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Static test research on steel bridge 
deck pavement structures paved 
by high‑content hybrid fibre 
polymer concrete
Chaohua Zhao1*, Zhiwei Zhu2, Zhijian Yi1*, Kang Su1 & Ya Li1

Steel bridge deck pavement has always been a key and difficult point in the construction of long-span 
bridges. In practical engineering, common paving material is asphalt, and serious damage is caused 
on the pavement layer in the early stage. In this study, a high-performance high-content hybrid fibre 
polymer concrete was used as the paving material. A test was conducted on the small beam of the 
composite structure formed by the pavement layer and steel plate, and a positive/negative bending 
moment test was conducted to analyse the stiffness and bearing capacity of the composite structure. 
As revealed in the research results, the flexural and tensile stiffness of the structure and the bearing 
capacity of the composite structure showed superior performance, increased significantly with 
the pavement thickness, but increased slowly after the pavement thickness exceeded 80 mm and 
the increase in thickness contributed little to the bearing capacity. Under the simulated action of a 
positive/negative bending moment, the pavement layer still exhibited certain ductile failure features 
when the structure was bearing an ultimate load. This proves that high-content hybrid fibre polymer 
concrete exhibits suitable mechanical properties for steel bridge deck pavement.

Abbreviations
GA	� Grouted asphalt
SMA	� Stone mastic asphalt
UHPC	� Ultrahigh-performance concrete

Steel bridge deck pavements remain a key and challenge in the construction of long-span bridges. In actual 
engineering, serious defects occur on pavement layers in an early stage1. Cement concrete is a common pave-
ment material but is rarely used for steel bridge deck pavements because it is brittle, with a small allowable limit 
deformation. When ordinary cement concrete is utilised in the pavement of ordinary cement concrete roadbeds 
without reinforcement, many vertical and horizontal cracks appear on the surface or inside the concrete, which 
can be detected by visual inspection or by more advanced non-destructive testing methods2–6. Due to the high 
flexibility of orthotropic steel bridge decks, a large difference between pavement layer deformation and bridge 
decks is obtained under vehicle loading; thus, traditional cement concrete cannot be applied to steel bridge decks. 
Currently, asphalt is maturely and commonly used for steel bridge deck pavement.

Steel bridge deck pavement structures are generally divided into single- and multilayer pavement systems. 
Different countries or regions have different climates (e.g., extreme temperature and rainfall) and traffic volumes; 
thus, the pavement scheme must be selected on the basis of the specific engineering experience. In America, 
most steel bridge decks are paved using single-layer epoxy asphalt. This technology is relatively mature7–9. The 
structural form is as presented in Fig. 1a. In Germany, the pavement of a steel bridge deck is complicated, with 
multiple layers and high pavement thickness. The structural form is displayed in Fig. 1b. In Britain, a typical steel 
bridge deck has many pavement layers, but the total thickness is merely approximately 4 cm. The structural form 
is illustrated in Fig. 1c. In France, a typical steel bridge deck has four pavement layers, with a total thickness of 
approximately 5 cm. The structural form is illustrated in Fig. 1d.

However, the asphalt may exhibit many issues that occur in practical engineering. For example, hot mixed 
asphalt concrete needs a high environment and mixing temperatures, which restrict the construction time, 
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resulting in a short construction period during the entire year10–12. Grouted asphalt concrete6,10,13–15 exhibit low 
durability when used as the top layer of steel bridge deck pavement15–17. Modified asphalt concrete needs a large 
thickness when used for steel bridge deck pavement18,19. Longitudinal cracks, pit slots, or interlayer voids can 
often be observed on pavement layers20,21 when using epoxy asphalt22–24 as steel bridge deck pavement.

