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ABSTRACT: Here, we report improved solubility and enhanced
colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic
ether brominated analogue of noscapine, upon encapsulation of its
cyclodextrin (CD) complexes in bioresponsive guar gum microspheres
(GGM). Phase−solubility analysis suggested that Red-Br-Nos com-
plexed with β-CD and methyl-β-CD in a 1:1 stoichiometry, with a
stability constant (Kc) of 2.29 × 103 M−1 and 4.27 × 103 M−1. Fourier
transforms infrared spectroscopy indicated entrance of an O−CH2 or
OCH3−C6H4−OCH3 moiety of Red-Br-Nos in the β-CD or methyl-β-
CD cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD
and methyl-β-CD was validated by several spectral techniques. Rotating
frame Overhauser enhancement spectroscopy revealed that the Ha
proton of the OCH3−C6H4−OCH3 moiety was closer to the H5
proton of β-CD and the H3 proton of the methyl-β-CD cavity. The
solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was
improved by ∼10.7-fold and ∼21.2-fold when mixed with β-CD and
methyl-β-CD, respectively. This increase in solubility led to a favorable
decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-GGM formulations
respectively, compared to free Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD in human colon HT-29 cells. GGM-bearing
drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous
continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded
GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer.

KEYWORDS: Red-Br-Nos, colon cancer, β-cyclodextrin (β-CD), methyl-β-cyclodextrin (methyl-β-CD),
guar gum microspheres (GGMs), cytotoxicity

■ INTRODUCTION

Noscapine suppresses the progression of human colon cancer
cells by a mitochondrial mediated apoptosis pathway in a dose-
and time-dependent manner.1,2 Two newly synthesized
brominated derivatives of noscapine, 9-Br-Nos (EM011) and
Red-Br-Nos (EM012), have significant tubulin binding activity
and influence tubulin polymerization in a different way from
noscapine. The effect of 9-Br-Nos on inhibiting tubulin
polymerization is superior to that of Red-Br-Nos. However,
Red-Br-Nos captured cell cycle progression in the mitosis phase
at lesser concentration (3.6 μM) than 9-Br-Nos (7.7 μM) and
noscapine (18.4 μM) and consequently formed multipolar
spindles. Hence, Red-Br-Nos, being a chemotherapeutic agent,
has great potential to inhibit the progression of colon cancer
cells.3 Moreover, Red-Br-Nos is 5−40-fold more active than the
parent compound, noscapine.3,4 Although it has an excellent

therapeutic profile, Red-Br-Nos, due to its lipophilic trait (log P
value ∼ 2.94), it is listed in the class II category of the
armamentarium defined by the Biopharmaceutical Classification
System (BCS).5 Hence, the therapeutic benefits of Red-Br-Nos
cannot be achieved in the physiological milieu of the colon and
tumor compartment, until its solubility at the molecular level is
improved. This necessitates the encapsulation of Red-Br-Nos in a
bioresponsive, smart oral drug delivery system that can facilitate
the release of drug in a solubilized form in colon (pH∼ 5.5−7) .6
Colon cancer tissue exhibits differential pathophysiology as

compared to a healthy colon, where an acidic pH condition is
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observed in the former case due to the excessive secretion of bile
fluid.7 However, poor physicochemical and biopharmaceutical
traits alter the diffusion of anticancer drugs in colon cancer
tissue.8 This may consequently enhance the dose size and side
effects of chemotherapeutic drugs. Delivery of a high payload of
chemotherapeutic drug selectively to the inner layer of colonmay
cause the tumor cells to subside and reduce the need of surgery.9

This may be possible by customizing the oral controlled release
bioresponsive drug delivery systems.
Owing to this unique property; an oral drug delivery system

tailored with carbohydrate polymers would be ideal for colon
targeting. This kind of drug delivery accommodates the
possibility of self-administration and improved patient com-
pliance while achieving and sustaining therapeutic doses of the
drugs at the target site is considered effective. Currently, more
than 60% of clinical drugs are administered via the oral route.10

Cyclodextrins (CDs) are widely used to study solubility and
bioavailability issues and facilitate a biocompatible solid oral
dosage form.11 They are bucket-shaped, cyclic oligosaccharides
composed of 6, 7, or 8 glucopyranose units, linked by α, 1−4-
glycosidic bonds.12 β-CD, a unique molecule, has the ability to
form stable soluble aggregates with a broad range of lipophilic
molecules.13,14 But the restricted aqueous solubility of β-CD
(18.5 mg/mL) presents hurdles in the design and development
of soluble complexes of lipophilic drugs.15 As a substitute,
methyl-β-cyclodextrin (methyl-β-CD) due to its wider cavity size
and higher aqueous solubility (>2,000 mg/mL) produces more
wettable amorphous complexes with improved water solubility.16

Hence, we propose that cavitization of Red-Br-Nos using
supramolecular chemistry would improve the dissolution of
drug in physiological milieu of cancer cell compartments.
Several strategies have been applied to selectively steer the

chemotherapeutic drugs to the colon via the oral route of
administration including pH dependent drug delivery, prodrugs,
and multiparticulate systems.17−19 Guar gum microspheres
(GGM) have also been investigated for their selective targeting
and delivery properties.20,21 Guar gum is a carbohydrate
consisting of galactose and mannose, which can be easily
degraded by Bif idobacterium dentium strain.22

Therefore, in the present investigation, we have tailored and
optimized β-cyclodextrin (β-CD) and methyl-β-cyclodextrin
(methyl-β-CD) soluble complexes of Red-Br-Nos following the
freeze-drying technique.23,24 The physical and chemical structure
of the drug complex was characterized, followed by simulating
the molecular dynamics to determine functionality of the
aggregates and evaluate the relative binding affinities. Further,
the optimized complexes were hybridized with guar gum
microparticles and were tested for in vitro efficacy following
dissolution testing and cell proliferation assays onHT-29, human
colon cancer cells.

