validation, and 90.46% with 10-fold cross-validation.

In another study predicting overall survival in patients with glio-
blastoma multiforme, a proposed radiomics model used deep 
features extracted from CNNs based on transfer learning and 
handcrafted features based on radiomics analysis.21 The study 
consisted of 75 patients for training and an independent data set 
of 37 patients. Both handcrafted features (N = 1403) and deep 
features (N = 98304) were extracted from the preoperative multi-
modality MR images. After feature selection, a model was gener-
ated and a radiomics nomogram was constructed by combining 
signature and clinical risk factors. The radiomics signature 
outperformed traditional clinical risk factors such as age and 
the Karnofsky Performance Score for the prediction of overall 
survival (C-index = 0.710). The model combining the radiomics 
signature and traditional clinical risk factors further improved 
prediction performance (C-index = 0.739).

In a study by Kickingereder et al, a DL model using ANNs was 
developed for the quantitative assessment of tumor response.22 
Three datasets were used to train and test the model: Heidelberg 
training dataset (455 patients with brain tumors), Heidelberg test 
dataset (longitudinal dataset of 40 patients with data from 239 
MRI scans), and EORTC-26101 test dataset (MRI scans from 
532 patients obtained from 34 institutions). Using the Heidel-
berg training dataset, an ANN was developed for automated 
volumetric segmentation of contrast-enhanced tumors and 
non-enhancing T2-signal abnormalities on MRI. This ANN was 
derived from the authors’ previously developed ANN, itself based 
on a U-Net architecture.15 The newly developed ANN was asked 
to predict segmentation masks of contrast-enhanced tumors and 
non-enhancing abnormalities via an ANN ensemble model (five 
ANN models obtained from cross-validation of the Heidelberg 
training dataset) on the Heidelberg and EORTC-26101 test data-
sets. The tumor segmentation masks generated by the ANNs were 
shown to be highly accurate in comparison with a reference stan-
dard selected as the ground truth segmentation masks generated 
by a radiologist (median DICE coefficient = 0.89 for contrast-
enhanced tumors and 0.93 for non-enhanced abnormalities in 
the Heidelberg test dataset; 0.91 for contrast-enhanced tumors 
and 0.94 for non-enhanced abnormalities in the EORTC-26101 
test dataset). Moreover, the time to progression determined 
using ANN-based assessment of tumor response outperformed 
central RANO assessment for the prediction of overall survival 
in the EORTC-26101 test dataset (hazard ratios = 2.59 vs. 2.07; 
p < 0.001).

A study by Han et al combined hand-crafted radiomics and deep 
features generated by a pretrained CNN23 from gadolinium-
based contrast-enhanced T1-weighted images of patients with 
high-grade gliomas from both their institution and from The 
Cancer Genome Atlas. Feature selection followed by Elastic Net-
Cox modeling were performed to predict long- and short-term 
survivor groups. The model classified patients with high-grade 

gliomas into long- and short-term survivors (the log-rank test 
p value < 0.001 in patients from their institution, p = 0.014 in 
patients from The Cancer Genome Atlas, and p = 0.035 in all 
patients from both cohorts).

Breast cancer
In 2012, Hylton et al24 reported that MRI outperformed clinical 
assessment in predicting pathologic complete response (pCR) to 
neoadjuvant chemotherapy (NAC), using MR images from 216 
patients enrolled in the ACRIN 6657/1-SPY1 TRIAL. Tumor 
measurements on MRI were superior to clinical examination 
in predicting pCR to NAC at all timepoints. Particularly, tumor 
volume change at the second MRI examination obtained after 
one cycle of anthracycline-based treatment showed greatest 
predictive ability. This work motivated additional studies on the 
use of MRI to predict pCR, including those with DL tools.

Huynh et al25 compared CNN-extracted features from DCE-MR 
images at different contrast timepoints to determine which time-
point would result in the best classifier for predicting response to 
NAC, finding that CNN-extracted features based on pre-contrast 
time points yielded the best classifier.

