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Abstract. We investigated the effect of membrane 
splitting on the primary structure of human erythro- 
cyte membrane polypeptides. Monolayers of intact, 
chemically unmodified cells were freeze-fractured and 
examined by one-dimensional SDS PAGE. Silver- 
stained gels revealed all major polypeptides that stain 
with Coomassie Blue as well as all bands that stain 
with periodic acid Schiffs reagent. Both nonglyco- 
sylated and glycosylated membrane polypeptides 
could be detected at concentrations of only a few nan- 
ograms per band. Membrane splitting had no effect 
on the position or number of bands. Monolayers of 
intact erythrocytes that had been enzymatically ra- 
dioiodinated with lactoperoxidase were examined by 
electrophoresis, fluorography, and liquid scintillation 
counting. Radioactivity was quantified before and 
after monolayer formation and splitting, and at sev- 

eral stages of gel staining, drying, and fluorography. 
Although overexposed fluorographs revealed several 
minor radioiodinated bands in addition to band 3 and 
the glycophorins, no new bands were detected in split 
membrane samples derived from intact cells. These 
observations support the conclusion that neither the 
band 3 anion channel nor the glycophorin sialoglyco- 
proteins are fragmented during freeze-fracturing. Al- 
though both band 3 and glycophorin partition to the 
cytoplasmic side of the membrane, preliminary quan- 
titative observations suggest an enrichment of glyco- 
phorin in the split extracellular "half" membrane. We 
conclude that the process of membrane splitting by 
planar monolayer freeze-fracture does not cleave the 
covalent polypeptide backbone of any erythrocyte 
membrane protein, peripheral or integral. 

M A N Y permeability and signalling functions appear to 
be associated with membrane-spanning polypep- 
tides. In the human red blood cell (RBC), ~ for 

example, ion and glucose transport are mediated by integral 
transmembrane polypeptides (22, 39, 41). For other mem- 
branes, signalling functions have been explained in terms of 
structural models that require the interaction of two or more 
diffusible elements inserted into one or the other "half' of the 
lipid bilayer (6). Membrane-splitting by planar freeze-fracture 
could be used as a physical fractionation technique to establish 
the validity of such models, if the effects of splitting on 
membrane polypeptides were known. 

Current biochemical and cytochemical information about 
the effect of freeze-fracturing on membrane polypeptides is 
limited and somewhat contradictory. Some investigators who 
have studied freeze-fractured, radioisotopically labeled RBC 
membranes (9, 10, 28) have concluded that membrane span- 
ning glycoproteins fragment during splitting. Others have used 
cytochemical methods to examine reactive sites on fracture 
faces (33, 34) and concluded that reactive groups could be 
pulled through the membrane while also acknowledging that 

J HVG, heavy-glass fraction; PAS, periodic acid Schiffs reagent; PLG, PL-glass 
fraction; PL-glass, polylysine-treated coverglasses; RBC, red blood cell; RBCG, 
RBC white ghosts; TCA, tricholoroacetic acid; WCM, whole cell monolayers. 

the observations "could also be accounted for by the breakage 
of the amino acid chain" (34). However, both the biochemical 
and cytochemical approaches required enzymatic or chemical 
modification of the membrane and specific reactive sites. 
Thus several questions remain. What is the effect of splitting 
on integral membrane polypeptides in membranes that have 
not been chemically labeled or fixed? Do heavily glycosylated 
proteins, such as red cell glycophorin A, which contains a 
single membrane-spanning polypeptide chain (20, 25), behave 
differently from minimally glycosylated ones, such as the 
anion channel band 3, which spans the bilayer several times 
(36)? How can one explain the additional bands that have 
been seen in split radioiodinated membrane preparations? 

To answer questions about the effect of splitting on mem- 
brane proteins, we used planar freeze-fracture (13) of both 
unlabeled and lactoperoxidase radioiodinated (9) RBCs to 
produce split membrane polypeptides for analysis by one- 
dimensional SDS gel electrophoresis, silver-staining (27, 35), 
fluorography, and liquid scintillation counting. In contrast to 
previous studies (9, 28, 30), our approach was to quantify 
membrane splitting (19) by examining all polypeptides from 
both "halves" of the split membrane preparation and measure 
their recovery and distribution. We compared unlabeled pro- 
teins separated on gels and stained with silver to proteins 
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labeled by lactoperoxidase radioiodination and analyzed by 
fluorography and liquid scintillation counting. Silver staining 
has the sensitivity to detect the nanogram levels of polypep- 
tides produced by planar freeze-fracture (17, 27, 35). Fluorog- 
raphy and scintillation counting are not only sensitive but 
also allow reproducible quantitation. For chemically modified 
membranes, we used lactoperoxidase-catalyzed radioiodina- 
tion, since it is known to label the major transmembrane 
proteins of the red cell, notably band 3 and glycophorin A (9, 
29). 

The combination of techniques described above enabled us 
to investigate nonglycosylated polypeptides and sialoglyco- 
peptides derived both from chemically unmodified and en- 
zymatically modified membranes and "haiti' membranes. The 
data show that the covalent backbones of all native or labeled 
membrane polypeptides, whether peripheral, integral, trans- 
membrane, glycosylated, or unglycosylated, are not detectably 
modified by the freeze-fracture process. Importantly, these 
data show for the first time that membrane splitting can be 
used for analysis of functionally important transbilayer pro- 
teins without the analytical complications of covalent-bond 
cleavage. 

