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Abstract

Background

As Zika virus continues to spread, decisions regarding resource allocations to control the

outbreak underscore the need for a tool to weigh policies according to their cost and the

health burden they could avert. For example, to combat the current Zika outbreak the US

President requested the allocation of $1.8 billion from Congress in February 2016.

Methodology/Principal Findings

Illustrated through an interactive tool, we evaluated how the number of Zika cases averted,

the period during pregnancy in which Zika infection poses a risk of microcephaly, and prob-

abilities of microcephaly and Guillain-Barré Syndrome (GBS) impact the cost at which an

intervention is cost-effective. From Northeast Brazilian microcephaly incidence data, we

estimated the probability of microcephaly in infants born to Zika-infected women (0.49% to

2.10%). We also estimated the probability of GBS arising from Zika infections in Brazil

(0.02% to 0.06%) and Colombia (0.08%). We calculated that each microcephaly and GBS

case incurs the loss of 29.95 DALYs and 1.25 DALYs per case, as well as direct medical

costs for Latin America and the Caribbean of $91,102 and $28,818, respectively. We dem-

onstrated the utility of our cost-effectiveness tool with examples evaluating funding commit-

ments by Costa Rica and Brazil, the US presidential proposal, and the novel approach of

genetically modified mosquitoes. Our analyses indicate that the commitments and the pro-

posal are likely to be cost-effective, whereas the cost-effectiveness of genetically modified

mosquitoes depends on the country of implementation.
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Conclusions/Significance

Current estimates from our tool suggest that the health burden from microcephaly and GBS

warrants substantial expenditures focused on Zika virus control. Our results justify the fund-

ing committed in Costa Rica and Brazil and many aspects of the budget outlined in the US

president’s proposal. As data continue to be collected, new parameter estimates can be

customized in real-time within our user-friendly tool to provide updated estimates on cost-

effectiveness of interventions and inform policy decisions in country-specific settings.

Author Summary

Using data on Zika virus, microcephaly, and Guillain-Barré syndrome cases from Brazil
and Colombia, we compute ranges for the probability of a microcephaly outcome in
infants born to Zika-infected women (0.49% to 2.10%, based on data from Northeast Bra-
zil) and the probability of Guillain-Barré syndrome in Zika-infected individuals (0.02% to
0.06% in Brazil and 0.08% in Colombia). These results have allowed us to create a web-
based cost-effectiveness tool that quantifies the relationship between the cost of an inter-
vention and the number of Zika virus cases, as well as loss of disability-adjusted life years,
that it can avert. Our tool thus identifies the threshold at which a given intervention, such
as vector control, may be deemed cost-effective or very cost-effective in a variety of settings
according to WHO criteria, in terms of the Zika burden that could be averted and the cost
of such an intervention.

Introduction
In April 2015, the first confirmed case of mosquito-borne Zika virus in the Americas was
reported in Brazil [1]. Since then, the virus has spread to 41 countries and territories across the
Americas, Oceania, the Pacific Islands, and Africa [2], with over 1.5 million suspected and con-
firmed cases [1]. In the US, sexually transmitted or travel associated cases have been reported
in 40 States and the District of Columbia. Furthermore, transmission has been reported in the
Commonwealth of Puerto Rico, the Virgin Islands of the US, and the Territory of American
Samoa [3]. There are projections of millions more cases in both the countries Zika has already
reached and others within which it has yet to emerge [1], including predictions of local trans-
mission in the Gulf Coast of the US [4]. There is strong scientific consensus that Zika virus can
cause Guillain–Barré syndrome (GBS) [5] and that a Zika infection in pregnant women can
cause microcephaly in their infants [1,6,7], vision-threatening ocular lesions [8], in utero
growth restriction, fetal deaths, stillbirths, and central nervous system lesions [9]. On February
1, 2016, the World Health Organization (WHO) declared the outbreak an International Health
Emergency [10]. Without vaccines or medication to treat Zika infections, vector control
remains the only immediate option to combat this outbreak.