Based on the above-mentioned analysis, it can be easily observed that conventional asphalt shows many 
disadvantages which are detrimental to the long-term service performance of bridge decks. Therefore, more and 
more researchers are focusing on improving the mechanical properties of concrete. The ultrahigh-performance 
concrete (UHPC) and polyurethane concrete are proposed and widely used in the construction of steel bridge 
decks accordingly in very recent decades. For example, in 2002, UHPC was used to pave the sidewalk slab of 
a bridge on the Qinghai-Tibet Railway of China, which presents harsh environmental conditions. Through a 
study on the steel–UHPC lightweight composite structure, Xudong26–28 proved that with a certain dead weight, 
this structure can improve the stiffness of the pavement structure and reduce the stress on the pavement layer. 
This structure has been then applied to Beijiang Bridge No. 4 in Qingyuan City, Guangdong Province, and the 
Dongting Lake Bridge. As for the polyurethane concrete, the concrete was first used to pave a steel bridge deck 
for the channel of the South Hongmei Road in Shanghai, China29 in 2017. It is well known that the concrete is a 
brittle material30, the material is not tension resistant and cannot resist impact and cyclic loads. The technique 
of adding fibres (e.g. steel fibres) to concrete is also considered to be a more effective method of improving 
the properties of concrete, such as shear, flexural and tensile properties31–34. To date, although there has been 
researched into low-mix polymer concrete, the concrete materials available still cannot meet the requirements 
for crack resistance and toughness of road materials. That is, none of the existing studies has reported high fibre 
admixtures for polymeric concrete, with a typical fibre admixture of no more than 3% by volume 34, 41. To 
further improve cracking resistance and achieve ultra-high toughness, a series of high-performance polymer 
concretes with high strength, toughness, and environmental adaptability has been studied and realised35–37 by 
the authors. As reported in the literature37, hybrid fibre polymer concrete exhibits reliable working performance, 
with the elastic modulus, compressive strength, and flexural strength reaching up to 35.93 GPa, 52.82 MPa, and 
11.51 MPa, respectively. Based on the authors’ engineering practice, the cost of the pavement structure proposed 
through the technical modifications by the authors does not exceed 800 RMB/m2, with cost savings of 50% at 
least. Moreover, it exhibits high sulfate erosion resistance, which makes it suitable for pavement under special 
environmental conditions.

As can be seen in the above literature review, the investigations on high-performance polymer concrete gener-
ate great methods for improving the properties of the material. However, none of the previous investigations has 
performed the structural analysis on such high-performance polymer hybrid fibre concrete. The lack of structural 
studies of the developed materials may limit the application of the materials in practical engineering. Meanwhile, 
the lack of research into mechanical mechanisms also weakens the scientific character of the materials developed 
by the authors and is not conducive to widespread application. To further illustrate the superiority of high fibre 
admixture polymer concrete (Fibres are mixed at 5% or even up to 7% by volume) and enhance the research on 
mechanical mechanisms of the concrete, this paper aims to chose the optimum proportion of materials for the 
structural tests to obtain the performance of the current polymer hybrid fibre concrete. Meanwhile, a strong and 
durable bonding system is also introduced in this paper for steel bridge deck pavement structures.

Materials and test method
Test purpose and design.  This paper discusses two pavement structures: a single-layer pavement struc-
ture (a high-content hybrid fibre polymer concrete pavement layer) and a double-layer pavement structure 
(where the upper layer is a polymer lattice concrete wear layer and the lower layer is a high-content hybrid fibre 
polymer concrete pavement layer). The two structures are introduced as follows.

Figure 1.   Typical pavement structures of steel bridge deck. (a) Typical pavement structure in America; (b) 
typical pavement structure in Germany; (c) typical pavement structure in Britain; (d) typical pavement structure 
in France.
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Single‑layer pavement structure.  The pavement layer had an area of 700 mm (L) × 100 mm (W) and a thickness 
of 60/70/80/90 mm. Each group comprised three test pieces (to reduce error, the average of the three test results 
was taken; if one of the results was more than 15% different from the other two results, the result was ignored). 
In addition, the thickness of the interface bonding layer was ignored. The dimensions of the steel plate were 
700 mm × 100 mm × 12 mm, and this plate was bonded to the pavement layer through modified epoxy resin. The 
single-layer pavement structure is presented in Fig. 2, where t = 60–90 mm.