Materials and Methods 

Cell and Monolayer Preparation 
Human erythrocytes (A ÷) were washed (15), and white ghosts (RBCGs) were 
prepared by hypotonic lysis (7). Polylysine-treated, I l × 22-mm coverglasses 
(PL-glasses) were prepared as previously described (16), except here they were 
initially cleaned by immersion in hot (100*C) Isoclean detergent (Isolab Inc., 
Akron, OH), 2% (vol/vol). Pelleted cells or ghosts were diluted with V2 volume 
buffer, 50 ul were applied to each PL-glass, and unattached cells were removed 
by washing (15). 

Planar Monolayer Freeze-fracture 
Cell monolayers on PL-glass were sandwiched against a piece of heavy glass 
(12 x 24 x 0.6 mm), frozen in freezing liquid Freon-22 and fractured as 
described previously (15) to produce two fractions: the heavy-glass fraction 
(HVG) enriched in cytoplasmic membrane "halves," and the PL-glass fraction 
(PLG) enriched in extracellular membrane "halves." 

Neuraminidase Treatment 
Before monolayer formation, a portion of the washed RBCs (10% hematocrit) 
were treated at 37"C for 60 rain with Clostridium perfringens neuraminidase 
(Sigma Chemical Co., St. Louis, MO), 4 ug/ml, in 130 mM NaCI buffered with 
20 mM acetate to pH 5.5. 

Radioiodination 
Intact washed RBCs were radioiodinated with lactoperoxidase, according to the 
procedure of Mueller and Morrison (29) as cited by Edwards et al. (9). In a 
typical experiment, 2.0 ml of 310 imOsm phosphate-buffered saline, pH 7.4 
(PBS), contained 400 ul washed pelleted RBCs (20% hematocrit), 500 uCi 1251 
(New England Nuclear, Boston, MA), and 1.95 × 10 -7 M lactoperoxidase 
(Sigma Chemical Co.). Freshly prepared H20:(5  mM, 20 ul) was added once 
each minute for 10 min. Cells were washed 3× with PBS, then 5× with Hepes- 
buffered saline, HBS (10 mM Hepes, 142 mM NaCI, 5 mM Mg 2+, pH 7.4). 
Cells were routinely labeled with FITC-concanavalin A (15, 18), but processing 
for gel electrophoresis precluded the use of the double-labeled membrane 
splitting technique (15) to quantify the degree of membrane splitting. 

Lipid Analysis 
To evaluate the distribution of radioactivity, labeled cells were solubilized in 
SDS and analyzed using the Bligh and Dyer lipid extraction procedure (3). 
Aqueous and chloroform phases and the interface between the two phases were 
transferred to vials and dried under Nz at 50"C. The residue was solubilized in 
500 ul SDS borate with 15-s sonieation before adding 10 ml Aquasol I1 (New 

England Nuclear). Extraction tubes were washed with an additional 500 ul SDS 
borate, and the washes were transferred to vials. Silanized conical glass centri- 
fuge tubes and untreated glass scintillation vials were used throughout. Radio- 
activity was measured using a Beckman LS7000 Liquid Scintillation Counter 
(Beckman Instruments Inc., Fullerton, CA). 

Protein Analysis 
To evaluate radioactivity bound to protein, RBCs (100 #l) freshly labeled by 
lactoperoxidase iodination and column purified 05 )  were added to HBS (300 
#l) in a microfuge tube. Trichloroacetic acid (TCA) (50%, 100 ul) was added 
with vortexing. Samples were incubated in an ice bath for l0 min and centri- 
fuged in a Beckman Air-fuge at 16,000 g for 1 min. Supernalant (500 ul) was 
decanted into tubes, and pellets resuspended in SDS sample buffer (500 ul) 
with sonication. Tubes were washed with SDS, radioactivity measured by 
scintillation counting as described above, and total protein by the method of 
Lowry et al. (24). 

SDS PAGE 

Frozen cell monolayers, both unsplit and split, were either directly transferred 
from liquid nitrogen to Laemmli sample buffer (23) in teflon-capped glass 
scintillation vials, or first lyophilized and then transferred. Lyophilization 
(warming glasses from -196°C to 25"C in vacuo) facilitated quantitative recov- 
ery; dry samples neither diluted the sample buffer nor cooled it to temperatures 
favoring proteolysis. However, lyophilization often produced aggregates that 
failed to enter the separation gel. tn a typical experiment, 500 ul Laemmli 
sample buffer was preheated in a glass scintillation vial for 3 rain to 75"C or 
95"C. One to six monolayers were dropped one at a time into the hot buffer 
and swirled, and the vials were tightly capped. After heating for 5 min, vials 
were cooled to 20"C, sonicated for 5 s (15), and centrifuged to remove liquid 
from between glasses for 3 min at 3,000 rpm (Sorvall SS-34 rotor [Beckman 
Instruments, Inc.] with # 4 corks as cushions). Samples were transferred to 
conical tubes and each volume measured and adjusted to 600 ~1. Aliquots of 
50 or 80 u,l were transferred to 4 x 8 x 0.8-mm wells in a stacking gel (4.5% 
acrylamide, pH 6.8) overlying an 11.5% (or as indicated), pH 8.8, separation 
gel. After electrophoresis, gels were fixed and stained with Coomassie Blue (12), 
periodic acid SchitVs (PAS) reagent (12), or silver (27, 35), and photographed 
on a light box with Polaroid Type 55 film. Negatives or gels were scanned with 
a Mark III CS double-beam recording microdensitometer (Joyce-Loebl, Gates- 
head, England), and optical density peaks were integrated as previously de- 
scribed (13). 