However, there are hesitations regarding whether extensive efforts likely necessary to con-
tain Zika, such as intensive scale-up of vector control, the application of insecticides, or the
implementation of new technologies that could include genetically modified orWolbachia-
infected mosquitoes, would be worth the substantial costs, logistical challenges, and potential
environmental repercussions [11]. For example, genetically engineered male Aedes aegypti, the
offspring of whom die prior to maturity, are being piloted against the ongoing Zika outbreak.
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This approach is relatively expensive for middle income countries, requiring $1.9 million in the
first year and $384,000 each year thereafter for an urban population of 50,000 [12].

The investment in Zika control should be considered relative to the disease burden that
could be averted and the resources available in the country. For example, the Brazil National
Development Bank has allocated $136.6 million [13] towards combating mosquito-borne dis-
eases. The Costa Rican Department of Social Security has committed $745,724 for community-
led elimination of breeding sites, through removal of containers of stagnant water in high-risk
regions, and the Ministry of Health is planning on allocating $373,712 exclusively to the con-
trol of Zika. Considering the populations in Brazil and Costa Rica, these investments represent
only about $0.66 and $0.23 per citizen, respectively. Moreover, while Brazil and Costa Rica
have similar per capita income, the same investment would be valued differently in countries
with different resource constraints. Cost-effectiveness analysis provides a framework under
which such investments can be studied for each particular case. As with any global pandemic,
international effort to control the outbreak should be led by agencies such as the WHO and by
countries with the resources and expertise necessary to confront the threat. To combat the cur-
rent Zika outbreak, the US President requested from Congress in February the allocation of
$1.8 billion [14]. Of this total, $250 million has been allocated to the Commonwealth of Puerto
Rico for the prevention of Zika infection in pregnant women and for medical costs associated
with Zika. To curtail the Zika outbreak internationally, the United States Agency for Interna-
tional Development would receive $335 million and the State Department $41 million to
address Zika in Latin America and the Caribbean. The remaining requested funds would be
directed towards outbreak management in the US, expanded vector control measures, and vac-
cine development. Fundamental to these investment decisions is the quantification of the costs,
including any environmental risks, of an intervention balanced by its value in terms of the
health burden that it would likely avert. We offer quantitative insight into the health burden
that an unchecked Zika epidemic might incur and provide an interactive web application
(http://zika.cidma.us/) that can be employed by health authorities to evaluate the cost-effective-
ness of programs under consideration for Zika control.

This study aims to evaluate the cost-effectiveness of expenditures towards Zika control
intervention, based on available data. To support these calculations, we also estimated the
probability of microcephaly arising from a Zika-infected pregnancy, parameterized with case
data from Northeast Brazil, and the probability of GBS following a Zika infection, using Brazil-
ian and Colombian case data. We further estimated the number and burden of cases of Zika-
linked microcephaly and GBS expected to occur across the Americas in 2016, should the Zika
epidemic remain unabated. We also provide thresholds of price and effectiveness combinations
for interventions that would satisfy WHO criteria for cost-effectiveness. Additionally, our
interactive web tool has the flexibility to be updated as more information becomes available on
this emerging disease.

Methods

Microcephaly
We estimated the probability of a microcephaly case given a Zika infection during the first tri-
mester of pregnancy, as the proportion of the Zika-related microcephaly births among all
births to mothers infected with Zika during the first trimester of pregnancy [15]. Our web tool
also has the flexibility to adjust the duration of risk during pregnancy, as reports emerge sug-
gesting that the risk could extend beyond early pregnancy.

Birth counts are totaled for the outbreak in Northeast Brazil, where Zika was first confirmed
to have reached Latin America in mid-April 2015 [1, 16] and where cases have already begun
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to decline [17]. Given our assumption that only first-trimester Zika infections can cause micro-
cephaly, we expect Zika-liked microcephaly to begin arising around October 15, 2015, six
months after the first infection. Cumulative case data on suspected and confirmed microceph-
aly cases were obtained for Northeast Brazil until April 2, 2016, with the first report containing
cumulative case counts from November 15, 2015 [17]. To forecast the microcephaly cases yet
to arise, we applied a linear regression over the weekly reported cases for 2016 in Northeast
Brazil [17].

