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Epigenetic modifications by DNA methylation are associated with a wide range of diseases. Previous studies in
psoriasis have concentrated on epigenetic changes in immune cells or in total skin biopsies that include stromal-
associated changes. In order to improve our understanding of the role of DNA methylation in psoriasis, we
sought to obtain a comprehensive DNA methylation signature specific for the epidermal component of psoriasis
and to analyze methylation changes during therapy. Genome-wide DNA methylation profiling of epidermal cells
from 12 patients undergoing narrow-band UVB phototherapy and 12 corresponding healthy controls revealed a
distinct DNA methylation pattern in psoriasis compared with controls. A total of 3,665 methylation variable
positions (MVPs) were identified with an overall hypomethylation in psoriasis patient samples. DNA methylation
pattern was reversed at the end of phototherapy in patients showing excellent clinical improvement. Only 7% of
phototherapy-affected MVPs (150 out of 2,108) correlate with nearby gene expression. Enrichment of MVPs in
enhancers indicates tissue-specific modulation of the transcriptional regulatory machinery in psoriasis. Our
study identified key epigenetic events associated with psoriasis pathogenesis and helps understand the dynamic
DNA methylation landscape in the human genome.
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INTRODUCTION
Psoriasis is a common chronic inflammatory skin disease that
also can affect nails and joints (Perera et al., 2012). Appro-
ximately 2–3% of the world’s population have psoriasis, with
rates varying between countries and races (Crow, 2012).
Psoriasis is characterized by altered keratinocyte differ-
entiation and an exaggerated inflammatory response with
both genetic and environmental etiologies (Perera et al.,
2012). Several susceptibility loci and distinct gene expression
patterns have been identified, and genes related to cell
differentiation, immune response, metabolism, and oxidation
reduction are implicated in disease pathogenesis (Mitsui et al.,
2012; Tian et al., 2012; Tsoi et al., 2012; Gu et al., 2015).
Recently, epigenetic regulations such as abnormal DNA

methylation were reported in psoriasis (Roberson et al., 2012;
Hou et al., 2013; Zhang et al., 2013; Park et al., 2014). DNA

methylation at the 5-position of cytosine in mammals is the
most studied epigenetic mark that is dynamic across lifetime,
affected by environmental insults, and essential for several
developmental and cellular processes (Smith and Meissner,
2013; Ziller et al., 2013). Aberrant DNA methylation has been
recognized in several developmental disorders and cancer
(Feinberg, 2007; Jones, 2012). In psoriasis, altered global
DNA methylation status in CD4+ T cells (Park et al., 2014)
and dermal mesenchymal stem cells (Hou et al., 2013) has
been shown. Changes in DNA methylation have also been
seen in psoriatic lesions (Roberson et al., 2012; Zhang et al.,
2013) and could be reverted back to baseline after 1 month of
anti-TNF–α therapy (Roberson et al., 2012).
Psoriasis is a lifelong systemic disorder that is temporarily

quenched when appropriately treated. Therefore, psoriasis has
long served as a model for the reciprocity between disease and
treatment (Keaney and Kirsner, 2010). A variety of options are
available for treatment of psoriasis, including topical agents,
systemic agents, phototherapy, combination therapies, and
biological therapies (Rahman et al., 2012). Insights into the
therapeutic mechanisms for psoriasis have improved our under-
standing of its pathogenesis (Piskin et al., 2004; Johnson-Huang
et al., 2010; Racz et al., 2011; Gu et al., 2015). In order to gain
further insight, we sought to obtain a more comprehensive and
specific DNA methylation signature of psoriatic epidermis
following narrow-band UVB phototherapy, a well-established
first-line treatment for psoriasis, which is effective for about
70% of patients (Kirke et al., 2007). By the use of the
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HumanMethylation450 BeadChip to examine genome-wide
methylation status of epidermal cells from patients undergoing
phototherapy, we here provide an in-depth DNA methylation
signature of psoriasis and have identified key methylation
events involved in psoriasis pathogenesis.