Double‑layer pavement structure.  For the double-layer pavement structure, the lower layer was a 70-mm-thick 
high-content hybrid fibre polymer concrete pavement layer, and the upper layer was a 10- or 20-mm-thick wear 
layer paved using polymer lattice concrete; the two layers were bonded with bonding layer II. The specific test 
steps were similar to those followed for the single-layer pavement structure. Before grouting the wear layer, the 
lower layer was cured for > 14 days. The polymer lattice porous concrete for grouting the wear layer was made 
compact by using a special tool. The double-layer pavement structure is illustrated in Fig. 3.

For the static performance of the structure, the following aspects are mainly studied in this paper:

(1)	 The mechanical properties and failure modes of single-layer pavement structures with thicknesses of 60, 
70, 80, and 90 mm;

(2)	 The mechanical properties and failure modes of double-layer pavement structures with thicknesses of 
10 mm + 70 mm and 20 mm + 70 mm;

(3)	 The mechanical properties and failure modes of the two pavement structures under the action of positive 
and negative bending moments.

Analytical contents included the flexural and tensile stiffness of the members, which were mainly reflected 
through the load–displacement curve of the structure, as well as the failure modes of the members, the appear-
ance and expansion of cracking, and the influence of the pavement structure on enhancing the flexural and 
tensile stiffness of steel plates.

Raw materials.  Cement: ordinary Portland cement with nameplate of ‘Huaxin Cement’ and label of P.O42.5 
produced in Chongqing;

Coarse aggregate: Granite gravels with size grading of 5–10 mm and maximum nominal particle size of 10 mm 
produced in Chaoyang River, Chongqing;

Fine aggregate: medium-coarse sand produced in Chongqing;
Fly ash: First-grade fly ash produced by Luohuang Power Plant in Chongqing;
Ordinary steel fibre: Corrugated shear-type ordinary steel fibre produced by Anshan Kebite Technology 

Development Co., Ltd.;
Ultrashort ultrafine steel fibre: Melt-drawing ultrashort ultrafine steel fibre produced by Anshan Kebite Tech-

nology Development Co., Ltd.;
Flexible fibre: Polypropylene flexible fibre produced by Langfang Haoxin Thermal Insulation and Fireproof 

Sealing Material Co., Ltd. in Shandong;
Emulsion: Styrene butadiene rubber (SBR)-modified polymer latex.
Table 1 presents the main physical and mechanical parameters of three different fibres: ordinary, ultrashort 

ultrafine, and flexible steel fibres. It should be noted that the formula presented in Table 1 is the optimum fibre 
formulation. More details about the choice of the current formulation can be seen in the authors’ previous 
research37,38. Under the proposed fibre combination, this paper conducted the following structural analysis.

Figure 2.   Single-layer pavement structure.

Figure 3.   Double-layer pavement structure.
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Table 2 presents the mass mixture ratio in each cubic meter of hybrid fiber polymer concrete for the pave-
ment structure layer.

Among them, the volume rates of ordinary steel fibres and ultrashort ultrafine steel fibres were 1.91% and 
4%, respectively, and the polymer-cement ratio was 0.55.

The polymer-modified cement lattice concrete for paving the wear layer is a mixture of 5–10 mm discon-
tinuously graded broken granite aggregates, 42.5 ordinary Portland cement, and polymer emulsion in the ratio 
of 1600:400:120 kg by mass per unit cubic volume. The discontinuously graded broken stones that formed the 
lattice structure inside the concrete provided the concrete strong anti-shrinking and deformation coordination 
ability and thus improved the ease of formation. Moreover, through bonding, this layer can be well integrated 
with the lower layer of high-content hybrid fibre polymer concrete.