■ EXPERIMENTAL SECTION
Materials. Red-Br-Nos, [(R)-9-bromo-5-((S)-4,5-dime-

thoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-methyl-
5,6,7,8-tetrahydro-1,3-dioxolo-[4,5-g]-isoquinoline] was synthe-
sized in our laboratory.3,4 Beta-cyclodextrin (β-CD), methyl-β-
CD, DCl (35 wt % in D2O, 99 atom % D), 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT),
phosphate buffered saline (PBS), guar gum, Dulbecco’s modified
Eagle’s medium (DMEM), and fetal bovine serumwere procured
from Sigma-Aldrich. D2O (D 99.9%) and dimethyl sulfoxide-d6
(DMSO-d6) (D, 99.9% + 1% v/v TMS) were obtained from
Cambridge Isotope Laboratories, Inc. NaOD (40 wt % in D2O,

99+ atom % D) was procured from Acros Organics. All other
chemicals used were of the highest analytical grade and used
without further purification as provided by the manufacturer.

Reagents and Cell Lines. Human colon cancer (HT-29)
cells (ATCC) were maintained in 5% CO2 and 95% air at 37 °C
using DMEM enriched with 10% fetal bovine serum. The
experiments were carried out as described earlier.25

Synthesis and Characterization of Red-Br-Nos-CDs
Complexes. Phase Solubility Analysis. The chemical nature
of drug with cyclodextrins in the binary state was accredited by
phase−solubility assay.26 20 mg of Red-Br-Nos was dispersed in
10 mL of PBS consisting of β-CD and methyl-β-CD respectively
at various concentrations (1−17 mM). In an orbital shaker (200
rpm, at 37± 1 °C) the samples were then stirred for equilibration
for 5 days. Subsequently, the samples were filtered separately
through 0.22 μm membrane filters (Millipore, Germany), and
their absorbance at 291 nm was measured using a UV−visible
spectrophotometer (BeckmanCoulter). The slope of the phase−
solubility diagram was used to calculate their apparent stability
constant (eq 1):

= −K Sslope/ (1 slope)c o (1)

where Kc is the apparent stability constant and So is the solubility
of drug in cyclodextrin’s absence.

Preparation of Solid Complexes. 1:1 ratios (mM) of Red-Br-
Nos with (a) β-CD and (b) methyl-β-CD were separately mixed
in the aqueous state at pH ∼ 4.5 to prepare solid complexes of
Red-Br-Nos with CDs,23,24 which were thenmixed for 24 h on an
orbital shaker at 200 rpm and 37 ± 1 °C, followed by freeze-
drying. The mixtures then were passed through sieve #100 and
collected as dry samples. Physical mixtures of Red-Br-Nos with β-
CD and methyl-β-CD in 1:1 molar ratio were prepared by
stirring and filtering through a #100 sieve to obtain the fine
powder.

Characterization of Solid Complexes. Fourier Transform
Infrared (FT-IR) Spectroscopy. FT-IR spectroscopy was used to
characterize the solid complexes of Red-Br-Nos with β-CD and
methyl-β-CD. Using an infrared spectrophotometer (Perki-
nElmer), the spectra of Red-Br-Nos, β-CD, methyl-β-CD,
combinations of Red-Br-Nos with β-CD (1:1 mM) and
methyl-β-CD (1:1 mM), and aggregates of Red-Br-Nos with β-
CD (Red-Br-Nos−β-CD) and methyl-β-CD (Red-Br-Nos−
methyl-β-CD) (1:1 mM) were obtained. Samples were prepared
in a KBr disk (2 mg of sample/200 mg of KBr) with a hydrostatic
press at a force of 40 psi for 4 min. A scanning range of 400−4000
cm−1 with a resolution of 4 cm−1 was used.

Differential Scanning Calorimetry (DSC). The formation of
aggregates in the solid phase was confirmed using DSC analysis.
A differential scanning calorimeter (Mettler-Toledo Thermal
Equipment) was used to document the endothermic peaks of
Red-Br-Nos, β-CD, methyl-β-CD, mixtures of Red-Br-Nos with
β-CD (1:1) and methyl-β-CD (1:1), and aggregates of Red-Br-
Nos with β-CD (Red-Br-Nos−β-CD) and methyl-β-CD (Red-
Br-Nos−methyl-β-CD) (1:1 mM). Nitrogen gas was maintained
at 50 mL/min (flow rate). Thermograms were traced using 10
mg of sample with heating rate of 19.99 °C/min in the 30 to 300
°C temperature range.

Powder X-ray Diffraction Pattern (PXRD). The organization
of bonds in the crystal lattice of Red-Br-Nos, β-CD, methyl-β-
CD, mixtures of Red-Br-Nos with β-CD (1:1 mM) and methyl-
β-CD (1:1mM), and aggregates of Red-Br-Nos with β-CD (Red-
Br-Nos−β-CD) and methyl-β-CD (Red-Br-Nos−methyl-β-CD)
was determined as described earlier.23,24
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Scanning Electron Microscopy (SEM). The surface top-
ography of Red-Br-Nos, β-CD, methyl-β-CD, mixtures of Red-
Br-Nos with β-CD (1:1 mM) and methyl-β-CD (1:1 mM), and
the Red-Br-Nos complexes with β-CD (Red-Br-Nos−β-CD) and
methyl-β-CD (Red-Br-Nos−methyl-β-CD) was captured as
described earlier.23,24

Nuclear Magnetic Resonance (1H NMR) Spectroscopy. The
changes in chemical shift before and after complexation in the
solid state were observed using a BRUKER DPX 300 MHz
spectrometer by recording 1H NMR spectra as described
earlier.23,24

Molecular Dynamics Simulations and in Silico Molec-
ularModeling.The 3D (three-dimensional) crystal structure of
β-CD was taken from PDBID 3M3R27 (2.20 Å) to apply
molecular dynamics simulations and docking techniques as
described earlier.23,24,28−36

Determination of Encapsulation Efficiency. The encap-
sulation efficiency of Red-Br-Nos−β-CD and Red-Br-Nos−
methyl-β-CD complexes was determined by dissolving sepa-
rately 5 mg of sample in 100 mL of phosphate buffered saline as
described earlier.23,24 The absorbance of supernatant was then
recorded at 291 nm on a UV−visible spectrophotometer
(Beckman Coulter). The following formula was used to calculate
percent efficiency of encapsulation:

= ×% encapsulation efficiency
practical value

theoretical value
100

Evaluation of Aqueous Phase Solubility.The solubility of
drug and aggregates in the aqueous state was evaluated using
saturated solutions as described previously.23,24 Triplicates of
experiments were performed (n = 3).
Preparation and Characterization of Red-Br-Nos-CD