Excess microcephaly cases, above what would be expected for Northeast Brazil during this
time period, were assumed to be linked to Zika infection. This excess is calculated as the differ-
ence between the estimated total microcephaly cases during the outbreak in Northeast Brazil
and the expected non-Zika related microcephaly births for the same duration and region. To
estimate the total microcephaly births for the Northeast Brazil outbreak, we took into account
the reporting sensitivity, i.e., the proportion of confirmed cases from among all investigated
microcephaly cases in the region [17] and the expected total reported microcephaly births. The
estimated total reported microcephaly births is then the sum of our forecast of newly reported
microcephaly cases for the remaining outbreak in Northeast Brazil and the latest available
reported microcephaly cases for Northeast Brazil (5,380 as of April 2, 2016).

The expected microcephaly cases attributable to causes other than Zika were based on prev-
alence estimates of microcephaly prior to the outbreak from Brazil (0.5 per 10,000 births) [18]
and the highest reported prevalence from the US (12 per 10,000 births) [19] to account for pos-
sible underreporting before the outbreak. These prevalence values were multiplied by expected
births during the Zika-related microcephaly outbreak in Northeast Brazil to estimate expected
microcephaly from other causes. The expected births during the outbreak in Northeast Brazil
were estimated from the fraction of the Brazilian population in Northeast Brazil (28%) [20],
the Brazilian population [21], and the Brazilian birth rate (14.931 per 1000 population) [22].

Since the attack rate in Northeast Brazil is unknown, to estimate the births by mothers
infected in their first trimester, we used attack rates ranging from 23.5% (reported for the latest
outbreak in Puerto Rico of chikungunya [23], a related arbovirus transmitted by the same mos-
quito species) to 77% (upper bound for Zika outbreak in Yap Island, Micronesia in 2007 [24]).
The 2013–2014 French Polynesia Zika outbreak had an attack rate between those two bounds
(66% [95%CI: 62–70] [15]). The supplement provides a table of the parameters used and their
sources, as well as a flow diagram of the equations underlying our calculations of the probabil-
ity of microcephaly given a Zika infection during the first trimester of pregnancy (S1 Table and
S1 Fig).

The probability of microcephaly given Zika infection, in the absence of interventions tar-
geted towards pregnant women, is estimated by multiplying the probability of microcephaly
given a Zika infection in the first trimester of pregnancy, the geographic-specific birth rate, and
the risk period divided by 365 days.

Guillain-Barré Syndrome (GBS)
We estimated the probability of developing GBS given a Zika infection as the proportion of
Zika-related GBS cases from among all Zika infections. Parameterization of our calculations
are based on data from a 10-week period in Colombia (45,314 Zika cases and 231 GBS cases,
from January 9th to March 19, 2016 [1,25]), adjusting for estimates suggesting that 82% of
Zika infections are asymptomatic [24], and on the average annual GBS incidence for Colombia
from 2008 to 2014 (242) [26]. Similarly, we recalculated the probability of developing GBS
using the WHO estimate of 269 Zika-related GBS cases in Brazil [1] using the estimated epi-
demic size ranging from 443,502 to 1,301,140 for Brazil [27]. The lower and upper limits of

A Cost-Effectiveness Tool for Informing Policies on Zika Virus Control

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004743 May 20, 2016 4 / 14



this estimate are based on suspected cases of dengue fever for which dengue was ultimately
excluded and on the attack rate of Zika virus during the 2013 French Polynesia Zika outbreak,
respectively [27].