Preparation of paving materials.  The high-content hybrid fibre polymer concrete for paving the struc-
tural layer was mixed and produced with reference to the preparation method of relevant polymer steel fibre 
concrete39, and the steps followed for preparing the high-content hybrid fibre polymer concrete used in this 
study are as follows:

1.	 The two fibres were poured out in different positions and dispersed separately; the corroded and clustered 
steel fibres were removed.

2.	 Sand and broken stones were oven-dried at 105 °C without any decrease in weight and then removed.
3.	 The weighed coarse and fine aggregates and cement were placed in a mixing pot and mixed for approximately 

1 min; then, the two fibres (steel fibre and flexible fibre) were gradually added to the mixture and mixed for 
approximately 1 min again to facilitate their even dispersion in the aggregates.

4.	 The polymer emulsion was slowly added into the mixture and stirred.
5.	 The final mixture was discharged to prepare the test piece. In preparation, the mixture was vibrated to shape 

up. The vibrating time in the vibrating table was kept neither considerably short nor long to ensure compact-
ness, prevent the steel fibres from sinking, and avoid the uneven distribution of the density of each layer of 
concrete.

The polymer lattice porous concrete for paving the wear layer was prepared in a manner similar to the mixing 
preparation of ordinary cement concrete, as described in the literature35,36.

Preparation of pavement structure test pieces.  Test steps:

1.	 A wooden mold with the corresponding size was prepared; the steel plate was polished on a grinding 
machine; then, the flatness of the steel plate was tested, and the steel plate was put into the wooden mold 
with the rust-removed surface facing upwards.

2.	 The surface was brushed with an interface-bonding agent at a spreading rate of approximately 1 kg/m2 to 
ensure that the steel plate surface was evenly painted.

3.	 High-content hybrid fibre polymer concrete was poured onto the bonding interface and vibrated to shape 
up; three days later, the wooden mould was removed.

For double-layer pavement, the wear layer was poured into shape the next day after the first layer of hybrid 
fibre polymer concrete solidified. The interface-bonding agent was also brushed on the wear layer after the wear 
layer shaped up.

Curing method: the pavement layer of the material was cured in a wetting manner first and then in a drying 
manner. The layer was watered and covered with a film for one day of wet curing; then, the mould was removed, 

Table 1.   Main physical and mechanical properties of the three types of fibres.

Fiber type Length, in mm Diameter, in mm L/D
Bending 
performance

Elasticity modulus, 
in GPa

Tensile strength, 
in MPa

Ordinary steel fiber 35 0.87 40  > 90 210 425

Ultrashort ultrafine 
steel fiber 6 0.2 30  > 90 240 880

Flexible fiber 12 0.03 400  > 90 3.85 500

Table 2.   Masses of materials per cubic volume.

Type Cement Gravel Sand
Ordinary steel 
fiber

Ultrashort 
ultrafine steel 
fiber Flexible fiber

Polymer 
emulsion Fly ash

Mass per volume, 
in KG 580 600 600 150 312 3 320 250
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and the pavement layer was watered and filmed again for two days of curing and then cured in a dry environment 
at ambient temperature. After curing for 28 days, test pieces were subjected to a loading test.

Loading method.  In the loading test, the third-point loading scheme of ordinary anti-flection concrete test 
pieces was used for reference40. In this scheme, the space between the supports was 600 mm, and those between 
the loading points and between the support and loading point were both 200 mm. The test piece was wiped 
with a rag. The centre below the test piece was pasted with a strain gauge, and the centre of the test piece was 
mounted with a dial indicator; wood chips were pasted on two sides of the test piece, which were supported by 
a dial indicator header. The dial indicator and strain gauge were both connected to a YE2539 high-speed static 
strain indicator under normal conditions, and strain gauges were pasted on the same batch of test pieces for tem-
perature compensation. The press, with a power of 200 kN, was turned on, followed by start-up of the oil pump, 
slow adjustment of the oil delivery and return valves until the oil pressure reached the normal level; after that, 
the two valves were closed. After the wiring was well connected, the test piece was raised to a suitable height and 
carefully adjusted to closely contact the press header; then, the oil delivery valve was rotated slowly to increase 
the load evenly and slowly. While the load was read, the dial indicator collected the displacement and scanning 
strain value continuously. When failure finally appeared on the test piece, the test was ended. The test results and 
phenomenon were recorded.