Complex Loaded Guar Gum Microspheres. Red-Br-Nos,
Red-Br-Nos−β-CD, and Red-Br-Nos−methyl-β-CD loaded
guar gum microspheres designated as Red-Br-Nos-GGM, Red-
Br-Nos−β-CD-GGM, and Red-Br-Nos−methyl-β-CD-GGM
were prepared by an emulsion polymerization technique.20,23,24

Particle Size Analysis. A zetasizer, HAS 3000 (Malvern
Instruments, Worcestershire, U.K.), was employed to subject the
microspheres to particle size analysis. For measuring particle size,
a 5 mg sample of the microspheres was dissolved in PBS (5 mL)
followed by adjusting the pH up to 7.4. All measurements were
made at 25 °C in triplicate (n = 3).
Scanning Electron Microscopy. The scanning electron

microscopy of all three formulations of guar gum microspheres
was carried out following the conditions as specified earlier.23,24

Determination of Encapsulation Efficiency. 50 mg
samples of all three guar gum microsphere formulations were
dissolved separately in 0.02 N hydrochloric acid (50 mL each).
Suspensions were mildly heated for 10−15 min and left to settle
for 72 h. Subsequently, microspheres were centrifuged at 15000
rpm and filtered through a 0.22 μm membrane filter (Millipore,
Germany), and a sample of the filtrate diluted using 0.02 N HCl
was analyzed at 291 nm in a UV/visible spectrophotometer
(Beckman Coulter) to evaluate the amount of Red-Br-Nos
entrapped in microspheres. All experiments were conducted at
25 °C in triplicate (n = 3).
In Vitro Testing of Optimized Complexes and Complex

Loaded Guar Gum Microspheres Following Dissolution
and Cell Proliferation Assay. Dissolution Testing. Dissolu-
tion tests were conducted using a type II USP dissolution test
apparatus. The dissolution study of Red-Br-Nos, physical

mixtures of Red-Br-Nos with β-CD and methyl-β-CD, and
respective complexes was conducted as specified earlier.23,24,37

The release studies of Red-Br-Nos-GGM, Red-Br-Nos−β-
CD-GGM, and Red-Br-Nos−methyl-β-CD-GGM were per-
formed in simulated intestinal fluids (KH2PO4 ∼ 68.04 g,
NaOH ∼ 8.96 g, and deionized water ∼ 10 L, pH 6.8, without
enzyme) and simulated colonic fluid (KCl ∼ 0.20 g/L, NaCl ∼ 8
g/L, KPO4 monobasic ∼ 0.24 g/L, Na2PO4 dibasic ∼ 1.44 g/L,
pH 7.0) comprising 2% and 6% w/v rat cecal matter, with and
without enzyme induction to simulate in vivo colon environment
as previously described.23,24

In Vitro Cell Growth Inhibition Assay. MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay38

was performed using HT-29 (human colon cancer cell line) to
determine the proliferative capacity of cells treated with Red-Br-
Nos, β-CD, methyl-β-CD, Red-Br-Nos−β-CD complex, Red-Br-
Nos−methyl-β-CD complex, Red-Br-Nos-GGM, Red-Br-
Nos−β-CD-GGM, and Red-Br-Nos−methyl-β-CD-GGM. The
blank microspheres were used as control.23,24

Statistical Analysis. Student t-test and one-way analysis of
variance were employed to analyze the statistical significance. p <
0.05 was considered to be a substantial difference. All the data is
represented as average ± SD for n ≥ 3.

■ RESULTS

Synthesis and Characterization of Red-Br-Nos Aggre-
gates in Solution and Solid-State Determination of Their
Stoichiometry. The primary objective of the current study was
to formulate a unique hybridized microparticulate drug delivery
system that can improve the colonic bioavailability of Red-Br-
Nos to impart therapeutic action. Therefore, we utilized the
biocompatible glucose cyclic oligomers, CD, to encapsulate Red-
Br-Nos using inclusion chemistry to enhance the dissolution and
solubility phenomena. The drug delivery at the site of action was
improved by hybridizing the optimized drug−CD complex with
bioresponsive guar gum microspheres. In the present inves-
tigation, we have explored supramolecular coupling techniques
to enhance the solubility of Red-Br-Nos in physiological milieu
via the freeze-drying-based cycloencapsulation method.23,24

First, we determined the stoichiometry along with apparent
stability constant (Kc) of tailored aggregates. Therefore, phase−
solubility analysis was employed to calculate the stoichiometry in
the solution phase.26 The phase−solubility curves of Red-Br-Nos
in β-CD and methyl-β-CD complexes in solution phase are
represented in Figure 1. The curves show a proportional hike in
solubility of Red-Br-Nos with increasing concentrations of β-CD
and methyl-β-CD, respectively. Hence, the solubility curves of
Red-Br-Nos with β-CD and methyl-β-CD can be classified as AL

Figure 1. Phase−solubility analysis of binary system of Red-Br-Nos with
β-CD and methyl-β-CD, respectively.
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type.11 The linear curves of Red-Br-Nos with β-CD and methyl-
β-CD suggested the formation of a 1:1 complex in the solution
phase. The stability constants (Kc) of the binate systems of Red-
Br-Nos with β-CD andmethyl-β-CDwere determined to be 2.29
× 103 M−1 and 4.27 × 103 M−1, respectively, from the phase−
solubility linear plots (Figure 1).
Conformation of Complexes in the Solid Phase.

Following phase−solubility analysis, the complexes of Red-Br-
Nos with β-CD and methyl-β-CD were characterized in the solid
state with FTIR spectroscopy. The hydrophobic association
induced alterations in the stretching frequencies amid the
cycloencapsulation of Red-Br-Nos in the β-CD and methyl-β-
CD cavities were analyzed by recording the spectra. The
stretching frequencies of Red-Br-Nos, β-CD, methyl-β-CD,
mixtures, and the aggregates are shown in Table 1 and Suppl.
Figure 1 in the Supporting Information. The FT-IR spectrum of
Red-Br-Nos revealed a distinctive peak at 1,032 cm−1, emphasiz-
ing the presence of ortho-substituted benzene. Peaks at 1,418
and 1,380 cm−1 for N−CH3 bending pulsations and 2,949, 2,853,
and 2,701 cm−1 because of the presence of various OCH3/CH3
groups were observed for Red-Br-Nos. The β-CD gamut
presented the pulsation of free −OH groups at 3,281 cm−1