Fluorography 
Gels were rinsed in distilled water, placed under water on top of a sheet of 
cellophane, 22 × 35 mm (Bio-Rad cat. no. 1650963 [Bio-Rad Laboratories, 
Palo Alto, CA]), supported by plate glass, 25 x 25 cm. A second sheet of 
cellophane was placed on top of the gel and overlaid with a frame of 2.5-cm 
wide strips of 6.4-ram thick glass. We clamped the entire sandwich under water. 
carefully avoiding air bubbles and stretching the cellophane tight. The clamped 
apparatus was removed from the water and dried horizontally for 2 to 3 h in a 
laminar air flow chamber, or overnight in a hood. Dry gels were exposed to 
Kodak X-Omat AR-5 x-ray film between Cronex Lightning Plus intensifying 
screens (Dupont Nemours and Co., Wilmington, DE) for 2 to 7 d at -100*C, 
warmed to 20"C, developed in Kodak GBX developer for 5 min, stopped in 
2% acetic acid for 30 s, fixed in Kodak GBX fixer for 5 min, and rinsed in 
distilled water for 10 min, all at 20"C. 

Quantification of Radioactivity in Gels 
To evaluate loss of radioactivity during gel processing after eleclrophoresis. 
labeled cells were electrophoresed in 0.8-mm thick slab gels as described above, 
and radioactivity was monitored during processing as described below. 

Untreated Gel Immediately after Electrophoresis (Fig. 3,4). Entire gel lanes, 
including the stacker, were cut into 5-ram wide strips and transferred to 600 ul 
H202 (30%) in vials. The vials were tightly capped (teflon liners), heated at 
75"C overnight, and cooled to 20°C. Aquasol II (10 ml) was added, and samples 
were counted in a Beckman LS7000 Liquid Scintillation Counter. Counts were 
corrected for background and quench. 

After Acetic Acid~Methanol Fix and Wash (Fig. 3B). Gels were transferred 
to 10% acetic acid in 50% methanol and stored for 12 to 15 h at 4"C. Solution 
volumes for this and subsequent treatments were 400 ml, temperature 20"C. 
Samples were cut and radioactivity was counted as in the section on Fig. 3A 
above. 

After Glutaraldehyde Fix and Methanol Wash (Fig. 3C). Gels were fixed 
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with 10% glutaraldehyde for 30 min, then washed five times with 15 % metha- 
nol, 20 min per wash. Samples were cut and radioactivity counted as in the 
section on Fig. 3A above. 

After Silver Stain (Fig. 31)). Gels were stained with silver according to 
Poehling and Neuhoff(35). Briefly, gels were washed with glass-distilled water, 
10 min; stained with 0.047 M silver nitrate, 7 rain; washed in glass-distilled 
water, 6 min; developed in citric acid-formaldehyde, 4 min; stopped in 1% 
acetic acid, 15 min; and washed and stored in glass-distilled water, 12-15 h. 
Samples were cut and radioactivity was coumed as in the section on Fig. 3A 
above. 

After Drying (Fig. 3E). Silver-stained gels were placed between two pieces 
of cellophane and dried on glass overnight as described above. Dried gels were 
cut and radioactivity was counted as in the section on Fig. 3A above. 

To quantify the radioactivity in the experiments reported in this paper, 
fluorographs were used as templates to mark radioactive regions on the dry gels 
for cutting. Cut dry strips were placed in 200 ul H20 at 75"C, and after 5 min, 
600 ul H202 was added and samples were processed as in the section on Fig. 
3.4 above. 

Preliminary accounts of selected aspects of this study were presented at the 
American Society for Cell Biology Meetings in San Antonio, TX, November, 
1982 (17), and Kansas City, MO, November, 1984 (19). 

Resu l t s  

Gel Electrophoresis/Silver-Staining 

To determine if the silver-stain techniques of  Merril et al. (27) 
and Poehling and Neuhoff(35) would be suitable for analysis 
of  nanogram quantities of  RBC membrane polypeptides, 
silver-stained gels of  RBCG concentration series were evalu- 
ated (Fig. 1). Even at total membrane protein loads as low as 
0.12 ug, all major bands typical of  the Coomassie Blue-stained 
gels of  human RBCG membranes could be seen with both 
methods. For bands 5, 6, and 7, which account for 4.5%, 
5.5%, and 3.4% of the total protein respectively (41), this 
represented a sensitivity of  3 to 5 ng, and for glycophorin, 
PAS 1 and 2 (PAS 1 monomer), which make up 6.7% of the 
total membrane protein, a sensitivity of ~7 ng. At loads in 
excess of I #g, numerous other bands could be seen. Although 
the Merril et al. (27) technique was used in initial studies, the 
Poehling and Neuhoff (35) method produced a clearer back- 
ground with less longitudinal streaking. In addition, the sial- 
oglycoprotein bands appear gray and nonglycosylated bands 
appear yellow-brown. 