Compared to the third-point loading of ordinary cement concrete, the loading of the pavement structure test 
piece had the following differences:

(1) The sizes of the test pieces were different.
The flexural test piece of ordinary cement concrete was only 400 mm in length, while that of the steel bridge 

pavement structure in this study was 700 mm. The calculated span between the supports was 600 mm, and the 
third point (loading point) from the support was 200 mm.

(2) A strain gauge was provided to test the strain of the structural test pieces, while a dial indicator was added 
to test the deflection of the structural test pieces.

In the literature y40, the purpose of loading on the flexural test piece of ordinary cement concrete was to 
measure the flexural tensile strength of the material, regardless of the deformation and deflection. For the test 
piece of the pavement structure, the deflection of the structural test piece and the strain of the material should 
be examined considering the test purpose. Therefore, a strain gauge should be provided to test the change in the 
strain in the tensile material at the bottom of the loaded test piece, and a displacement dial indicator should be 
added to test the deflection displacement of the structural test piece with different loads.

(3) The loading points of the test pieces were on different planes.
When the flexural test piece of ordinary concrete was loaded, the side that was going to shaped up faced 

upwards to ensure the flatness of the support and loading planes and to reduce error. When the test piece of 
the pavement structure was shaped up, the steel plate was at the bottom of the test mould. However, in actual 
engineering, the tensile conditions of the pavement layer and the steel plate should be considered due to the 
specificity of steel bridge deck pavement (the tension is on the upper side).

To test the flexural and tensile strain of the steel plate or pavement layer in the hybrid fibre polymer concrete 
pavement structure, two loading methods according to the direction are available: positive bending moment 
simulation loading and negative bending moment simulation loading.

Positive bending moment simulation loading: In this method, the bottom of the steel plate is on the lower 
side, while the pavement layer is on the upper side and used as the loading contact surface. This method is used 
to simulate the pressure on the pavement layer at the positive bending moment bearing position in the actual 
pavement structure (Fig. 4a).

Negative bending moment simulation loading: In this method, the pavement layer is on the lower side, while 
the bottom of the steel plate is on the upper side and used as the loading contact surface. This method is used 
for simulating the tension on the pavement layer at the negative bending moment bearing position in the actual 
pavement structure (Fig. 4b).

Results and discussion
Static test on single‑layer pavement structure.  The entire single-layer pavement structure formed by 
the steel plate and a pavement layer with different thicknesses exhibit different stiffnesses. The structural stiff-
ness under the action of a positive/negative bending moment can be expressed by the load–displacement curve 
of the structure.

Performance analysis of the pavement structure under the simulated action of positive bending moment.  The 
flexural and tensile stiffness of the single-layer pavement structure can be measured using the corresponding 
load–displacement curve. Table 3 shows the load–displacement curve of the single-layer pavement structure 
with different pavement thicknesses (with the steel plate on the lower side) under the simulated loading of a 
positive bending moment. The stiffness of the composite structure is affected by the thickness of the pavement 
layer, and the full-process load–displacement curve under tactual flexural and tensile conditions of the structure 
cannot be accurately plotted. To measure the structure stiffness more accurately, it was calculated using the load–
displacement curve of the member in the linear elastic stage. The flexural and tensile stiffness and failure load of 
the composite pavement structure formed by different thicknesses of single-layer pavement under the action of 
a positive bending moment are presented in Table 3.

According to Fig. 5, the following results were obtained:
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(1)	 The flexural and tensile stiffness of the composite structure formed by the pavement layer, bonding layer, 
and steel plate was significantly affected by the pavement thickness. The flexural and tensile stiffness of the 
structure can be expressed by a load–displacement curve. According to the curve, the pavement thickness 
is directly proportional to the flexural and tensile stiffness of the pavement structure.