whereas 2,925 and 1,640 cm−1 signified the existence of −CH
stretching and H−O−H bending. But, the peak at 2,835 cm−1 in
methyl-β-CD (OCH3/OCH2) distinguished it from β-CD. The
mixture of Red-Br-Nos with β-CD and methyl-β-CD denoted
that 2949 and 2853 cm−1 (OCH3/CH3 groups) peaks of Red-Br-
Nos were masked; however few identical peaks of individual
components were also present. Further, the distinctive peaks
(2949 and 2853 cm−1) were masked by introduction of Red-Br-
Nos in the β-CD and methyl-β-CD nanocavities by complex
formation. This suggested the introduction of methoxy group in
the cyclodextrin pocket. Hence, the infrared spectra initially
indicated the involvement of functional groups of Red-Br-Nos
that infiltrate the β-CD and methyl-β-CD pockets. To further
corroborate the synthesis of Red-Br-Nos complexes with β-CD
and methyl-β-CD in the solid phase, DSC was employed to
determine the endothermic peaks in comparison to their
individual components as shown in Figure 2. The endothermic
peak of Red-Br-Nos was found at 168.83 °C, similar to
noscapine’s melting point (170−175 °C). The CD thermograms
(i.e., α-, β-, and γ-CDs) indicate a wide peak range from 40 to 150
°C (117.83 °C for β-CD and 83 °C for methyl-β-CD) because of
the evaporation of water molecules. The thermograms of Red-Br-
Nos and β-CD mixture as well as methyl-β-CD mixture specified
that identical peaks of individual components were present in the
mixtures. However, the endothermic peaks of Red-Br-Nos
became invisible in the thermograms of Red-Br-Nos−β-CD and
Red-Br-Nos−methyl-β-CD aggregates with an alteration in the
peaks of β-CD and methyl-β-CD to 72.5 °C and 100.83 °C.
PXRDCharacterization of Complexes.Next, we identified

the crystalline configurations of Red-Br-Nos in the nano-
encapsulation mode by the PXRD technique. Similar to
noscapine, the XRD pattern of Red-Br-Nos exhibited acute
peaks signifying the crystalline pattern (Figure 3A−G). Though
β-CD’s pattern was associated with acute peaks representing its
crystalline nature, the introduction of methylation in β-CD
(methyl-β-CD) changed the crystalline configuration into an
amorphous phase revealing broad and dispersed peaks,
ascertaining the enhanced solubility of methyl-β-CD in the
aqueous phase in comparison with β-CD. Red-Br-Nos and β-CD
as well as methyl-β-CD physical mixture’s XRD pattern
confirmed that the peaks for individual components are present.

However, owing to overlapping effect, Red-Br-Nos maintained
its initial crystallinity in physical mixture with methyl-β-CD.
Lastly the complexes of Red-Br-Nos with β-CD and methyl-β-
CD exhibited peaks of decreasing intensity. Major shifts that
occurred in crystalline peaks of Red-Br-Nos upon encapsulation
in physical mixtures and complexation with β-CD and methyl-β-
CD are depicted in Suppl. Table 1 in the Supporting Information.

SEM Characterization. Surface texture of complexes was
observed using SEM (Figure 4A−G). However, this technique is
not a confirmation of the solid-state complex synthesis, but
facilitates the examination of the occurrence of a single entity in
the complex. This technique confirmed the presence of regular
sized crystalline particles in Red-Br-Nos, an observation

Table 1. FTIR Spectrum Assignment of Red-Br-Nos, β-CD,
Methyl-β-CD, Physical Mixtures, and Red-Br-Nos−β-CD and
Red-Br-Nos−Methyl-β-CD Inclusion Complexes, Measured
between 4400 and 400 cm−1

peaks (cm−1) assignment
peaks
(cm−1) assignment

Red-Br-Nosa inclusion complex (Red-Br-
Nos−β-CD)

2949,
2853,
2701

(ν, −OCH3/OCH2) 2927 (−CH
stretching)

1636 1615
1614 1449
1448 1154 (C−H

stretching)
1418,
1380

(ν, N−CH3) 1082 (C−O
stretching)

1265 1037 (C−O−C
bending)

1224 methyl-β-CDc

1076 2925 (−CH
stretching)

1032 (ν, ortho substituted
benzene)

2835 (ν, −OCH3/
OCH2)

β-CDb 1638 (H−O−H
bending)

3281 (−OH stretching) 1154 (C−H
stretching)

2925 (−CH stretching) 1083 (C−O
stretching)

1640 (H−O−H bending) 1033
1152 (C−H stretching) physical mixture (Red-Br-Nos

and methyl-β-CD)
1077 (C−O stretching) 2925 (C−O−C

bending)
1022 (C−O−C bending) 1615 (ν, −CH

stretching)
physical mixture (Red-Br-Nos and β-CD) 1449

3293 (−OH stretching) 1155 (C−H
stretching)

2920 (ν, −CH stretching) 1079
1637 1034 (C−O−C

bending)
1449 inclusion complex (Red-Br-

Nos−methyl-β-CD)
1153 (C−H stretching) 2926 (ν, −CH

stretching)
1077 1616
1026 (C−O−C bending) 1492

1445
1031 (C−O−C

bending)
aReduced bromonoscapine. bBeta-cyclodextrin. cMethyl-beta-cyclo-
dextrin.
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consistent with the PXRD results. Also, crystalline particles of β-
CD were found to have vague structures. The mixture of Red-Br-
Nos with β-CD demonstrated adherence of the individual
crystalline component, which indicated the efficient mixing.
However, the complex of Red-Br-Nos with β-CD exhibited
narrow sized particles with an aggregate forming tendency,
proposing the presence of amorphous product. On the other
hand, methyl-β-CD exists in an amorphous lattice instead of a
crystalline structure, like native polymer. Hence, the physical
mixture of Red-Br-Nos with methyl-β-CD illustrated the
existence of both crystalline and amorphous particles, while the
complex Red-Br-Nos−methyl-β-CD substantiated the presence
of an amorphous product alone.
NMR Spectroscopy for Characterization of Complexes.

Solution phase characterization of the complexes was conducted
using 1H NMR spectroscopy. According to the chemical shift
variations, 1H NMR communicates data on free and bound
phases of a guest compound. The resultant chemical shift, Δδ, is
represented as variation between bound and free guest molecule
chemical shifts. Such resultant shifts were measured by applying
the formula Δδ = δcomplex − δfree.