Health and Economic Outcomes
The health impact of microcephaly and GBS was calculated in disability-adjusted life-years
(DALY). We estimated the health impact of a single case of microcephaly in present-value
terms (discounting at 3% annually), assuming a 79.7% probability of survival through the first
year of life [28], an optimistic life expectancy of 35 years given survival beyond that year, and
the 0.16 disability weight assigned to living with severe intellectual disability [29]. In the
absence of available medical costs for microcephaly, we conservatively used the lifetime direct
medical cost associated with a case of mental retardation, estimated as $179,760 in lifetime
expenses for the US [30, 31]. In estimating the health impact of a single case of GBS, we conser-
vatively assumed a 5% probability of death [1], a 9% probability of severe motor impairment
(0.402 disability score) for 6 months, and an 84% probability of moderate generalized musculo-
skeletal problems (0.344 disability score) for three weeks [29, 32]. The average age of a case in
the Colombian outbreak was 43 years [1], and we assumed this was also the average age of
death (if death occurred). The direct medical cost per case of GBS was $56,863 for the US [30,
33].

The medical costs for both microcephaly and GBS were updated to 2015 USD using the
Consumer Price Index Inflation Calculator [30], and then converted to location-specific costs
for each country or region using the World Bank purchasing power indices for medical
expenses [34]. Our base case estimates for the costs associated with microcephaly and GBS are
highly conservative in that they do not incorporate reduced productivity and quality of life, as
well as other indirect costs associated with the conditions, such as educational and support ser-
vices for microcephaly. To conduct analyses that account for these costs, our interactive tool
allows the user to vary the per case cost associated with microcephaly and GBS.

We estimated the number of microcephaly and GBS cases averted as the product of Zika
infections averted and the probabilities of microcephaly or GBS per Zika infection, respectively.
The health burden was estimated as the product of the cases averted and the DALYs lost per
case, for both microcephaly and GBS. Similarly, the economic burden was estimated as the
product of the cases averted and the direct medical expense for each condition.

Cost-Effectiveness Analysis
A net health benefit framework [35] combines health outcomes (here, in DALYs), economic
costs, and a willingness-to-pay for DALYs to establish the value of an intervention in a particu-
lar setting. The net health benefit of a particular strategy is calculated as the DALYs it averts
minus its net cost as a proportion of the willingness to pay threshold. The WHO has estab-
lished two willingness-to-pay thresholds at the country level: the per-capita GDP or three
times the per-capita GDP for interventions to be considered “very cost-effective” or “cost-effec-
tive,” respectively [36]. A positive net health benefit calculation at these willingness-to-pay
thresholds indicates that the intervention fulfills the criteria for cost-effectiveness. This analysis
is conducted from a government perspective, given our focus on the cost of intervention and
direct healthcare costs.

Interventions
We applied the net health benefits framework to both WHO thresholds at which investment
would be deemed cost-effective and very cost-effective, respectively, to evaluate:
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1. The economic cost that would be justified by an intervention which averted 10,000,000 Zika
infections across Latin America and the Caribbean, corresponding to 1.6% of the popula-
tion, compared to the $376 million expenditure proposed to be allocated by the US for Zika-
related foreign aid;

2. The economic cost which would justify preventing 90% of the infections in pregnant
women at risk in Puerto Rico;

3. The number of Zika infections that must be averted in Costa Rica to justify the $745,724
investment in community-led efforts to eliminate breeding sites;

4. The number of Zika infections that must be averted in Costa Rica to justify its $373,712
investment dedicated to the control of Zika;

5. The number of Zika infections which must be averted in Brazil to justify the $136.6 million
investment in mosquito-borne disease control by the Brazilian National Bank;

6. The cost viability of disseminating genetically engineered mosquitoes for three years in a
city of 50,000 inhabitants in different country-specific settings.

Interactive Web Tool
Our interactive web tool was coded in Python (www.python.org) using the NumPy package for
scientific computing (http://www.numpy.org/) and the Bokeh interactive visualization library
(http://bokeh.pydata.org/).