The thickness of the single–layer pavement also significantly influenced the bearing capacity of the composite 
structure. The thicker the pavement layer, the larger the bearing capacity of the pavement structure. The average 
failure load on the composite structure formed by 60-mm-thick single-layer pavement was much lower than 
that on the structure with the other three pavement thicknesses.

Figure 4.   Schematic of loading for test. (a) Schematic of positive bending moment loading; (b) schematic of 
negative bending moment loading.

Table 3.   Flexural and tensile stiffness and failure load of the composite structure formed by different 
thicknesses of single-layer pavement.

Pavement thickness 60 mm 70 mm 80 mm 90 mm

Flexural and tensile stiffness of the composite structure, in KN/mm 12.303 17.445 33.705 38.326

Failure load, in KN 47 71 76 87

Figure 5.   Load–displacement curve of a single-layer pavement structure with different pavement thicknesses in 
the linear elastic stage under the simulated action of a positive bending moment.
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Steel fibres and flexible fibres exhibit anti-cracking enhancement effects. When the load on the test piece was 
increased almost to the peak, a clear "pa-pa" voice-like fibres were pulled out or broken. At this moment, the 
fibres were partially pulled and sheared in place of the concrete. When the crack occurred, the load continued 
to increase until the crack pointed near the loading cushion block. Finally, the failure on the pavement layer was 
shear-compression failure.

Performance analysis of the pavement structure under the simulated action of a negative bending moment.  Under 
the simulated action of a positive bending moment, the force on the pavement layer was conservative. However, 
in practice, a negative bending moment appears on the steel bridge deck pavement above the longitudinal ribs 
and longitudinal and transverse partitions under the action of vehicle loading. In addition, for the pavement 
layer, a negative bending moment is unfavorable and thus should be the focus.

Similar to the force analysis conducted on a positive bending moment, it is rational to select the load–dis-
placement curve of the pavement structure under loading action in the linear elastic stage (Fig. 6). The flexural 
and tensile stiffness and failure load of the composite structure formed by different thicknesses of single-layer 
pavement under the action of a negative bending moment are illustrated in Table 4.

Under the simulated action of a negative bending moment, the bearing capacity of the pavement structure 
was much lower than that under the simulated action of a positive bending moment; the thickness of the pave-
ment layer also had a large impact on the stiffness of the pavement structure; that is, the former is directly 
proportional to the latter.

The calculation results revealed that for single-layer pavement, when the pavement thickness was increased 
from 70 to 80 mm, an evident increase was observed in both the average flexural and tensile stiffness and average 
failure load of the composite pavement structure. When the load reached the peak, the bottom tensile material 
(high-content hybrid fibre polymer concrete) could prevent the expansion of cracking. Hence, all selected thick-
nesses of the pavement structures exhibited suitable tensile strength.

When the pavement structures were loaded under the simulated condition of a negative bending moment, 
cracks appeared at the bottom tensile surfaces of the structures. With a gradual increase in load, the bottom cracks 
gradually expanded upwards; when the cracks expanded to a certain height, the load was no longer increased. 
At this time, the cracks on the member expanded continuously, without sudden fracturing.

Static test on double‑layer pavement structure.  In view of the driving comfort, permeability, and 
noise-reduction function of steel bridge deck pavement, this paper proposes a double-layer pavement structure 
(a pavement layer of high-content hybrid fibre polymer concrete and a wear layer of polymer lattice concrete). 
The wear layer has high permeability and performs the functions of improving the anti-sliding performance and 
distributing the loads of the vehicle wheels. The double-layer structure was paved from bottom to top: 12 mm 
steel plate + interface-bonding layer I + 70-mm-thick high-content hybrid fibre polymer concrete + interface-

Figure 6.   Load–displacement curve of a single-layer pavement structure with different pavement thicknesses 
under the simulated action of a negative bending moment.

Table 4.   Flexural and tensile stiffness and failure load of the composite structure formed by different 
thicknesses of single-layer pavement under the action of a negative bending moment.