Several studies investigated deep learning applied to MRI to 
evaluate response to NAC, using publicly available MR images 
from the multiinstitutional I-SPY1 TRIAL. Ravichandran et al26 
applied a CNN to pre-treatment dynamic contrast-enhanced MR 
images from 166 patients with breast tumors of at least 3 cm in 
size, who received DCE-MRI imaging prior to treatment, had at 
least two post-contrast phases of DCE-MRI, and had undergone 
post-NAC surgery. The classifier to predict pCR based on CNN-
extracted features from both pre- and post-contrast images 
achieved an accuracy of 82% in the testing set. The inclusion 
of HER2 status to the classifier improved the accuracy to 85%. 
Another study using MR images from the I-SPY TRIAL, Liu 
et al,27 developed a CNN algorithm to predict pCR vs no-pCR 
response to NAC based on post-contrast images only, which 
yielded an accuracy of 72.5%. Due to the high computational 
burden associated with training customized CNNs, Comes et 
al28 investigated a transfer learning approach, using the pre-
trained CNN AlexNET (previously trained to extract both low-
level features such as edge and dots and high-level features such 
as shapes and objects from a raw image), to evaluate the early 
efficacy of NAC before the completion of therapy. When opti-
mized features extracted from pre- and early treatment exams 
were combined with clinical features such as ER, PgR, HER2 and 
molecular subtypes, the classifier achieved an accuracy of 91.4% 
on the subset of patients used for fine-tuning, and 92.3% on the 
independent database.

Single-institution studies have also shown that deep learning is 
promising to predict response to NAC. Ha et al29 investigated 
a CNN to predict NAC response based on pre-treatment breast 
MRI for 141 patients with locally advanced breast cancer who 
had pre-treatment MRI followed by adriamycin/taxane-based 
NAC and surgical resection. Patients were divided into three 
groups based on NAC response: complete, partial, and no 
response/progression. Tumors underwent 3D segmentation on 



9 of 12 birpublications.org/bjro BJR Open;4:20210072

BJR|OpenReview article: Cancer Outcome Assessment Using MRI and Deep Learning Methods

the first post-contrast image. The CNN architecture consisted 
of ten convolutional layers, four max-pooling layers, and 50% 
dropout after a fully connected layer. The overall mean accu-
racy of the CNN was 88% (95% CI,±0.6%). In another study, the 
same group of authors30 developed a CNN algorithm to predict 
post-NAC pCR of the axilla using breast MRI performed before 
NAC. The proposed CNN algorithm achieved an overall accu-
racy of 83%. El Adoui et al31 evaluated a group of 42 breast cancer 
patients who had DCE-MR imaging before and after the first 
cycle of chemotherapy and developed a CNN that achieved an 
area under the receiver operating characteristic curve (AUC) of 
0.91 and accuracy of 88% using both the pre- and post-treatment 
examinations without segmentation (multi-input CNN). Using 
single-input CNN of pre-treatment examinations only or post-
treatment examinations only with or without segmentation 
achieved an AUC of 0.69–0.79 and accuracy of 68–80%.

In applying DL using both positron emission tomography/
magnetic resonance imaging (PET/MRI) scans obtained before 
and after the first cycle of NAC in patients with advanced breast 
cancer, Choi et al32 generated CNNs based on AlexNet that 
improved the classification of patients into pCR and non-pCR 
groups compared with the majority of conventional PET and MR 
imaging parameters.

Colorectal cancer metastases
Colorectal liver metastases (CRLM) are the third leading cause 
of cancer-related death in the US.33 The assessment of treatment 
response at preoperative chemotherapy is crucial to inform ther-
apeutic adjustments that maximize benefit. Zhu et al34 applied DL 
to MR images to predict CRLM response to chemotherapy. The 
study included 101 patients in the training cohort, 54 patients in 
the testing cohort, and an additional 25 patients as an external 
validation cohort. The DL architecture was designed to import 
four inputs: pre- and post-treatment T2-weighted image, and pre- 
and post-treatment apparent diffusion coefficient (ADC) images. 
The network was designed to extract features from the input data 
to distinguish pathology tumor regression grade (TRG) between 
the response and non-response group, as well as to distinguish 
survival outcomes after hepatectomy. Three models were devel-
oped: Model A (based on pre- and post-treatment MRI), Model 
B (based on pre-treatment MRI only), and Model C (based on 
post-treatment MRI only). The results of the DL algorithm were 
compared with RECIST to predict tumor response and deter-
mine survival outcome. The accuracy of Model A (accuracy of 
87.5%) was significantly higher as compared with Models B and 
C (accuracy of 79.7 and 85.9%, respectively) and RECIST (accu-
racy of 57.8%). The p-values for comparison were as follows: 0.04 
for comparison of Model A vs Model B, 0.04 for comparison of 
Model A vs Model C, and 0.03 for comparison of Model A vs 
RECIST.