39 The positive and negative
signs based on this equation indicated downfield and upfield
shifts, respectively. The 1H NMR spectra of free β-CD and
methyl-β-CD with their designated aggregates in D2O are shown
in Figure 5B,C. Since H3 and H5 protons located in the
nanocavities of β-CD and methyl-β-CD, their signals were found
to shift upfield due to interaction with guest molecule, Red-Br-

Nos, revealing the formation of complex through the inclusion
mode. Also, the shift in the signals for the protons H1, H2, H4, and
H6 existing on the exterior of β-CD and methyl-β-CD indicated
the host molecule’s conformational change in the presence of
guest compound, as shown in Table 2. Furthermore, through-
space intermolecular interactions in the CD complexes were
confirmed by 1H−1H 2D ROESY experiments.40 Red-Br-Nos
interactions with β-CD and methyl-β-CD were also evaluated by
1H−1H 2D ROESY and presented as partial contour graphs in
Figure 5B,C. The correlation between the Ha proton of Red-Br-
Nos with the inner proton H5 of β-CD and H3 of methyl-β-CD
has been represented. However, other protons of Red-Br-Nos
and CDs exhibited no correlations, and this ascertained that a
Red-Br-Nos ring was partially inserted, excluding other aromatic
protons into the nanocavity. The spectrum indicated that Red-
Br-Nos deeply penetrated the β-CD and methyl-β-CD nano-
cavities.

In Silico Docking and Molecular Dynamics Simulation
for Characterization of Complexes.We used in silico docking
and molecular dynamics simulation to evaluate the complexation
of Red-Br-Nos with β-CD and methyl-β-CD. This study
suggested that the H3CO−C6H4−OCH3 group of Red-Br-Nos
was in the β-CD nanocavity, while the Br-attached ring was
resolved along the wider edge of β-CD in both the aggregates
(Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD). These
structures were used as starting conformations to determine the
molecular dynamics simulations (Figure 6B). For each complex,
at least 40,000 conformations were generated inMD simulations.
The interaction binding free energy of every simulation was

Figure 2. Differential scanning calorimetry analysis of Red-Br-Nos, β-
CD, physical mixture, Red-Br-Nos−β-CD complex, methyl-β-CD,
physical mixture, and Red-Br-Nos−methyl-β-CD complex.

Figure 3. PXRD pattern of (A) Red-Br-Nos, (B) β-CD, (C) physical
mixture of Red-Br-Nos and β-CD, (D) Red-Br-Nos−β-CD complex,
(E) methyl-β-CD, (F) physical mixture of Red-Br-Nos and methyl-β-
CD, and (G) Red-Br-Nos−methyl-β-CD complex.

Figure 4. Scanning electron microscopy of (A) Red-Br-Nos, (B) β-CD,
(C) physical mixture of Red-Br-Nos and β-CD, (D) Red-Br-Nos−β-CD
complex, (E) methyl-β-CD, (F) physical mixture of Red-Br-Nos and
methyl-β-CD, (G) Red-Br-Nos−methyl-β-CD complex, (H) Red-Br-
Nos loaded guar gum microspheres, (I) Red-Br-Nos−β-CD complex
loaded guar gum microspheres, and (J) Red-Br-Nos−methyl-β-CD
complex loaded guar gum microspheres.
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computed while dispersion of binding energies was also
determined between Red-Br-Nos−β-CD and Red-Br-Nos−
methyl-β-CD as shown in Figure 6A. The results suggested
that Red-Br-Nos binds more efficiently to methyl-β-CD than β-
CD as a similar trend was reported in the case of 9-Br-Nos, a
tubulin binding anticancer agent and potential analogue of
noscapine,24 binding to CDs. However, the binding energies
demonstrated that Red-Br-Nos is more favorable than 9-Br-Nos
by 8−10 kcal/mol. The difference between 9-Br-Nos and Red-
Br-Nos is that the CO group of the five-membered lactone
ring is replaced by a −CH2 group (Figure 5A) that decreases the
electrostatic potentials and increases the lipophilic trait of Red-
Br-Nos. However, the electrostatic interaction contributions are
almost the same in complex formation for 9-Br-Nos and Red-Br-
Nos while the contribution of van der Waals interaction changes
drastically (Figure 6A). The electrostatic and nonpolar input to
the solvation free energy of Red-Br-Nos is about 2−4 kcal/mol
and 1−2 kcal/mol more than that of 9-Br-Nos in both complexes

(Figure 6A). The implications of these results reveal that the
solvation destabilizes the Red-Br-Nos by 1−3 kcal/mol
compared to 9-Br-Nos. However, Red-Br-Nos fabricates more
stable complexes with β-CD and methyl-β-CD due to large
variation in van der Waals interactions between Red-Br-Nos and
9-Br-Nos. The contribution of electrostatic and nonpolar
solvation free energies are more in β-CD than that of methyl-
β-CD, revealing the destabilization of Red-Br-Nos−β-CD/9-Br-
Nos−β-CD compared to methyl-β-CD complexes. Conse-
quently methyl-β-CD forms more stable complex with 9-Br-
Nos and Red-Br-Nos than β-CD. The most plausible
conformations of the Red-Br-Nos−β-CD and Red-Br-Nos−
methyl-β-CD complexes are depicted in Figure 6B. The results
reveal that Red-Br-Nos forms a firmer aggregate with methyl-β-
CD than β-CD, with the H3CO−C6H4−OCH3 group of Red-Br-
Nos in the CD nanocavity.

Analysis of Solubility and Encapsulation Efficiency.
Upon characterization of the solid complexes, we next evaluated
if the complexation rendered improved solubility of Red-Br-Nos.
A substantial (p < 0.05) improvement in the solubility of the
complexes of Red-Br-Nos with β-CD (4.6 × 10−3 g/mL) and
methyl-β-CD (9.1 × 10−3 g/mL) was observed compared to free
Red-Br-Nos, 0.43 × 10−3g/mL. Quantitatively, the solubility of
Red-Br-Nos upon complexation with β-CD and methyl-β-CD
was enhanced by ∼10.7-fold and ∼21.2-fold, in comparison to
free Red-Br-Nos. The encapsulation efficiency of Red-Br-Nos in
β-CD and methyl-β-CD solid complexes was calculated to be
93.4% and 97.1%, respectively.