Pavement thickness 60 mm 70 mm 80 mm 90 mm

Flexural and tensile stiffness of the composite structure, in KN/mm 16.126 18.000 23.530 25.000

Failure load, in KN 12.0 13.5 16.5 18
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bonding layer II + 10 or 20-mm-thick polymer lattice concrete. Similar to the test conducted on a single-layer 
pavement structure, the test pieces were loaded under the action of a positive/negative bending moment.

The mechanical performance test conducted on the double-layer pavement structure mainly includes draw-
ing the mid-span load–displacement curve, analysing the load–displacement curve in the linear elastic stage, 
calculating the flexural and tensile stiffness of the structure and the contribution of the wear layer to the flexural 
and tensile stiffness of the structure, and analysing the failure load on the structure and the form of the structure 
with failure load.

Performance analysis of the pavement structure under the simulated action of positive bending moment.  The 
contribution of the wear layer to the flexural and tensile stiffness of the pavement structure was calculated by 
analysing the load–displacement curve of the double-layer pavement structure and comparing it with that of 
a 70-mm-thick single-layer pavement structure. The following figure shows the mid-span load–displacement 
curve in the linear elastic stage. The flexural and tensile stiffness and failure load of the composite structure 
formed by different thicknesses of double-layer pavement under the action of a positive bending moment are 
presented in Table 5 and Fig. 7.

As revealed from the calculation results, there was a large difference between the load–displacement curve 
of the double-layer pavement structure in the linear elastic stage and that of the 70-mm-thick single-layer pave-
ment structure. In detail, the flexural and tensile stiffness of the former structure (70 mm + 10 mm in thickness) 
was improved by 64.7% from that of the latter structure. When the wear layer thickness was increased from 10 
to 20 mm, the flexural and tensile stiffness of the pavement structure was improved by only 16%, a variation 
that was not evident.

Regarding the failure load, there was no significant difference between the double-layer pavement structure 
and the 70-mm-thick single-layer pavement structure. The flexural and tensile stiffness and failure loads of 80- 
and 90-mm-thick single-layer pavement structures were both slightly higher than those of the ‘70 mm + 10 mm’ 
thick and ‘80 mm + 10 mm’ thick composite pavement structures. The main reason for this is that the single-layer 
pavement structure is well integrated and thus contributes significantly to the entire flexural and tensile stiffness 
and bearing capacity of the structure.

Under the simulated loading of a positive bending moment, the wear layer paved by polymer lattice con-
crete and the lower layer paved by high-content hybrid fibre polymer concrete jointly carried the forces on the 
structure. Similar to the single-layer pavement structure, cracks also appeared near the support as the load 
increased, with the main crack obliquely pointing to the loading point. When the load reached the peak, the 
cracks expanded deeply. However, as the two layers of the double-layer pavement structure were paved by differ-
ent paving materials, the cracks did not reach the polymer lattice concrete of the wear layer, and the two layers 
were well bonded. Before displacement failure occurred on the two layers, no clear crack was observed on the 
wear layer, but partial concrete of the wear layer was crushed.

Table 5.   Flexural and tensile stiffness and failure load of the composite structure formed by different 
thicknesses of double-layer pavement under the action of a positive bending moment.

Pavement thickness 70 mm 70 mm + 10 mm 70 mm + 20 mm

Flexural and tensile stiffness of the composite structure, in KN/mm 17.445 28.740 33.478

Failure load, in KN 71 73 77

Figure 7.   Load–displacement curve of a double-layer pavement structure with different pavement thicknesses 
in the linear elastic stage under the simulated action of a positive bending moment.
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Performance analysis of the pavement structure under the simulated action of a negative bending moment.  Under 
the simulated action of a positive/negative bending moment, the pavement structure showed a huge difference in 
bearing capacity, specifically in the load–displacement curve. Under the simulated action of a negative bending 
moment, the load–displacement curve of the double-layer pavement structure is vital for analysing the contri-
bution of the wear layer to the flexural and tensile stiffness of the entire structure and the contribution of the 
thickness change in the wear layer to the entire flexural and tensile stiffness. The flexural and tensile stiffness and 
failure load of the composite structure formed by different thicknesses of the double-layer pavement structure 
under the action of a negative bending moment are displayed in Fig. 8 and Table 6.