Rectal cancer
The current standard-of-care treatment in patients with locally 
advanced rectal cancer (LARC) is neoadjuvant chemoradiation 
therapy (CRT) followed by total mesorectal excision (TME). 
Patients with pCR may be spared resection if followed with 
biopsy and MRI.35 Assessment of response to chemoradiotherapy 

can impact treatment decision-making for these patients. The 
availability of additional treatment options or non-operative 
approaches is a motivating factor for the assessment of treatment 
response. MRI plays an important role in treatment response 
assessment after chemoradiotherapy. However, distinguishing 
between therapy-induced scarring and residual viable tumor on 
T2-weighted sequences remains difficult.36

Recently, radiomics and DL methods have been used to predict 
pCR in patients with LARC. In a study, Shi et al37 extracted 
radiomic features from pre-treatment MRI T1- and T2-weighted 
images, axial DWI, and T1-weighted DCE-MRI. They used 
a three-layer ANN to select parameters and build diagnostic 
radiomics models. Additionally, a CNN was developed with the 
image input a tight bounding box covering the tumor region of 
interest (ROI). Results showed that CNN based on pre-treatment 
and mid-radiation therapy MRI achieved an AUC of 0.83 for 
predicting pCR vs non-pCR, whereas the model combining ROI 
and radiomic features achieved an AUC of 0.80 based on pre-
treatment images, 0.82 for mid-radiation therapy, and 0.86 for 
both pre-treatment and mid-radiation therapy images.

Radiomics methods provide a valuable mechanism for extraction 
of quantitative features from medical images. These can then be 
correlated with various biological features and clinical endpoints. 
Delta-radiomics is an emerging approach and an extension 
of radiomics based on the analysis of variations of radiomics 
features at different acquisition time points.38 The points are typi-
cally pre- and post-treatment, with the objective of predicting 
response.39 Delta-radiomic features have shown promise in 
predicting the response of colorectal liver cancer40 and meta-
static renal cell cancer41 to chemotherapies, as well as the analysis 
of CT images to determine the treatment response of non-small 
cell lung cancer to radiation therapy.42 One study, evaluating the 
ability of delta-radiomics to predict overall survival of patients 
with recurrent malignant gliomas who were treated with concur-
rent stereotactic radiosurgery and bevacizumab, indicated that 
delta-radiomic features potentially provided better treatment 
assessment than features extracted from a single time point.43 
While delta-radiomics is at an early stage, it has shown prom-
ising results in studies focusing on temporal changes of radiomic 
features in treatment response assessment. Delta-radiomics 
provides high-dimensional data, making machine-learning 
tools like DL suitable for feature analysis. An in-depth review 
providing detailed information on delta-radiomics is available 
elsewhere.38

In another study, Zhang et al44 developed DL models to predict 
response based on diffusion kurtosis and T2-weighted MRI from 
383 patients with LARC who underwent baseline MRI prior 
to preoperative chemotherapy. The DL network architecture 
consisted of a multipath CNN with eight inputs comprising T2-
weighted imaging and diffusion kurtosis imaging pre- and post-
treatment.45 Three DL models were considered. The first was for 
pCR prediction and second for TRG (0 + 1) and TRG (2 + 3) 
classification. The third model was for T-downstage and non-
T-downstage classification. The first model for pCR prediction 
achieved an AUC of 0.99, significantly better than the evaluation 
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by two radiologists (AUC of 0.66 for rater 1 and 0.72 for rater 2) 
(p < 0.001). The second and third models had AUC of 0.70 and 
0.79, respectively. The DL model also served to reduce radiolo-
gist error rate; when radiologists were assisted by the DL model 
in predicting pCR, their AUC significantly improved to 0.82 for 
rater 1 and 0.83 for rater 2 (p = 0.002 and 0.01, respectively). 
However, the diagnostic performance of the DL models for clas-
sifying TRG and T stage downgrading did not exceed the two 
radiologist evaluations.

As compared to radiomics analysis, applying DL methodology to 
evaluate tumor response to treatment using MRI offer several key 
advantages. First, DL approaches typically do not require precise 
tumor delineation. Second, they often outperform radiomic 
feature analysis. Third, they automatically learn and hierar-
chically organize task-adaptive image features. The extracted 
features might not be visually identifiable but reflect associations 
between the classifier and images, providing tremendous poten-
tial in clinical decision-making.