RESULTS
Identification of DNA methylation changes in psoriatic
epidermis
Epidermis-specific DNA methylation profiles in psoriasis and
matched controls were measured using the Illumina Infinium
HumanMethylation450 BeadChip platform (450K) (Illumina,
San Diego, CA), which evaluates methylation status of
482,421 CpG sites covering key features of the human
genome (Bibikova et al., 2011). The ChIP analysis methylation
pipeline package was applied for data analysis (Morris et al.,
2014). The beta-value was chosen as a measure of the
methylation level, which ranges from 0 (no methylation) to 1
(complete methylation). On the basis of the methylation level
of 470,903 sites, similar global methylation status was seen
between psoriasis and controls, with a median beta-value of
0.590 in controls and 0.554 in psoriasis (PRE-UV).
Methylation differences between psoriasis and controls

were calculated as delta-beta and plotted against correspond-
ing − log10 (false-discovery rate (FDR) adjusted P-value), as
shown in Figure 1. We defined CpG sites with delta-beta40.2
and FDR-adjusted P-valueo0.01 as methylation variable
positions (MVPs). From the 470,903 informative probes,
3,665 MVPs were identified, representing o1% of the total
sites surveyed. There were more hypomethylated CpG sites in
psoriasis (2,542 MVPs, delta-betao−0.2; bottom square in
Figure 1) than hypermethylated CpG sites (1,123 MVPs, delta-
beta40.2; upper square), and the hypomethylated CpG sites
displayed larger degrees of methylation changes.

All variant probes were annotated with respect to location
and then categorized into groups based on chromosome
(1–22), enhancer (true or none), genomic location (promoter
region, gene body, 3′-UTR or IGR), and CpG density (island,
shore, shelf, none). We found that MVPs appeared within all
autosomal chromosomes, ranging from 0.39% of assessed
sites in chromosome 19 to 1.03% in chromosome 1. Psoriasis
MVPs were preferentially located at the enhancers, with
1.84% of enhancer-located sites differentially methylated,
whereas only 0.49% of non-enhancer-related sites were
differentially methylated. When probes were grouped into
16 classes based on genomic position and CpG density,
profound differences in MVP percentage were found across
different groups. Only 0.02% of sites located in CpG islands
of the promoter region were differentially methylated. The
region having the highest percentage of CpG sites as MVPs
(1.64%) was distal to CpG island (shelf) in the promoter region
(Figure 2a). The DNA methylation status of 3,665 MVPs
was compared between psoriasis and controls. The medium
methylation level in controls is 0.61, whereas 0.46 in
psoriasis. Figure 2b shows that, regardless of genomic region
or CpG density, significant changes in DNA methylation lead
to an overall hypomethylated status in psoriasis.

Effect of phototherapy on psoriasis and DNA methylation
Differential analysis using significance analysis of microarrays
(SAM) was performed to identify significantly affected MVPs
by phototherapy in paired samples. A methylation change
with delta-beta40.1 and FDRo0.05 was considered signifi-
cant. After 1 month of treatment (MID-UV vs. PRE-UV), the
methylation level of 73 CpG sites was significantly modified.
At the end of phototherapy (POST-UV vs. PRE-UV), a total of
2,108 CpG sites were significantly affected. Top 50 hyper
and 50 hypomethylated MVPs are listed in Supplementary
Table S1 online, ordered by methylation changes following
phototherapy (POST-UV vs. PRE-UV). DAVID (Database for
Annotation, Visualization, and Integrated Discovery) func-
tional annotation analysis was performed for 1,082 known
genes that are proximal to the 2,108 MVPs. Top five enriched
annotation clusters in biological processes relate to inflam-
matory response, cytoskeleton organization, response to
hormone stimulus, regulation of cell motion, and regulation
of programmed cell death (Supplementary Table S2 online).
Principle component analysis (PCA) was performed to study