Some bands between bands 4.2 and 5 (Fig. I, asterisks) 
were present at the lower protein loads and even in the absence 
of  protein (sample buffer only, not shown) or in other protein 
mixtures, such as molecular weight standards. Systematic 
deletion of  sample buffer components revealed that these 
bands appeared when the buffer contained 2-mercaptoetha- 
nol. Substitution of  dithiothreitol for 2-mercaptoethanol 
showed similar artifactual bands. The origin of these bands is 
controversial (32, 37). Although RBCG membrane solubilized 
in sample buffer lacking mercaptoethanol lacked the spurious 
bands, the reducing agent prevented high molecular weight 
aggregates, sharpened most bands, and thus was routinely 
included at a concentration of  2% in all sample buffers. 

Fig. 2 compares positions and relative intensities of  silver- 
stained bands (Fig. 2, E and F)  to those stained by Coomassie 
Blue (Fig. 2, A, B, G, and H). All bands stained by Coomassie 
Blue were also stained by the Merril et al. (27) or Poehling 
and Neuhoff (35) techniques. The relative intensities of  all 
bands were similar but not identical; for example, compare 
intensities of silver-stained bands 1, 2, and 3 to the other 
bands and note the higher relative intensities of  the Coomassie 
Blue-stained bands 1-3. Moreover, in the silver gel several 

Figure 1. Silver-stained gel of  RBCG m e m b r a n e  dilution series. Total 
protein loads in micrograms indicated at the top o f  the gel. Major  
RBC polypeptide bands  are designated at the left. Asterisks, region of  
spurious bands; Hb, hemoglobin.  Laemmli  slab gel, 0.8 m m  thick; 
4.5% acrylamide stacking gel, pH 6.8; 10.5% acrylamide separation 
gel, pH 8.8; 30 ul sample  applied. Stacker electrophoresis 8 m A for 1 
h; separation gel, 16 m A  for 2 h. Merril et al. (27) silver-stain. 

Figure 2. Gels of  control and neuraminidase-treated RBC m e m -  
branes. Port ions o f  two slab gels are shown and  each was divided 
after electrophoresis for staining with either Coomassie  Blue (lanes A 
and B) and  PAS (lanes C and  D) or silver (lanes E and  F)  and  
Coomassie  (lanes G and H). Total m e m b r a n e  protein applied indi- 
cated in micrograms at the top of each lane. The positions of glyco- 
sylated polypeptides before (broken lines) and after (solid lines) 
neuraminidase treatment (N) are indicated. Note that all four PAS- 
positive bands and their silver-stained counterparts lose intensity and 
shift in position after neuraminidase treatment. Slab gel parameters 
as in Fig. l, except separation gels 12.5% acrylamide; left gel (lanes 
A-D) 1.5 mm thick; right gel (lanes E-H) 0.8 mm thick. Merril et al. 
(27) silver-stain. On 12.5% gels, PAS 2 co-migrates with band 6 before 
neuraminidase treatment. 
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Table L Distribution of Radioactivity after Lipid Extraction 

Expt. 1 (n = 3) Expt. 2 (n = 4) Expt. 3 (n = 3) Overall % 

Sample Radioactivity % Total Radioactivity % Total Radioactivity % Total Distribution 

cpm* cprn* 

Water/MetOH 23,567 __. 3,644 30 16,409 _ 1,138 
Interface 2,859 - 538 4 1,521 _ 538 
Chloroform 5,476 --- 380 7 2,079 _ 198 
Tube surface 45,548 + 4,418 59 32,871 _+ 2,772 

cpm* % 

31 20,801 + 2,900 42 34 __+ 13 
3 1,865 + 2,358 4 4 - 1 
4 2,959 + 806 6 6 + 3 

62 23,332 - 3,564 48 56 - 15 

Total 77,450 52,880 48,957 

* Mean _ 2 SD. 

distinct additional bands are present (Fig. 2F, broken lines). 
In 12.5% acrylamide gels, one migrates just below band 3, 
one below band 4.2, one in the region of  band 6, and one 
between band 7 and hemoglobin. The positions of these bands 
are similar to those of  the major sialoglycoproteins of the 
RBC membrane: PAS 1, 4, 2, and 3 (from top to bottom) 
(26). 

Sialoglycoprotein Visualization 

To determine if these additional bands contained carbohy- 
drate, gels were stained with PAS (Fig. 2, C and D). The 
positions of  the four PAS-positive bands corresponded to the 
positions of  four of  the additional bands revealed by Merril 
et ai. (27) silver-staining (Fig. 2, E and F). In Coomassie 
Blue-stained gels, these bands were faintly visible only in 
overloaded gels (Fig. 2A, arrows). Parallel controls cut from 
this same gel and stained with SchilTs reagent without periodic 
acid pretreatment showed no bands. 