Results
We estimated that an additional 94 microcephaly cases are likely to occur in Northeast Brazil
between the last available report on April 2, 2016 through the end of April, after which the
microcephaly outbreak is projected to dwindle in this region. We estimated the probability of a
microcephaly case given a Zika infection during the first trimester to range between 0.49% and
2.10%. This probability is highly sensitive to the final attack rate for Zika in Northeast Brazil
(Fig 1). Since the reported probability of 0.95% for the recent outbreak in French Polynesia
[15] falls within our estimated range, we used this value in our base case parameter set. In our
most conservative and less conservative scenarios we used 0.49% and 2.10%, respectively. We
also estimated the probability of Zika-related GBS. Specifically, from the Brazilian data, we cal-
culated that the probability of GBS given a Zika infection ranged from 0.02% to 0.06%, consis-
tent with a recent estimate of 0.024% for the French Polynesia outbreak [5]. From the
Colombian data our probability estimate was 0.08%. We used 0.06% in our base case parameter
set, and 0.02% and 0.08% for our most conservative and less conservative scenarios, respec-
tively. The final number of microcephaly and GBS cases predicted to occur throughout Latin
America and the Caribbean depends on the attack rate for the region (Fig 2). For example, an
attack rate of 5% would lead to a predicted 665 to 2843 microcephaly cases, 6,474 to 25,494
GBS cases, and a loss of 43,717 to 108,951 DALYs, whereas an attack rate of 40% would elevate
those predictions to between 5,320 and 22,743 microcephaly cases, 51,790 to 203,951 GBS
cases, and a loss of 349,738 to 871,610 DALYs. To put this potential health burden in context,
the total dengue fever annual health burden is estimated as 89,500 DALYs in Latin America
and the Caribbean [37].

We estimated that each microcephaly case conservatively represents the loss of 29.95
DALYs and a direct medical cost of $91,102 per lifetime. Similarly, for GBS we estimated a
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health burden of 1.25 DALYs per case, as well as a direct medical cost per case of $28,818. The
total DALYs likely to be averted by an intervention in a specific setting is influenced by demog-
raphy (birth rate and population size), and the criteria for cost-effectiveness depend on the

Fig 1. Probability of microcephaly in an infant given a Zika infection in the period of risk during
pregnancy (PRDP). The probability is highly sensitive to the attack rate of Zika virus in Northeast Brazil, but
not very sensitive to the expected microcephaly incidence for reasons other than Zika infection (black, 0.5
cases per 10,000 births; grey, conservative baseline of 12 cases per 10,000 births). Attack rates between
40% and 60% are compatible with the probability obtained in the 2013 French Polynesia outbreak (horizontal
dashed line).

doi:10.1371/journal.pntd.0004743.g001

Fig 2. Expected microcephaly cases for Latin America and the Caribbean. The expected microcephaly
cases depend on the attack rate, the birth rate, the population size, the non-Zika related microcephaly
incidence, and the probability of microcephaly given a Zika infection in the first trimester of pregnancy. We
used the probability of microcephaly observed for the French Polynesia 2013–2014 outbreak (0.95%, solid
line) as the baseline for our calculations [15]. Our low and high estimates for the probability of microcephaly in
Northeast Brazil (0.49% and 2.10%, dashed lines) encompass the estimate for the French Polynesian
outbreak.

doi:10.1371/journal.pntd.0004743.g002
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per-capita GDP (Fig 3). For example, our base case analysis suggests that an intervention that
prevents 10,000,000 Zika infections across Latin America and the Caribbean, corresponding to
1.6% of the population, would be cost-effective for expenditures below $802 million and very
cost-effective below $409 million, using the average regional per capita GDP and birth rate.
Preventing infections in only 1.6% of the population is likely achievable since previous attack
rates of Zika virus in Yap Island and French Polynesia have been estimated to range between
62% and 77% [15,24]. Thus, the $376 million for foreign aid in Latin America and the Carib-
bean proposed by the US President to combat Zika would likely be a very cost-effective
investment.