sample similarities based on 2,108 MVPs. Figure 3 displays
the score plot from principle component analysis showing first
and second component that explains 75.1 and 4.8% of the
variance, respectively. Samples close to each other have
similar methylation profiles. We can see that control samples
position closer to each other in the upper left-hand corner,
whereas psoriasis samples before treatment are located most
distal to the controls. It is also visualized that DNA methy-
lation profiles in psoriasis changed following phototherapy to
become more similar to the control group. Three POST-UV
samples from patient 6, 7, and 9 are positioned in the upper
right-hand corner, showing distinct methylation patterns
compared with other POST-UV samples. Response assessment
on the 11 patients that fulfilled treatment showed 7 patients
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Figure 1. Identification of differences in DNA methylation between psoriasis
and controls. Scatter plot between methylation changes (delta-beta, psoriasis
PRE-UV vs. controls) and corresponding − log10(false-discovery rate (FDR)
adj. P-value) for total assessed 470,903 sites was shown. CpG sites with delta-
beta40.2 and − log10(FDR adj. P-value)42 were defined as methylation
variable positions (MVPs). The upper square indicates hypermethylated MVPs,
and the bottom square indicates hypomethylated MVPs in psoriasis compared
with controls.
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with excellent clinical response, 2 with good response
(patient 1, 9), and 2 with unsatisfactory response (patient 6,
7). When connecting clinical data to DNA methylation, we
found that the DNA methylation status was associated with

clinical outcome. All seven POST-UV samples from patients
with excellent clinical improvement are positioned closer to
the controls. The three particular POST-UV samples are from
patients with unsatisfactory response (patient 6, 7) or good
rather than excellent clinical improvement (patient 9). For the
other POST-UV sample with good clinical improvement
(patient 1), although appearing more similar to the controls
following phototherapy, was positioned most distal to the
controls in the lower left-hand corner.
For each patient, we further calculated the overall impro-

vement of DNA methylation at the end of phototherapy
(percentage increase or decrease), as well as the overall
methylation difference between POST-UV and healthy con-
trols (Supplementary Table S3 online). It is clear that, at the
end of treatment, patients with excellent and good clinical
outcome presented the highest methylation improvements
(except patient 4 and 9), as well as the least methylation
differences to healthy controls (except patient 9).

DNA methylation and gene expression
The role of DNA methylation was studied by examining their
impact on the expression of proximal genes. Epidermal-
specific gene expression data from the same patients and
controls were obtained from our previously reported gene
expression profiling study (Gu et al., 2015). The relationships
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Figure 2. Distribution of psoriasis methylation variable positions (MVPs) across genomic regions and related to CpG density. (a) Total accessed CpG sites (470,903)
were divided into 16 groups according to genomic location (promoter region, gene body, 3′-UTR or IGR) and CpG density (island, shore, shelf, none). The promoter
region refers to TSS1,500, TSS200, 5′-UTR, and 1stExon. MVP percentage in each group is shown in the bar graph. Count of MVPs in each group is also shown in the
bottom. (b) Overall hypomethylation in psoriasis. Total MVPs (3,665) were divided into four groups based on genomic location or CpG density. Box plots showed the
distribution of beta-value for corresponding MVPs in each group. White boxes represent controls, and gray boxes represent psoriasis (PRE-UV samples).
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between proximal gene expression and DNA methylation
(Pearson’s correlation coefficient (r)) were determined. For
2,108 MVPs, only 150 MVPs were moderately/strongly
correlated with proximal gene expression (moderate correla-
tion (r=0.4–0.6), strong correlation (r= 0.7–0.9)). The
strongest correlation (r=− 0.89) was seen for S100A9 (S100
Calcium Binding Protein A9), a regulator of inflammatory
processes and immune response (Kerkhoff et al., 2012).
Expression of several other S100 genes and epithelial cell
differentiation genes also strongly correlated with DNA
methylation (Supplementary Table S4 online). On average,
7% of MVPs showed a correlation between methylation and
expression levels. When allocating MVPs to different genomic
locations as shown in Supplementary Table S5 online, we
found that MVPs located in the promoter regions tend to
correlate to nearby gene expression (14.12%) compared with
MVPs located in other genomic regions (0–8.77%).
When annotating probes according to enhancer, we found