To determine if the PAS- and silver-stained bands con- 
tained sialoglycopeptides, we used neuraminidase to cleave 
N-acetyl neuraminic acid (sialic acid) residues from accessible 
oligosaccharides of  intact RBCs before electrophoresis (11). 
Representative examples of  the polypeptide and carbohydrate 
patterns of  neuraminidase-treated membranes are shown in 
Fig. 2, B, D, E, and G. Coomassie Blue staining (Fig. 2, A, B, 
G, and H) showed slight but detectable differences between 
neuraminidase-treated and untreated samples. Neuramini- 
dase treatment removed a faint band just below band 3 and 
enhanced the staining of  a band migrating near Mr 26,000 
(Fig. 2, B and G). Otherwise, the gels appeared identical. The 
positions of bands on 1.5-mm thick gels (Fig. 2, .4 and D) 
with 31- or 62-tzg total protein loads were very similar to those 
on 0.8-mm gels (Fig. 2, E and H) with 3- or 15-~g loads 
enabling a comparison of the heavily loaded, PAS-stained, 
thick gels (Fig. 2, C and D) with minimally loaded, silver- 
stained, thin gels (Fig. 2, E and F). Neuraminidase treatment 
altered the positions and the relative intensities of all four 
PAS bands (Fig. 2D). Although the PAS-positive bands were 
barely discernable after neuraminidase treatment (Fig. 2, solid 
lines), they could easily be seen after silver staining at only 
5% of the protein load required for PAS staining: 3 ug (Fig. 
2E)  vs. 62/~g (Fig. 2D). Although the PAS 2 (predominantly 
PAS ! monomers) bands of non-neuraminidase-treated cells 
co-migrated with band 6 in these 12.5% gels, they migrated 
more slowly than band 6 in 7.5% to 11.5% gels and could 
thus be independently resolved (Figs. 1 and 3). 

Table II. Distribution of Radioactivity after 
TCA -Precipitation 

Sample Radioactivity Distribution 

cpm* % total 

Supernatant 7,064 ___ 477 9 
Pellet 66,923 _ 6,961 89 
Tube 1,352 _ 860 2 

Total 75,339 

* Mean _+ 2 SD; n = 4. 

Distribution of  Radioactivity 

The distribution of radioactivity in lactoperoxidase-radioio- 
dinated cells was analysed by lipid extraction and protein 
precipitation. The results of  lipid extraction are shown in 
Table I. Approximately 6% of the radioactivity partitions with 
the chloroform phase. A significant fraction of denatured 
protein (56%) also adsorbed to the walls of  the glass tube. In 
experiment 1, the sum of the counts of individual fractions 
was compared to untreated controls: total recovery of activity 
was 97.5%. 

Table II shows that after TCA precipitation, 9% of the total 
radioactivity remained in the aqueous phase. This percentage 
was much higher if cells were not passed through an agarose 
column, suggesting the presence of free or noncovalently 
bound iodine immediately after labeling. The data in Tables 
I and II are consistent, given the following interpretation. In 
Table II, 91% of the radioactivity is TCA-precipitable and 
adsorbed. In Table I, adsorbed and interfacial activity account 
for 60% with the remaining 30% derived from the water/ 
methanol fraction (presumably from the sialoglycoproteins). 

To determine loss of  radioactivity during gel processing, 
0.8-mm thick slab gels were cut into strips and solubilized, 
and the radioactivity was measured by liquid scintillation 
counting. Fig. 3 summarizes the results; 56% of the total 
activity is removed during gel processing and staining. In a 
separate set of  experiments, the total activity loaded per lane 
was compared to the summed activities of  sliced lanes im- 
mediately after electrophoresis. Recovery was 86 _+ 7% (mean 
_ 2 SD, n = 3). 

Because of the significant loss of radioactivity during proc- 
essing, several untreated gels were dried immediately after 
electrophoresis and fluorographed. Comparison of fluoro- 
graphs of untreated control gels to those of  silver-stained gels 
showed that controls possessed the same major bands as 
stained gels. Although there was a general loss of radioactivity 
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in stained gels, there was no selective loss during processing. 
Second, controls showed the same location of radioactivity as 
stained gels as well as additional minor bands. These minor 
bands were also detected in over-exposed stained gels and 
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Figure 3. Loss of radioactivity during gel processing. (A) Untreated 
gel immediately after electrophoresis. (B) After acetic acid/methanol 
fix and wash. (C) After glutaraldehyde fix and methanol wash. (D) 
After Poehling and Neuhoff(35) silver stain. (E) After drying. 

were present in both split and unsplit samples. Third, controls 
showed the same relative intensity among labeled bands as 
stained gels (also verified by scintillation counting); i.e., loss 
of  radioactivity was proportionally the same for all bands. 
Given these findings, gels were silver-stained, dried, and proc- 
essed for fluorography, and the bands were cut out for scin- 
tillation counting. 

Split, Unlabeled Cell Monolayers: Silver-Staining 

The effects of  freeze-fracture on unlabeled cell monolayers 
were identical to those on lactoperoxidase-radioiodinated 
RBC monolayers (Fig. 4). Triplicate samples of unsplit whole 
cell monolayers (WCM) and paired complementary PLG 
fractions enriched in extracellular fracture faces, E-faces (4), 
and HVG fractions enriched in cytoplasmic fracture faces, P- 
faces, are shown flanked by molecular weight standards. Nu- 
merous polypeptide bands in addition to membrane bands 
can be seen. Hemoglobin migrates near the front of  the gel 
and serves as a marker of  the percentage of splitting. Note the 
reduced intensity of  all bands on the PLG side relative to the 
HVG side; i.e., most of the cell and membrane protein 
remains with the cytoplasmic side of the split. The presence 
of hemoglobin on the PLG side of the split represents intact, 
unsplit cells. Although there were minor differences in the 
intensities of  specific bands relative to each other, all major 
bands were present in both extracellular and cytoplasmic 