Characterization of Complex Loaded Guar Gum
Microspheres. Red-Br-Nos and optimized complex loaded

Figure 5. (A) Schematic representation of chemical structure of Red-Br-Nos, β-CD, and methyl-β-CD. (B) 1H 1D spectra of free β-CD and Red-Br-
Nos−β-CD complex in D2O and partial contour plot of the 1H−1H 2D ROESY spectrum of Red-Br-Nos−β-CD complex in D2O. The correlation
between proton Ha of Red-Br-Nos and inner proton H5 of β-CD has been shown. (C) 1H 1D spectra of free methyl-β-CD and Red-Br-Nos−methyl-β-
CD complex in D2O and partial contour plot of the 1H−1H 2D ROESY spectrum of Red-Br-Nos−methyl-β-CD complex in D2O. The correlation
between proton Ha of Red-Br-Nos and inner proton H3 of methyl-β-CD has been shown.

Table 2. Chemical Shifts for the Protons of β-CD in the Free
and Bound States

proton β-CD (ppm)a Red-9-Br-NOS−β-CD (ppm) Δδ (ppm)

H1 (d) 5.0620 5.0599 −0.0021
H2 (dd) 3.6399 3.6418 0.0019
H3 (t) 3.9604 3.9400 −0.0204
H4 (t) 3.5765 3.5758 −0.0007
H5 (m) 3.8450 3.8283 −0.0167
H6 (d) 3.8728 3.8638 −0.0090

aBeta-cyclodextrin.
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guar gum microspheres were produced separately by the
emulsion polymerization method20 using chemical cross-linker
glutaraldehyde to impart hardening to the microspheres. We
used 2%w/v guar gum, 3% Span 80, 1.5 mL of glutaraldehyde, 50
°C temperature, 4000 rpm rotational speed, and 4 h stirring time
for preparation of microspheres that ensured the optimal size of
microspheres for oral drug delivery. The mean particle diameter
of guar gummicrospheres was observed to be 8.4± 2.02 μm, 12.5
± 2.9 μm, and 16.5 ± 3.25 μm for Red-Br-Nos-GGM, Red-Br-
Nos−β-CD-GGM, and Red-Br-Nos−methyl-β-CD-GGM for-
mulations, respectively (Table 3). Stable dispersion of the

polymer in oil phase was promoted using Span 80. Encapsulation
efficiency was computed as ratio of amount of Red-Br-Nos in
final microspheres (100 mg) to that of Red-Br-Nos introduced
into the process. Percent encapsulation efficiency was calculated
to be 65.84 ± 5.1% and 73.56 ± 4.3%, respectively for Red-Br-
Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-GGM, sig-
nificantly (p < 0.05) higher than 40.36 ± 5.9% of Red-Br-Nos-
GGM. Similarly, drug-loading capacity was calculated to be 5.04
± 0.8 mg, 8.25 ± 0.9 mg, and 9.19 ± 0.5 mg per 10 mg of
microspheres for Red-Br-Nos-GGM, Red-Br-Nos−β-CD-GGM,
and Red-Br-Nos−methyl-β-CD-GGM formulations, respec-
tively. Shape and surface morphology was determined by
scanning electron microscopy (Figure 4H−J), which revealed

that Red-Br-Nos-GGM consisted of a rough surface with
spherical shape while Red-Br-Nos−β-CD-GGM and Red-Br-
Nos−methyl-β-CD-GGM showed smooth surface, respectively.

Analysis of Performance in Dissolution Testing and
Cell Proliferation Assay. In Vitro Release Study. Furthermore,
dissolution studies of the tailored nanoformulations were carried
out in PBS and artificial intestinal fluid (pH 6.8) as shown in
Figure 7A−D. This data suggests that only 7.9% Red-Br-Nos was
dispensed from the gelatin capsule filled with pure drug at 30 min
as opposed to the Red-Br-Nos−β-CD and Red-Br-Nos−methyl-
β-CD complex, which delivered significantly (p < 0.05) higher
(70.9% and 90.6%) amounts of drug at similar intervals (Figure
7A). The physical mixtures of Red-Br-Nos with β-CD and
methyl-β-CD however showed no significant affect (p > 0.05) on
the drug release in comparison to pure drug. Subsequently,
dissolution testing of complex loaded guar gum microspheres
was conducted in artificial intestinal fluid (pH ∼ 6.8) (Figure
7B). The nanoformulations Red-Br-Nos−methyl-β-CD-GGM
and Red-Br-Nos−β-CD-GGM released 30.4% and 24.8% of Red-
Br-Nos, significantly (p < 0.05) higher than 14.5% by Red-Br-
Nos-GGM, respectively.
Next simulated colonic fluid with 2% and 6% w/v cecal

content was utilized to test the efficacy of the hybridized
microspheres, in the presence and absence of enzyme induction.
Furthermore, we observed 28.9% and 38.4% release of Red-Br-
Nos from Red-Br-Nos−β-CD-GGM and 55.6% and 65.7% from
Red-Br-Nos−methyl-β-CD-GGM respectively in 2% and 6% w/
v rat cecal matter with no enzyme induction (Figure 7C).
However, to further enhance the drug release from our
formulations, we used artificial colonic fluid containing 2% and
6% w/v rat cecal matter with enzyme induction and obtained
significantly improved results. Our formulation Red-Br-Nos−β-
CD-GGM released 37.2% and 50.4% of Red-Br-Nos at 2% w/v
and 6% w/v cecal matter while Red-Br-Nos−methyl-β-CD-
GGM released 74.2% and 88.2% at 2% w/v and 6% w/v cecal
matter concentration (Figure 7D).

In Vitro Cytotoxicity Assay. The cellular toxicity exerted by
the formulations in human colon cancer cells, HT-29, was
determined byMTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-
tetrazolium bromide) cell viability assay by suspending the

Figure 6. Complexation energies of Red-Br-Nos and 9-Br-Nos with β-CD and methyl-β-CD, measured as (A) binding energy (kcal/mol), electrostatic
interaction energy (kcal/mol), van der Waals interaction energy (kcal/mol) of 9-Br-Nos and Red-Br-Nos with β-CD and methyl-β-CD, nonpolar
solvation free energy and electrostatic solvation free energy (kcal/mol); and (B) conformation molecular modeling structures of Red-Br-Nos in β-CD
and methyl-β-CD respectively.