that 1,098 out of 2,108 MVPs were located in enhancers.
Hypergeometric test indicated that enhancer-located MVPs
are enriched in this list (P (x ≥ 1,098)= 0). When analyzing
associations between DNA methylation and gene expression
for enhancer-located MVPs (Supplementary Table S5 online),
less correlations were found. Enhancers are remote regulatory
elements that can locate at great distances (as far as 1Mb)
from the genes they control, and the gene most proximal to an
enhancer is not necessarily its target (Visel et al., 2009). In
order to connect MVPs to transcriptional regulation of distal
genes, we started to investigate whether or not expression
of genes situated distal to MVPs tend to be modified by
phototherapy. A total of 9,447 genes are with a distance of
up to 500 kb to 1,098 enhancer-located MVPs. However,
expression of only 250 genes was significantly affected by
phototherapy, most likely due to selection by chance (Fisher’s
exact test, P40.05).
DNase I hypersensitive sites (DHSs) are markers of

regulating DNA and have been used to map regulatory
DNA regions including enhancer, promoter, insulators,
silencers, and locus control regions (Thurman et al., 2012).
Recently, cell type–specific DHSs were identified (Sheffield
et al., 2013), allowing us to investigate whether psoriasis
MVPs co-localize with keratinocyte-specific regulatory
elements. A total of 3,115 keratinocyte-specific DHSs were
extracted from the Regulatory Elements Database (available
from: http://dnase.genome.duke.edu), and we found that only
eight MVPs position in keratinocyte-specific DHSs.

450K data validation
Validation of BeadChip measurements was carried out on
selected CpG sites using OneStep qMethyl (Zymo Research,
Irvine, CA). For all the genes tested, qMethyl data were highly
correlated with array data, with Pearson’s correlation coeffi-
cient (r) of 0.96 for HN1L and IRF2, 0.85 for IFI27, and 0.90
for PDK2 (Po0.001; Supplementary Figure S1 online).

DISCUSSION
We performed a genome-wide study of epidermis-specific
methylation changes in psoriasis, before, during, and after

phototherapy. As the DNA methylation profile varies between
cell types, it is important to consider that the infiltration of
inflammatory cells in psoriatic skin alters the cell composi-
tion, as compared with normal tissue (Jaffe and Irizarry, 2014).
In this study, in order to minimize the influence of inflam-
matory cells and to obtain the most comprehensive data set
possible in the genome-scale methylation examination, we
separated the epidermis from the dermis and used the most
comprehensive array platform currently available (Bibikova
et al., 2011). Nevertheless, some methylation alterations
might arise from differences in inflammatory infiltration into
the epidermis and/or from differences in epidermal cell
composition with age, rather than be true psoriasis-related
keratinocyte defects. It is also possible that keratinocyte-
specific methylation is regulated by immune or other stromal
cells, so that therapy-related changes in methylation profiles
may be indirectly due to therapeutic effects on immune cells
rather than direct effects on keratinocytes.
Global hypomethylation and promoter-specific hyper-

methylation have been reported in cancer (Berman et al.,
2012). We also found an overall hypomethylation in psoriasis
that is in contrast to previous results from other psoriasis
studies (Roberson et al., 2012; Zhang et al., 2013), probably
due to the limitation of using whole-biopsy DNA and/or
targeted arrays of promoter regions in these studies. The
tendency of differences toward DNA hypermethylation in the
CD4+ T cells of psoriasis patients (Park et al., 2014) could
explain the hypermethylation pattern in psoriatic lesions
where both keratinocytes and inflammatory cells are
dominant. Variant methylation pattern in different cell types
from psoriatic lesions was also suggested by showing more
promoter hypomethylated genes than hypermethylated genes
in mesenchymal stem cells (Hou et al., 2013).
Among 3,665 identified MVPs, only 14 positions were

located at promoter CpG islands. CpG islands are generally
unmethylated in normal cells and less dynamic and less
tissue-specific compared with non-CpG island methylation
(Jones, 2012). Our finding that the methylation status barely
changed within CpG islands in the promoters supports that
methylation status in these regions is relatively stable. On the
other hand, it has been shown that enhancers tend to be
CpG-poor and have incomplete and dynamic methylation
(Jones, 2012). Consistent with this, we found most DNA
methylation changes to be located in enhancers.
DNA methylation is an inherently reversible change, and,