Figure 4. Gel and autoradiographs of lactoperoxidase-radioiodinated intact and freeze-fractured human red cells. Silver stained gel, left, its 
matching fluorograph, center, and duplicate unstained-gel fiuorograph, fight. Gel lanes show duplicate sets of unsplit whole cell monolayers 
(WCM) and split complementary polylysine-glass (PLG) fractions, and heavy-glass (HVG) fractions, flanked by molecular weight standards 
(STD). Radioactive regions of the left gel set were cut for scintillation counting using the center fluorograph as a template. Note that the anion 
channel, band 3, and glycophorin bands, PAS 1 and 2, are heavily labeled; and all bands in the split fractions have matching counterparts in 
the unsplit control, whether silver-stained or radiolabeled. The right fluorograph is of a gel co-electrophoresed with the left silver-stained gel, 
but dried immediately after electrophoresis and before staining. For identical exposure, band intensities are higher and minor bands visible, 
but no new bands can be detected in the split samples relative to the unsplit WCM. 
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fractions, and no new bands could be detected. Both PAS 1 
and PAS 2 regions are more discernible in this gel than in this 
black and white print, since the sialoglycoprotein bands stain 
gray, whereas most of  the bands stain yellow-brown in the 
Poehling and Neuhoff(35) procedure. We have also examined 
single membrane monolayers produced from cell or ghost 
monolayers that were lysed, hydraulically sheared, and freeze- 
fractured (Fisher and Yanagimoto, manuscript submitted for 
publication). In those studies as well, gels clearly show the 
presence of  all original membrane bands and absence of  any 
new bands. Inclusion of protease inhibitors such as phenyl- 
methylsulfonyl fuoride in all solutions, including sample and 
running buffers, resulted in identical patterns in unattached 
and unsplit, or attached and unsplit or split cell and mem- 
brane monolayers. 

phoresis, this sample was lyophilized, a procedure that favors 
such aggregation. 

The data from four separate radioiodination experiments 
are given in Table III. Data have not been corrected for 
sampling differences between unsplit and split preparations 
and thus the sums of the splits (PLG + HVG) do not match 
the controls (WCM). However, the complementary PLG and 
HVG fractions of each split were sampled from equal volumes 
and thus may be compared. In all unsplit samples, band 3 is 
most heavily labeled, followed by PAS 1 and PAS 2. 

To determine if both glycosylated and band 3 polypeptides 
co-partition to the same side of  the membrane after splitting, 

Split, Labeled Cell Monolayers: Fluorography 

Fig. 4 shows a gel of  split and unsplit radioiodinated mem- 
brane polypeptides visualized by silver staining (Fig. 4, left) 
and its companion fluorographs (Fig. 4, center and fight). 
Triplicate samples of  unsplit WCM and paired complemen- 
tary split PLG and HVG fractions are shown. The fluorograph 
(Fig. 4, center) of  this silver-stained gel was used as a template 
to cut out the radioactive bands in one set of  samples (far left) 
for solubilization and scintillation counting. Fig. 4, right, is a 
fuorograph of an identical but unstained gel. The stained and 
unstained gels were loaded with identical samples and electro- 
phoresed simultaneously in the same chamber. Neither of  
these representative fluorographs shows the presence of any 
bands in the PLG (E-face enriched) or HVG (P-face enriched) 
samples that are not also present in the unsplit sample. 

Fig. 5 shows a fluorograph after a 7-d exposure. Fluoro- 
graphs of  dried gels of  split samples were routinely overex- 
posed in an attempt to detect new bands that might indicate 
polypeptide cleavage. No distinct new bands have ever been 
observed, although occasionally a broad region of faint activ- 
ity between PAS 2 and PAS 3 has been detected (Fig. 5). By 
densitometry, such areas represent <1% of the total radioac- 
tivity. The presence of  such regions often correlates with the 
presence of  aggregated material at both the sample well/ 
stacker and stacker/separation gel interfaces. Before electro- 

Table IlL Partitioning 

Figure 5. Looking for minor bands. Fluorograph exposed for 7 d. 
Note numerous minor bands in the regions between PAS 1 and 2, 
and 2 and 3. The broad bands between 2 and 3 (asterisk) have also 
been seen in PLG E-face enriched "hair' membrane preparations. 

of Radioactivity between PAS Bands and Band 3 

Expt. 1 Expt. 2 Expt. 3 Expt. 4 

Unsplit Split Unsplit Split 

WCM PLG HVG WCM PLG 

Unsplit Split Unsplit Split 

HVG WCM PLG HVG WCM PLG HVG 

Radioactivity (cpm) 
Band 3 
PAS 1 
PAS 2 
PAS 3 

Ratios 
PAS I + 2/Band 3 
PAS 3/Band 3 

Synopsis of ratios 
(mean -+ SD) 

PAS 1 + 2 /Band  3 
PAS 3 /Band  3 

521 183 585 1,400 258 1,048 
151 65 211 407 83 266 
110 69 161 358 88 280 
47 20 48 231 48 74 