Table 3. Particle Size Analysis, Percent Encapsulation
Efficiency, and Drug Loading Capacity of Red-Br-Nos-CDs
Loaded Guar Gum Microspheres

parameters

formulation
particle sizea

(mm)

%
encapsulation

effica

drug loading
capacitya (mg/

10 mg)

Red-Br-Nos-GGM 8.40 ± 2.02 40.36 ± 5.9 5.04 ± 0.8
Red-Br-Nos−β-CD-
GGM

12.5 ± 2.90 65.84 ± 5.1 8.25 ± 0.9

Red-Br-Nos−
methyl-β-CD-
GGM

16.5 ± 3.25 73.56 ± 4.3 9.19 ± 0.5

aEach experiment was carried out in triplicate (n = 3).

Molecular Pharmaceutics Article

dx.doi.org/10.1021/mp500408n | Mol. Pharmaceutics 2014, 11, 4339−43494345



formulations in PBS.38 The IC50 (11.9 μM) of Red-Br-Nos−
methyl-β-CD was lower significantly compared to Red-Br-
Nos−β-CD (27.1 μM) and Red-Br-Nos (∼200 μM) at 72 h
treatment. Next we observed the IC50 of Red-Br-Nos and

complex bearing guar gum microspheres for 24, 48, and 72 h.
Compared to 72 h treatment with the free complexes, the
complex bearing guar gum microspheres (Red-Br-Nos−methyl-
β-CD-GGM, ∼4.53 μM; Red-Br-Nos−β-CD-GGM, ∼11.8 μM)

Figure 7. In vitro dissolution profile of (A) Red-Br-Nos, physical mixture of Red-Br-Nos and β-CD, Red-Br-Nos−β-CD complex, physical mixture of
Red-Br-Nos andmethyl-β-CD, and Red-Br-Nos−methyl-β-CD complex in phosphate buffered saline, pH 7.4. (B) Red-Br-Nos, Red-Br-Nos loaded guar
gum microspheres, Red-Br-Nos−β-CD complex loaded guar gum microspheres, and Red-Br-Nos−methyl-β-CD complex loaded guar gum
microspheres in simulated intestinal fluid, pH 6.8. (C) Red-Br-Nos−β-CD and methyl-β-CD complex loaded guar gum microspheres in 2% and 6%
cecal content without enzyme induction in simulated colonic fluid, pH 7.0. (D) Red-Br-Nos−β-CD and methyl-β-CD complex loaded guar gum
microspheres in 2% and 6% cecal content after enzyme induction in simulated colonic fluid, pH 7.0.

Figure 8. (A) Percent cell viability of Red-Br-Nos, β-CD, Red-Br-Nos−β-CD complex, methyl-β-CD, and Red-Br-Nos−methyl-β-CD complex at 24 h.
(B) Red-Br-Nos, β-CD, Red-Br-Nos−β-CD complex, methyl-β-CD, and Red-Br-Nos−methyl-β-CD complex at 48 h. (C) Red-Br-Nos, β-CD, Red-Br-
Nos−β-CD complex, methyl-β-CD, and Red-Br-Nos−methyl-β-CD complex at 72 h. (D) Blank guar gum microspheres, Red-Br-Nos−β-CD, and
methyl-β-CD complex loaded guar gummicrospheres at 24 h. (E) Blank guar gummicrospheres, Red-Br-Nos−β-CD, andmethyl-β-CD complex loaded
guar gummicrospheres at 48 h. (F) Blank guar gummicrospheres, Red-Br-Nos−β-CD, and methyl-β-CD complex loaded guar gummicrospheres at 72
h. Cytotoxicity study was carried out in phosphate buffer saline, pH 7.4.
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exhibited significantly (p < 0.05) lower IC50 than free complexes
(Red-Br-Nos−methyl-β-CD, ∼11.9 μM; Red-Br-Nos−β-CD,
∼27.1 μM) (Figure 8D−F and Suppl. Figure 2 in the Supporting
Information).

■ DISCUSSION
Noscapine and its brominated derivatives (9-Br-Nos and Red-Br-
Nos) have been investigated for anticancer potential against
human colon cancer cells.1−4 Reduction of the lactone ring in
Red-Br-Nos remarkably improved the anticancer potential as
compared to 9-Br-Nos and noscapine, however, it enhanced the
lipophilicity of the drug. Hence, in the current study, Red-Br-
Nos, a novel analogue of brominated noscapine, was cyclo-
encapsulated in supramolecules like β-CD and methyl-β-CD to
augment solubility and drug delivery for the management of
colon cancer. The optimized complexes were then hybridized
with guar gum microspheres to facilitate enhanced solubility and
bioavailability at the site of action. Generally low molecular
weight drugs are present at a ratio of 1:1 in CDmolecule, with an
individual molecule encapsulated within the nanocavity of a
single CD molecule, associated with a dissociation constant of
K1:1 to attain equilibrium with respect to free and associated
species.11 Hence, the phase−solubility curve indicated that Red-
Br-Nos established a 1:1 complex with β-CD and methyl-β-CD
in binary aqueous phase (Figure 1). The phase−solubility curve
can be categorized as AL kind revealing the resultant water-
soluble aggregate with first-order kinetics for the formation of
complex between Red-Br-Nos and CDs. Also, a variety of
spectroscopic techniques were used to determine the structural
configurations of complexes in the solid state. FT-IR spectral data
exhibited that Red-Br-Nos was stable in the solid complex as
there is no sign of any chemical linkage or degradation.
Additionally, the FTIR spectra indicated that the inclusion
mode may be presented as −OCH3 or −OCH2 group in CD
nanocavities (Table 1). DSC thermograms ascertained the
production of a 1:1 aggregate in the solid phase as an
endothermic peak of Red-Br-Nos dissolved in the aggregates of
β-CD and methyl-β-CD, in comparison to the peak of β-CD and
methyl-β-CD (Figure 2). Also, PXRD patterns of Red-Br-
Nos−β-CD and Red-Br-Nos−methyl-β-CD revealed peaks of
moderate strength compared to spiky peaks of Red-Br-Nos
(Figure 3). Correspondingly, noscapine23 and brominated
derivative of noscapine, 9-Br-Nos,24 also exhibited characteristic
sharp peaks from 20° to 40°. Next, PXRD pattern of β-CD and
methyl-β-CD exhibited crystalline and amorphous geometry,
consistent with the reported literature.23,24 Hence, PXRD
spectroscopy determined that Red-Br-Nos lies in the β-CD
and methyl-β-CD pits as an amorphous polymer. Generally, due
to erratic structural geometry, the amorphous phase involves
minimal energy and thus renders maximum bioavailability to
drugs.41 Additionally, the SEM photomicrographs further verify
the presence of Red-Br-Nos in an amorphous phase in β-CD and
methyl-β-CD solid aggregates (Figure 4A−G). The solid
complexes were further substantiated using 1D and 2D 1H
NMR along with in silico docking studies followed by molecular
dynamics simulations to evaluate the Red-Br-Nos complex
conformations. 1H NMR spectroscopy provides evidence of
aggregation between host and guest molecules in the solution
state based on differences in chemical shift. Typically, when a
guest molecule enters the host nanocavity, a considerable
variation of the chemical environments is known to exist between
free and bound phases. The chemical shift (δ, ppm value) of a
proton leans on the shielding constant while alterations in δ of