The calculation results showed no evident difference between the load–displacement curve of the double-
layer pavement structure under the action of a negative bending moment and that of the single-layer pavement 
structure. The flexural and tensile stiffness and failure load of the composite structure did not increase signifi-
cantly with the thickness of the wear layer. Compared with the double-layer pavement structure, the single-layer 
pavement structure underwent a clear yield point elongation after the load reached the peak.

For the composite structure under the simulated action of a negative bending moment, cracks appeared on 
the top of a small beam test piece with an increase in load and gradually expanded from the wear layer paved by 
the polymer lattice concrete to the lower layer paved by the high-content hybrid fibre polymer concrete; after 
the cracks expanded to a certain height, the load reached the peak, and the displacement increased continuously 
at evidently increased acceleration. In the presence of cracks in the lower layer, the pavement structure could 
continuously bear a higher range of load until the cracks expanded to the critical value, the test piece could no 
longer bear a higher load, and failure occurred on the test piece.

Conclusion
In this study, the structural test research method of indoor design was used to study the mechanical properties 
of the high-content hybrid fibre polymer concrete pavement structure. The two types of pavement structures and 
the composite pavement structures with different pavement thicknesses were subjected to small beam tests and 
loaded with positive and negative bending moments. Hence, the load–displacement curves and failure forms of 
the structures under the actions of positive and negative bending moments were obtained and used as the basis 
for analysing the stiffness of the composite pavement structures and verifying the anti-cracking enhancement 
mechanism of the two types of paving materials. The following small beam test results were obtained:

(1)	 For a single-layer pavement structure, the 80-mm-thick pavement formed a composite structure, which 
had evidently higher flexural and tensile stiffness than the 70-mm-thick pavement structure. The ultimate 
bearing capacity of the pavement structures under the action of a negative bending moment is far lower 

Figure 8.   Load–displacement curves of double-layer pavement structures with different pavement thicknesses 
under the simulated action of a negative bending moment.

Table 6.   Flexural and tensile stiffness and failure load of the composite structure formed by different 
thicknesses of double-layer pavement under the action of a negative bending moment.

Pavement thickness 70 mm 70 mm + 10 mm 70 mm + 20 mm

Flexural and tensile stiffness of the composite structure, in KN/mm) 18.000 20.769 24.167

Failure load, in KN 13.5 13.5 14.5
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than that under the action of a positive bending moment, and the variation in pavement thickness con-
tributes little to the flexural and tensile stiffness and bearing capacity of the composite structures.

(2)	 For the double-layer pavement structure, the composite structure formed by the lower layer of 70 mm-thick 
high content hybrid fibre polymer concrete and the upper wear layer of polymer lattice concrete signifi-
cantly enhanced the flexural and tensile stiffness under the action of a positive bending moment, but no 
evident change was observed in the ultimate bearing capacity of the structure.

(3)	 When the wear layer of the double-layer pavement structure was subjected to failure under load, the wear 
layer remained unbroken, and the upper layer remained well bonded with the lower layer. This verifies 
that this structure exhibits the superiority of ‘lattice + node + void’ and superior mechanical properties of 
bonding.

(4)	 Regardless of the simulated action of a positive or negative bending moment, the pavement layer still 
exhibits certain ductile failure characteristics when the structure bears the ultimate load, which proves that 
high-content hybrid fibre polymer concrete exhibits suitable mechanical properties and is an ideal material 
for paving the steel bridge deck.

In short, the structure paved by high-content hybrid fibre polymer concrete exhibits suitable structural per-
formance. This material has good application prospects. Future research should further emphasise the durability 
of the pavement structure.

Data availability
All data generated or analyzed during this study are included in this published article.
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