0.50 0.73 0.64 0.55 0.66 
0.09 0.11 0.08 0.16 0.19 

Unsplit 

WCM 
0.58 ___ 0.09 
0.13 __+ 0.05 

0.52 
0.07 

Split 

ND* 187 816 148 48 144 
ND 43 97 58 15 42 
N D  33 169 43 13 27 
N D  N D  N D  ND N D  ND 

N D  0.41 0.33 0.68 0.58 0.48 
N D  N D  ND ND ND ND 

PLG 
0.60 + 0.14 
0.15 ___ 0.05 

HVG 
0.49 ___ 0.13 
0.08 __+ 0.01 

* ND, not determined. All data as corrected cpm. 
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the activity in gel bands was analysed by liquid scintillation 
counting as previously described. Table III summarizes the 
results of four experiments and also provides a synopsis of 
the fraction of label found in PAS bands relative to band 3. 
Two additional experiments showed unexplainably high ratios 
of PAS activity relative to band 3 and/or high molecular 
weight aggregates and have not been included. Comparison 
of split PLG and HVG samples to unsplit controls revealed 
that, relative to band 3, the amount of PAS polypeptides for 
both the summed PAS 1 and PAS 2 bands and for the PAS 3 
band were slightly higher on the PL-glass side of the split (E- 
face enriched fraction) than the unsplit control membrane. 
Similarly the complementary HVG side (P-face enriched frac- 
tion) shows a depletion of PAS polypeptides (lower ratio of 
PAS 1 + 2/band 3 and of PAS 3/band 3) relative to the intact 
membrane. Although these data suggest an asymmetric par- 
titioning of the two classes of transmembrane polypeptides, 
statistical analyses show the precision of the data to be poor. 
For example, the difference in PAS 3/band 3 ratios between 
the PLG cytoplasmic and HVG extracellular fractions is 
significant only at the 80% level of confidence. 

Discussion 

The present report describes the effect of freeze-fracture on 
transmembrane polypeptides of both chemically unmodified 
and enzymatically labeled erythrocytes. In studies of unmod- 
ified membranes, silver-stained gels have both theoretical and 
practical advantages for the study of membrane glycoproteins. 
One can examine unlabeled polypeptides whose relative mo- 
bility on gels might otherwise be altered by chemically or 
enzymatically induced cleavage, aggregation, or conforma- 
tional rearrangement (1, 5). In addition, silver binds not only 
to nonglycosylated peptides, but, as shown here, to glycopro- 
reins, as well as to nucleic acids (2, 40) and lipopolysaccharides 
(42). Finally, sialoglycoprotein bands can be readily distin- 
guished from other bands because the total amount of protein 
applied to the gel is small, and resolution increases with 
decreasing protein concentration. From a practical viewpoint, 
the method is simple, rapid, and sensitive (27). 

We first observed staining of sialoglycoprotein by silver (17) 
using the techniques of Merril et al. (27). Recently Dzandu et 
al. (8) published similar findings using a double-stain ap- 
proach followed by Coomassie Blue. In contrast to their report 
(8), however, and as described in our previous (17) and present 
reports, we find that both Coomassie Blue and PAS-positive 
bands stain with the Merril et al. (27) and the Poehling and 
Neuhoff (35) silver methods. Relative to the method of Merril 
et al., the Poehling and Neuhoff method has several advan- 
tages. First, the background is clear and thus especially suited 
for densitometry. Second, the PAS-positive bands stain gray. 
Even in gels of whole cells containing numerous bands, they 
can be distinguished from the yellow-to-brown staining bands. 
And third, because the amount of total protein applied to the 
gel in the silver stain method is much smaller than that applied 
in the combined Coomassie Blue/silver stain method, band 
sharpness (resolution) is significantly improved. Disadvan- 
tages are those common to SDS PAGE. For example, mem- 
brane glycoproteins migrate anomalously on SDS gels (26, 
38), and, thus, gels cannot be used to establish definitive 
molecular weights. A disadvantage unique to the silver stain 
procedure is that spurious bands appear in the band 4.5 

region. Furthermore, the mechanism of silvering has not been 
established (35), although a chemical explanation has been 
proposed (21). 

The silver gel patterns and fluorographs of the split mem- 
brane preparations revealed several interesting features. There 
were no new bands generated nor old bands lost, suggesting a 
lack of significant cleavage of the covalent backbones of any 
membrane peptide during freeze-fracture. This was true for 
peptides derived from integral, transmembrane proteins 
whether minimally (band 3) or heavily (PAS 1, 2) glycosy- 
lated; and it is similarly true, as anticipated (14), for peripheral 
proteins. Although all classes of RBC membrane peptides 
partitioned to the cytoplasmic side of the membrane after 
splitting, there were some indications of enrichment or deple- 
tion of certain bands relative to others. When split fractions 
were compared to intact controls, for example, there was a 
decrease in glycophorin A relative to band 3 on the cyto- 
plasmic side and a concomitant increase on the extracellular 
side. These observations, however, have been inconsistent, 
due in part to the difficulty of accurately quantifying silver 
gels (35), and minimal enrichment of P-face membrane pro- 
teins on the HVG side and of E-face proteins on the PLG 
side of split monolayers. Furthermore, we were unable to use 
the double-labeled membrane splitting approach (15) to quan- 
tify fractions of extracellular or cytoplasmic "halves," since 
heating in Laemmli sample buffers containing mercaptoeth- 
anol significantly altered both hemoglobin absorbance and 
FITC fluorescence signals. 