the host and guest proton present a scale of complex formation
extent. Since the chemical environment of few protons varies
upon complexation, there is a subsequent difference in the
chemical shifts (δ ppm) of 1H NMR resonance (shielding or
deshielding effects). Thus, the chemical structure of complexes
(Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD) was ex-
plicated with 1HNMR and ROESY spectroscopy. ROESY data
deduced that the Ha proton of OCH3−C6H4−CH3O infiltrated
the β-CD and methyl-β-CD nanocavities and thus can be
correlated with the H5 and H3 protons of the nanocavities
respectively (Figure 5). These data corresponded with the in
silico molecular modeling (Figure 6). Also, the deshielding effect
on Red-Br-Nos aromatic protons upon aggregate formation
inferred that the drug permeated the host nanocavities (Table 2).
A superior augmentation in Red-Br-Nos solubility by ∼10.7-fold
and ∼21.2-fold during aggregation with β-CD and methyl-β-CD
was noticed. Additionally, the aggregates displayed a favorable
entrapment efficiency of Red-Br-Nos in β-CD and methyl-β-CD
oriented complexes. Dissolution study was carried out in PBS
and compared with free drug to justify the improved dissolution
profile. Usually, alkaloid drugs (noscapinoids, pKa∼ 7.8)42 ionize
at acidic pH of stomach and remain stringent at a neutral/basic/
colon pH. We propose that Red-Br-Nos would have been
undissociated at pH∼ 7.4 and inclusion into β-CD andmethyl-β-
CD nanocavities increased its solubility in dissolution medium.
Thus, our data assured increased drug dissolution during
aggregation with β-CD and methyl-β-CD, where an increased
amount of drug was released in comparison to the free drug and
physical mixtures (Figure 7A). This indicated the instant
solubilization of Red-Br-Nos in intestinal/colon fluid. Next we
analyzed the performance of dissolution of complex bearing guar
gum microspheres in artificial intestinal (pH ∼ 6.8) and colon
(pH ∼ 7.0) fluids containing 2% and 6% w/v cecal matter
respectively with and without enzyme induction. The release
profile of guar gum microspheres suggested that glutaraldehyde
cross-linking decelerated the release of Red-Br-Nos from
microspheres (Figure 7B). Glutaraldehyde reacts with hydroxyl
group of galactose and mannose units of guar gum and, hence,
resists water uptake by guar gum microspheres. Moreover, cross-
linking decreases polymer chain mobility, improves glass
transition temperature, and reduces diffusion.20,21 An optimal
drug delivery system targeting the colon must release the
therapeutic amount of drug only in colon in post oral
administration. A routine dissolution testing methodology
cannot precisely predict in vivo efficacy of a colon-targeted
drug delivery system. Hence, in vitro drug release studies were
conducted in a modified artificial colon fluid release medium
containing rat cecal content of about 2% w/v and 6% w/v
concentrations, respectively, as reported in previous literature for
guar gum microspheres, prepared with 2% w/v guar gum gel.20

The quantity of fecal content of human colon is generally more
than the concentration employed in the present study. The
percent drug release was observed to be superior in the presence
of rat cecal contents (with enzyme induction) as compared to
other groups (Figure 7C,D). This may be attributed to greater
degree of degradation of guar gum coating by colonic enzymes,
present in cecal content that allowed higher drug release. Though
the existence of rat cecal contents in simulated colon fluid (pH∼
7.0) improved the Red-Br-Nos release, nevertheless, complete
release of Red-Br-Nos was not achieved even after 24 h from
Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-
GGM. Reduction in the enzymatic activity of polysaccharidases
over longer duration of time may be accredited to the incomplete
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release of Red-Br-Nos during in vitro testing.43 The complexes of
Red-Br-Nos with β-CD and methyl-β-CD and complex loaded
guar gum formulations prevented the growth of HT-29 cells at
lower IC50s in comparison to free drug, in congruence with the
dissolution data. These drug complexes are likely to improve the
drug diffusion across the plasma membrane as Red-Br-Nos is
present in soluble un-ionized state in PBS (Figure 8A−C).
Similarly, we also observed ∼2-fold and ∼3-fold lower IC50 for
Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-
GGM formulations in comparison to free Red-Br-Nos−β-CD
and Red-Br-Nos−methyl-β-CD treated HT-29 cells (Figure
8D−F and Suppl. Figure 2 in the Supporting Information).
Certainly, complex bearing guar gum microsphere formulations
effectively inhibited the proliferation of HT-29 cells and this
effect increased as Red-Br-Nos continued to be released from
microspheres. The results suggest that the hybridized drug
delivery system sufficiently perturbs the cellular membrane for
diffusion to cause a cytostatic activity. It is proposed that this kind
of drug delivery allows multiple and repetitious sites for drug−
cell interactions.44

The current study outlines the chemistry of supramolecules
(like β-CD and methyl-β-CD) to improve the cytotoxicity and
solubility of Red-Br-Nos, a nontoxic, microtubule-modulating
drug. Employing a wide variety of spectral and characterization
techniques supported by computational analytics, our data
confirms that the CD-based aggregates enhance the biological
and physicochemical properties of Red-Br-Nos. Spherical, free-
flowing glutaraldehyde cross-linked guar gum microspheres of
complexes facilitated slow release of Red-Br-Nos in the colon,
where the bacterial enzymes could degrade the guar gum from
the microspheres, thus allowing the drug release at the target site.
Hence, guar gum microsphere release of drug is a potential
system for colon delivery of Red-Br-Nos, which warrants a
detailed in vivo study in the future to design a novel therapeutic
regimen for the management of colon cancer.
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