These estimations conservatively assumed that the infections averted would be uniformly
distributed among the entire population. Interventions that focus on preventing infection
among pregnant women would be cost-effective for greater expenditure. We calculated that
13,490 pregnant women are at risk of Zika infection if the outbreak is unabated in Puerto Rico,
assuming the same attack rate as French Polynesia and the estimated duration of the micro-
cephaly outbreak for Northeast Brazil. If an intervention is able to avert 90% of those infections
in pregnant women, it would be cost-effective at $195.4 million. This calculation suggests that
the expenditure of $250 million for Puerto Rico is justified, given that the funding is allocated

Fig 3. Cost-effective expenditure to avert a Zika infection. The maximum investment that would be cost-effective for
a country to avert a Zika infection increases with the gross domestic product (GDP) per capita and with the birth rate.
Some countries and regions at risk for Zika are indicated for illustration. A color scale indicates the cost-effectiveness
threshold (from yellow: lowest cost; to purple: highest cost).

doi:10.1371/journal.pntd.0004743.g003
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not only to the prevention of infection in pregnant women, but also medical costs associated
with Zika cases.

Conversely, using the same framework we can also calculate the minimal number of Zika
infections that an intervention with a fixed cost would have to avert to be deemed cost-effec-
tive. For example, the $745,724 that the Costa Rican Department of Social Security has allo-
cated for community-led elimination of breeding sites would be cost-effective if it averted
8,321 Zika infections. The campaign would be considered very cost-effective if it averted at
least 14,386 Zika infections. The additional $373,712 investment that the Costa Rican Ministry
of Health plans to dedicate to the control of Zika needs to avert at least 4,170 Zika infections in
the country to be considered cost-effective and at least 7,210 to be considered very cost-effec-
tive. In Brazil, the $136.6 million that its National Development Bank has committed, if dedi-
cated exclusively to prevent Zika, would be cost-effective if it averts 1,640,934 infections and
highly cost-effective if it averts 3,245,553 infections. These analyses are conservative given that
the same mosquito vector also transmits dengue, yellow fever and chikungunya.

The cost-effectiveness of releasing genetically modified male mosquitoes whose offspring
die before reaching adulthood depends on the expected Zika attack rate, the effectiveness of
prevention, and the country in which the intervention is implemented. For example, in a Pana-
manian city with a population of 50,000 (e.g. Santiago de Veraguas) we estimated that the
three-year implementation of this technology was cost-effective if it prevented 27,356 infec-
tions. The same intervention would not be not cost-effective in similarly populous cities located
in countries with lower per-capita GDP (e.g., El Salvador or Nicaragua) or with lower birth
rates (e.g., Cuba or Thailand), because the number of infections that must be prevented within
the city would be greater than the entire population of the city.

We developed an interactive web tool for the evaluation of interventions beyond those illus-
trated here (http://zika.cidma.us/). Our tool allows policy makers to compute the cost-effective
expenditure for an intervention that prevents a given number of Zika infections, or the number
of infections which must be averted to justify an intervention cost. The user can vary the coun-
try or region of interest, which automatically adjusts the GDP, the population size, and the
birth rate to generate setting-specific thresholds. Two key parameters that impact the DALY
burden are the period of gestation during which a fetus would be at risk of Zika infection if the
mother is infected, as well as the probability that a Zika infection of a pregnant woman within
that period leads to microcephaly (Fig 4). The user can interactively modify those two parame-
ters, as well as the probability of a GBS case given a Zika infection. For the analysis of programs
with an emphasis on pregnant women, the user can specify a percentage of intervention effort
directed specifically to pregnant women. To incorporate indirect medical costs and other
expenses, our tool allows the user to specify the per-case cost of microcephaly and GBS. The
output of our tool includes the combinations of cost and Zika infections averted for which
intervention expenditure would be deemed as very cost-effective, cost-effective, or neither.
Hover text displays exact values for the intervention cost, DALYs averted, and net health bene-
fit. As information arises, our web-based tool can be adjusted to provide real-time projections
of the health burden of the Zika outbreak in different countries.