Although defnitive quantitative determinations of trans- 
membrane distributions of individual polypeptides await fur- 
ther studies, the limits to detecting the cleavage of covalent 
bonds by the methods described in this report can be esti- 
mated. Although we routinely discard "poor" splits, such a 
split can serve as a worse-case example of enrichment and 
detection of fragmented polypeptides. In a "poor" split, 75% 
of the hemoglobin partitions to the HVG side and 25% 
remains on the PLG side of the freeze-fractured monolayer. 
From our previous studies we know that 33% of the total 
surface of the cell is bound and split (13). Thus, in the PLG 
fraction ~25% (75% x 33%) of the total membrane is split 
and 25% (25% x 100%) is unsplit; in other words, given 
random partitioning, a maximum of 50% of all polypeptides 
could be derived from split membrane. However, both band 
3 and the glycophorins partition preferentially to the HVG 
side, with the cytoplasmic side of the membrane. Assuming 
that 75% of split band 3 and the glycophorin bands partition 
to the cytoplasmic side, then 25% of those split polypeptides 
would remain in the PLG fraction. Thus only 12.5% (25% x 
50%) of the transmembrane peptides detected in the PLG 
fraction would be derived from split membrane. In this report, 
we determined by densitometry that the putative "new ma- 

. terial" (asterisk, Fig. 5) is < 1% of the total activity in the PLG 
fraction. If this "new material" indeed represented polypep- 
tide fragments, then the amount must be <8% (1%/12.5%) 
of the total split polypeptides. Given a more realistic 90% 
HVG to 10% PLG split, where no "new material" can be 
detected, (i.e., the "new material" is <1% of the total), the 
amount of fragmented polypeptide, if it exists, must be much 
less than a few percent of the total split polypeptide fraction. 
The methods of fluorography, densitometry, and liquid scin- 
tillation counting used to quantify splitting are thus not 
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limiting at this level ofdetection. Furthermore, from previous 
experiments we know that our recovery of peptides in the 
split membrane fractions is >98%. Because all membranes 
and all polypeptides are electrophoresed, it is unlikely that we 
have lost peptide fragments. Finally, in recent experiments 
with sheared single-membrane monolayers, we have produced 
a theoretically pure fraction of cytoplasmic "half" mem- 
branes. We have found no evidence of covalent bond cleavage 
in these fractions. In other words, if transmembrane cleavage 
does occur, it is quantitatively trivial. 

The observations and canclusions in this report differ from 
those of others. Using the planar cell monolayer technique 
(13), Morrison and collaborators (9, 28) and Nermut (31) 
examined radiolabeled RBCs, observed new bands in fluoro- 
graphed gels of the split preparations, and concluded that 
membrane spanning glycoproteins had been cleaved (9, 10, 
28). We have been unable to reproduce these observations, 
even though we have used similar lactoperoxidase-catalyzed 
radioiodination and planar cell monolayer preparation pro- 
cedures (13). There were several experimental differences, 
however. First, we have used glass/glass preparations rather 
than copper/glass or copper/mica for freeze-fracture. We 
wished to recover and quantify both sides of the split prepa- 
ration and found that copper interfered with SDS PAGE 
analysis. Second, we have used smaller glasses (11 x 22 mm 
vs. 24 x 50 mm), which allowed us to solubilize membrane 
polypeptides in small volumes suitable for direct sampling for 
electrophoresis without centrifugation, dialysis, or concentra- 
tion. Third, our cells were labeled with FITC-concanavalin A 
in addition to ~2sI for reasons not relevant to this report, but 
data from parallel experiments using unlabeled cells produced 
identical results. Finally, we have taken care to monitor 
distribution of radioactivity during and after labeling and 
during and after gel processing. With these approaches we 
have detected no new bands. 

How can one explain the additional bands observed by 
others? There are at least two plausible explanations: prote- 
olysis and/or minor band enrichment. Proteolysis would be 
favored, for example, by thawing the samples (9), pooling 
samples in dilute (0.1%) SDS followed by concentration and 
dialysis, or chemically labeling dilute samples after freeze- 
fracturing (9, 30, 31). It should be emphasized, however, that 
even though we have used proteolytic inhibitors in other 
experiments, none were used in the studies described in this 
report, and yet no new bands were seen. We have observed 
enrichment for minor lactoperoxidase radioiodinated bands, 
however, by pooling twelve 11 × 22-ram coverglasses that 
had been scraped and broken under liquid nitrogen to remove 
all unfractured areas (9). A broad band of activity could be 
detected between PAS 2 and PAS 3. Control unfrozen and 
unfractured cells, however, also showed faint activity at pre- 
cisely the same region, suggesting proteolysis during process- 
ing. 

Our observations are generally consistent with those of 
Pinto da Silva et al. (33), who have shown that band 3 
partitions to the cytoplasmic side of thesplit RBC membrane. 
Considering the numerous technical differences between frac- 
ture-label (multiple chemical fixation and freeze-thaw cycles) 
and planar membrane splitting (cationic adsorption and sand- 
wiching), it is perhaps surprising to find similar results in the 
partitioning of band 3 (33) to the cytoplasmic "halt" and 

glycophorin to the extracellular "half" of the membrane (34). 
Although we do find weak evidence for enrichment ofglyco- 
phorin A on the extraceUular "half" of the membrane, it also 
partitions intact with the cytoplasmic leaflet. Because the split 
membrane polypeptides retain their oligosaccharides and mi- 
grate on SDS gels with unchanged relative mobility, it is likely 
that the carbohydrate contributes to the structure of the 
intramembranous particle. The partitioning pattern of PAS 3 
relative to band 3 suggests that it preferentially partitions to 
the extracellular leaflet of the split membrane. 

In summary, both qualitative and quantitative analyses of 
membrane proteins have revealed that the polypeptide back- 
bones of both glycosylated and nonglycosylated membrane 
proteins, whether peripheral or integral, remain intact during 
the process of membrane splitting. Thus planar monolayer 
freeze-fracture, a'physical fractionation approach, can provide 
a unique new tool for investigations of the molecular mech- 
anisms of protein-mediated transmembrane phenomena. 
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