Challenges and opportunities of Deep-learning
DL has both numerous advantages over traditional machine learning 
and tremendous potential to transform MRI-based evaluation of 
tumor treatment response. CNN, a popular DL architecture, allows 
the network to independently learn by performing prediction tasks, 
such as identification of useful regions or extraction of salient features 
from those regions, without the need for human intervention.46,47 
CNN provides a general-purpose learning procedure for an end-
to-end image analysis workflow. CNNs learn specific patterns of their 
given task from the images themselves instead of relying on prepro-
cessing steps, ‘handcrafted’ features, or subsequent model building. 
The objective is for the network to automatically extract relevant 
features from images, resulting in easy clinical application. However, 
some challenges warrant consideration when constructing a network 
that incorporates DL into clinical decision-making. We present these 
below.

Data availability and annotation
A key challenge is the availability of data, specifically medical images 
related to the clinical task at hand. The lack of sufficient data for 
training DL models in medical image analysis can limit the ability of 
deep neural networks to perform adequately. This problem is further 
exasperated by the time-consuming, expensive, and error-prone 
process of medical imaging annotation. One common solution is to 
transfer learning from pretrained models, e.g., ImageNet. However, 
this approach could be ineffective in many instances due to differ-
ences in learned features between natural and medical images. To 
overcome the challenges associated with transfer learning, several 
novel approaches have been proposed.48–50 Alzubaidi et al proposed 
training the DL model on large, unlabeled medical image datasets. 
This knowledge is then transferred to train the DL model on the small 
amount of labeled medical images.50

Overfitting and class imbalance
Given the large number of parameters that need to be optimized, a 
major concern in DL is insufficient disease representation, which 
may result in overfitting or class imbalance. The design and eval-
uation of DL networks should consider the risks associated with 

overtraining and overfitting of a particular network, which can lead 
to poor performance on data that has not been used for training 
purposes. A reliable network must incorporate sufficient instances of 
disease and/or rare diseases that might not be fully reflected within 
the network architecture and could therefore lead to reduced perfor-
mance.51 Several solutions have been proposed to address the class 
imbalance problem. These include training the network with random 
undersampling, or removing some observations of the majority class; 
random oversampling, or higher sampling of the minority classes; 
Synthetic Minority Oversampling Technique (SMOTE)52 ; the 
NearMiss family of methods,53 which is an undersampling technique; 
and penalizing learning algorithms, which is a cost-sensitive training; 
among others.

Data bias
At least seven types of data bias have been identified in machine 
learning literature, including sample bias, exclusion bias, measure-
ment bias, recall bias, racial bias, and association bias. A complete 
survey of bias and fairness in machine learning is beyond the scope of 
this paper but the reader is referred to54 for further details. Tools exist 
to address these issues, such as dividing datasets to train the model 
and including datasets from multiple testing centers. Further data 
availability and the sharing of MR images across institutions would 
mitigate concerns regarding generalizability, as well as enhance confi-
dence in the reliability of DL methods for clinical use.

Interpretability: the ‘black-box’ approach
Another important challenge associated with DL models is the 
‘black-box’ approach, which focuses primarily on optimizing outcome 
performance. It provides limited insight into internal structures or 
features of the models that lead to treatment decisions based on given 
model inputs. This limitation effectively diminishes the confidence 
required for such implementations to be broadly accepted within a 
clinical setting. To address this well-recognized challenge, several 
investigators have advocated for approaches based on interpretable 
models from the beginning55 155. At present, there is no consensus 
on the proposed approach. Divergence exists among researchers who 
highlight interpretability of the models.55 For example, while Alex 
John London advocates optimal performance and predictive power 
as the primary basis for model evaluation,56 others prefer models that 
are highly transparent. They refer to these as ‘explainable medicine’ 
and require causality.57 This is an active area of research that will have 
a significant impact on the trajectory of the field.

Regulatory approval, ethical challenges, and 
reimbursement
Several key obstacles need to be overcome for DL methods to 
be widely accepted in a clinical setting. These include regulatory 
approval, which requires FDA approval in the USA and a separate 
approval process within the European Union. Further, DL imple-
mentation in clinical practice requires that legal and ethical issues of 
liability be resolved ahead of time. Finally, there must be a mechanism 
in which radiology AI can be reimbursed for usage. The current state 
of affairs is carefully reviewed by Chen et al..58
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