our study shows that following phototherapy, altered methy-
lation status in the epidermis could be reversed back toward
that observed in normal tissue. It has been shown previously
that, after 1 month of anti-TNF–α therapy, DNA methylation
in several assessed CpG sites was partially reversed in
responders, which thus might be useful for predicting response
early in treatment (Roberson et al., 2012). However, in our
study by examining genome-wide methylation changes after
1 month of phototherapy (at the middle stage of treatment),
we found that only 73 out of 3,665 MVPs were significantly
affected by phototherapy. More importantly, at this stage, no
obvious difference in DNA methylation pattern could be seen
between patients with different clinical outcome. Therefore,
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even though reversal of DNA methylation is associated with
clinical outcome at the end of phototherapy, detecting DNA
methylation changes at the early stage of phototherapy cannot
predict outcome of treatment. Nevertheless, it is possible
that DNA methylation processes offer targets for therapeutic
intervention if it can be verified that changes in the DNA
methylation pattern by itself has a positive effect on the
clinical symptoms.
DNA methylation is acknowledged to have a key role in

gene regulation and disease susceptibility, whereas the
relationship between DNA methylation and transcription is
not fully dissected (Jones, 2012). We believe that CpG sites
that are dysregulated in psoriasis and respond to treatment
represent key methylation events during the development of
psoriasis. A total of 2,108 phototherapy-responding MVPs
were identified in this study, and, their nearby genes were
significantly enriched in biological processes known for
driving psoriasis, such as inflammatory response and cytos-
keleton organization. However, altered DNA methylation
status is barely correlated to expression of nearly genes.
Although we found that MVPs are enriched in enhancers, we
could not show their connection with distal genes. Therefore,
the impact of DNA methylation on transcriptional regulation
is far from understood. Regulatory DNA variations associated
with common human disease have been shown (Maurano
et al., 2012). As regulatory elements are not organized in a
gene-centric manner but could form large regulatory networks
with great tissue specificity (Maurano et al., 2012; Symmons
and Spitz, 2013), it is possible that modifications in DNA
methylation could affect the interplay between different
regulatory elements and lead to altered gene expression that
is tissue specific. It is worth noting that keratinocyte-specific
regulatory DNA marked by DHSs is depleted of methylation
variation in psoriasis, indicating that DNA methylation
provides additional signals for tissue-specific transcriptional
regulation.
A total of 32 genes showed a strong correlation between

DNA methylation and gene expression, and, many of these
genes/gene families are represented by multiple probes
(Supplementary Table S4 online), suggesting involvement of
epigenetic modifications for regulation of these genes. Inter-
estingly, several psoriasis susceptibility genes were found,
encoding key components of the skin barrier, such as small
proline-rich proteins (Kainu et al., 2009), late cornified
envelope protein 3D (Tsoi et al., 2012), and gap junction
protein connexin 26 (Liu et al., 2012; Tang et al., 2014).
Genetic and/or epigenetic variance in these genes might have
a role in psoriasis susceptibility.
In summary, genome-scale epidermis-specific DNA methy-

lation profiles were obtained for 12 psoriasis patients before,
during, and at the end of phototherapy. Altered DNA methy-
lation was seen in psoriasis compared with healthy controls,
and reversion of abnormal methylation was observed follow-
ing phototherapy in patients with clinical improvement. As
part of the coordinated regulatory programs, epigenetic
alterations in the human genome are important events during
development of psoriasis.

MATERIALS AND METHODS
Patients and tissue samples
Twelve patients diagnosed with plaque-type psoriasis were recruited
to the study, which was approved by the Regional Ethics Review
Board, Umeå, Sweden (Dnr 08-108M), and performed in accordance
with the Declaration of Helsinki Principles. Written informed consent
was obtained from all subjects. narrow-band UVB irradiation
was administered to the whole body using a cabinet (PCL 8000,
Puva Combi Light—ARKADE, Heverlee, Belgium) equipped with
fluorescent lamps (UVB TL100W/01, Philips, Eindhoven, The
Netherlands). Treatment comprising ~ 24 sessions was given during
2 to 3 months. A total of six 4 mm diameter punch biopsies were
taken from lesions on each patient: two prior to treatment (PRE-UV),
two at the middle stage of treatment (after 1 month of treatment, MID-
UV), and two before the last treatment session (POST-UV). One
patient (patient 5) left at the middle stage of phototherapy; thus, only
PRE-UV and MID-UV samples could be collected. All patients had
moderate–severe psoriasis and a history stating improvement by sun
exposure. Clinical improvement was assessed by evaluation of
erythema, desquamation, and induration following phototherapy.
Three grade evaluation (excellent, good, and unsatisfactory) was
performed due to clinical routine by an experienced nurse and
included the patient´s statement of improvement. Clinical data on
patients are shown in Supplementary Table S6 online. Twelve
healthy age–, sex–, and skin type–matched volunteers were also
recruited, and two punch biopsies were taken from the buttocks.