Discussion
Using data-driven analyses, we estimated the health and economic burden of an unchecked
Zika epidemic and evaluate the conditions under which proposed interventions would be cost-
effective. To parameterize our analyses, we calculated the probability that Zika infection leads
to microcephaly or GBS, respectively. We developed a web tool to assist policymakers in their
assessment of country-specific control measures.
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Our results provide conservative estimation both of the burden of Zika, and of the expendi-
ture justified for an intervention. Congenital Zika infection has been associated with a number
of conditions beyond microcephaly, including vision-threatening ocular lesions [8], in utero
growth restriction, fetal death, stillbirth, and central nervous system lesions [6, 9]. Additionally,
given the severity of Zika-related cases of microcephaly [38], the life expectancy of 35 years is
likely highly conservative. If the average life expectancy for these microcephaly cases is lower,
interventions aimed at curtailing the ongoing Zika outbreak will avert a greater number of
DALYs, since each year of life lost has a higher burden than a year lived with disability. As
more data become available, the health burden associated with a single Zika infection should
be updated.

For the results presented here, we did not consider the indirect costs related to GBS or
microcephaly. Our tool allows the user to adjust the per-case cost for microcephaly and GBS,
giving the user the option to include indirect costs if or when they are available for a specific
country. Indirect costs can be important to assessments of cost-effectiveness from the societal
perspective, particularly given that the economic losses for caregivers of children with

Fig 4. Averagemicrocephaly-related DALYs per Zika infection. The DALYs lost per Zika infection increase with the
period of risk during pregnancy (PRDP), as well as with the probability that a Zika infection during that period causes
microcephaly. A color scale indicates the microcephaly-related DALYs lost per Zika infection (from blue: fewest DALYs per
infection; to red: most DALYs per Zika infection).

doi:10.1371/journal.pntd.0004743.g004
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microcephaly may be substantial. For example, in Puerto Rico we estimated total direct medical
costs for microcephaly and GBS of $104 million in our base case and from $39 million in our
most conservative scenario up to $159 million in our less conservative scenario. However,
upon inclusion of both direct non-medical costs and productivity losses [30, 31, 33], the values
rise to $736 million in the base case, with $280 million in the most conservative scenario and as
high as $1.13 billion in the less conservative scenario. Even these estimates do not include
other indirect costs such as specialized child-care support, parental productivity losses, or psy-
chological toll of families with children with microcephaly, which are all substantial, yet diffi-
cult to quantify.

Our analyses are further conservative in their exclusion of the impact on other diseases that
could be achieved by interventions that target the Ae. aegypti vector, also responsible for trans-
mitting dengue, chikungunya, and yellow fever. For example, Costa Rica has reported over
20,000 dengue fever cases annually, and over 5,000 chikungunya cases since the disease
appeared in 2014 [39].

If the $376 million proposed by the US President for foreign aid targeted at the Zika out-
break can avert infection among as little as 0.7% of the population of Latin America and the
Caribbean, our analyses indicate that the intervention would be cost-effective. Averting this
number of cases is highly feasible given that prior Zika outbreaks have exhibited attack rates
ranging from 62% to 77% [15, 24].While vector control is the most immediately available tool
for mitigating the Zika burden, the development of an efficacious vaccine would be a more sus-
tainable long-term strategy. The budget requested by the US President to the Congress includes
a provision of $200 million for research and development of a Zika virus vaccine. Since a suc-
cessful vaccine could be used globally to prevent millions of Zika cases over many years, such
an investment is more than justified.

Our tool identifies the combinations of price and effectiveness for which an intervention
would be deemed cost-effective, but it does not predict the number of cases which an interven-
tion will prevent, nor does it predict the net cost of an intervention. As mechanistic models
describing Zika transmission and predicting the impact of interventions are developed, they
can be integrated within the decision space delineated in this work, and by our web tool.

Our interactive application (http://zika.cidma.us/) provides a flexible tool for informing
public health policy via a rigorous cost-benefit analysis of available options. While our exam-
ples focus on vector-control interventions, our framework would also be applicable to invest-
ments in vaccines or therapeutics. Difficult decisions related to next steps confront community
members and leaders of areas that are currently facing, or will soon be facing, an epidemic of
Zika. Given the potentially high health burden of Zika, the cost of inaction–or even insufficient
action–may warrant significant expenditure.
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