Epidermal DNA isolation and bisulfite treatment
Skin biopsies were fresh frozen in liquid nitrogen and stored at − 80°
C until DNA extraction. For epidermis and dermis separation,
biopsies were incubated in 3.8% ammonium thiocyanate (Sigma-
Aldrich, St Louis, MO) in Dulbecco's phosphate-buffered saline, pH
7.4, at room temperature for 20minutes (Trost et al., 2007). Separated
epidermis was processed for DNA isolation using the PureLink
Genomic DNA Kit (Life Technologies, Carlsbad, CA). The quantity
and purity of DNA were measured using a NanoDrop ND-1000
spectrophotometer (Thermo Scientific, Wilmington, DE). DNA
quality was confirmed by gel electrophoresis. A measure of 500 ng
of genomic DNA was used for bisulfite conversion using the Zymo EZ
DNA Methylation kit (Zymo Research).

Genome-scale DNA methylation array
Bisulfite-converted DNA was used for methylation profiling using the
HumanMethylation450 platform. iScan Reader was used to image
BeadChips. The ChIP analysis methylation pipeline package was
applied for data analysis (Morris et al., 2014). By default, ChIP
analysis methylation pipeline filtered the data for detection
P-valueo0.01. Probes with o3 beads in at least 5% of samples
per probe were filtered out and probes from X and Y chromosomes
were removed, resulting in 470,903 probes. Intra-array data normal-
ization using the BMIQ (Beta MIxture Quantile dilation) method
(Teschendorff et al., 2013) was performed for correcting bias
introduced by the Infinium type 2 probe design. Singular value
decomposition method (Teschendorff et al., 2011) was used to assess
the magnitude of batch effects in relation to biological variation.
The beta-value was chosen as a measure of the methylation

level and was transformed to M-value for differential analysis
(Du et al., 2010). The limma package implemented in ChIP
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analysis methylation pipeline was used to calculate the Benjamini
and Hochberg FDR-adjusted P-value for differential methylation
between psoriasis (PRE-UV) and controls. To identify significantly
modified CpG sites following phototherapy, significance analysis
of microarrays was performed in Mev 4.8.1 (Dana-Farber Cancer
Institute, Boston, MA) (Saeed et al., 2003). Functional annotation
analysis was performed using DAVID (Huang da et al., 2009a, b).
Principle component analysis was performed using SIMCA software
(v. 13, MKS Umetrics AB, Sweden).

Validation of 450K data
Validation of BeadChip measurements was carried out using One-
Step qMethyl (Zymo Research). The list of top differentially methy-
lated CpG sites was analyzed, and primers for four CpG sites,
cg27431500 (HN1L), cg20161089 (IFI27), cg11802666 (IRF2), and
cg04091816 (PDK2), were designed (Supplementary Table S7
online). Sufficient DNA was available from only four patients for
validation. Methylation levels in four healthy controls were also
determined. Real-time PCR was performed using 7900HT Fast Real-
Time PCR system (Applied Biosystems, Foster City, CA).

Statistics
All statistical tests were conducted in R (version 3.1.1) (The R
Foundation for Statistical Computing, Austria). Fisher’s exact test was
performed to evaluate the significance of overlap between two lists of
genes. The Hypergeometric test was used to evaluate the significance
of enrichment for a given data set. Pearson’s correlation coefficient
(r) was calculated to evaluate the strength of correlation between
DNA methylation and gene expression levels, as well as the
correlation between array and qMethyl data.

Data access
The DNA methylation data have been deposited in the NCBI Gene
Expression Omnibus database (GEO) under access number GSE63315.
Gene expression data related to this study are also available at GEO
(GSE53431).
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