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Mechanisms of invasion and motility 
of high-grade gliomas in the brain

ABSTRACT  High-grade gliomas are especially difficult tumors to treat due to their invasive 
behavior. This has led to extensive research focusing on arresting glioma cell migration. Cell 
migration involves the sensing of a migratory cue, followed by polarization in the direction of 
the cue, and reorganization of the actin cytoskeleton to allow for a protrusive leading edge 
and a contractile trailing edge. Transmission of these forces to produce motility also requires 
adhesive interactions of the cell with the extracellular microenvironment. In glioma cells, 
transmembrane receptors such as CD44 and integrins bind the cell to the surrounding extra-
cellular matrix that provides a substrate on which the cell can exert the requisite forces for 
cell motility. These various essential parts of the migratory machinery are potential targets to 
halt glioma cell invasion. In this review, we discuss the mechanisms of glioma cell migration 
and how they may be targeted in anti-invasion therapies.

ABSTRACT 

INTRODUCTION
Major advances in the preceding decades have substantially im-
proved the way cancer is treated. However, not every form of cancer 
has seen such profound benefits from the many advancements 
made. Successful treatment of high-grade gliomas (HGGs), which 
include glioblastomas (GBMs), remains particularly elusive. Current 
treatment typically involves surgical resection followed by tumor ir-
radiation and chemotherapy. More than three decades of intensive 
research have produced only modest improvements in life expec-
tancy (Sathornsumetee and Rich, 2006). Life expectancy remains 
dismal, with GBM harboring a median survival time of 15 months 
(Louis et al., 2016) and a 5-year survival of just 9.8% (Stupp et al., 
2009). This poor prognosis is due in large part to the wide dissemi-
nation of tumor cells prior to diagnosis, which makes recurrence al-
most a certainty even after repeated resections (Barker et al., 1998). 

Conversely, less invasive gliomas typically result in long-term sur-
vival and are often curable (Hunter et al., 2003).

The resilience of GBM due to diffuse infiltration has increased 
investigation into mechanisms of motility and invasion, with the goal 
of arresting or slowing glioma spread. This therapeutic goal may 
allow for more successful localized treatment with reduced recur-
rence. Broadly, cell migration starts with an extrinsic migratory sig-
nal, including chemical (Carter, 1965), mechanical (Lo et al., 2000), 
electrical (Brown and Loew, 1994), and other cues. Cells then define 
a leading edge in the direction of the migratory cue and a trailing 
edge at the rear. After cell polarization, actin polymerization at the 
leading edge causes protrusion of the plasma membrane. At the 
surface of the cell, transmembrane receptors, such as integrins, al-
low the cells to transmit forces generated from the interactions of 
myosin and the cytoskeleton to the extracellular microenvironment. 
These processes are summarized in Figure 1. As such, valuable strat-
egies for inhibiting glioma motility may include manipulation of mi-
gratory cues, cytoskeletal filaments and the myosin motors, trans-
membrane receptors, and the extracellular microenvironment. 
These can be grouped into extracellular and intracellular processes 
and factors, which will be reviewed in this article.

EXTRACELLULAR FACTORS
Migratory cues
Tumor cells have been shown to respond to a variety of migratory 
cues, including chemotactic, galvanotactic, and mechanical cues 
(Petrie et al., 2009). Glioma cells are no exception, and all of these 
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cues are involved in glioma cell invasion. These migratory cues are 
being actively studied to increase the understanding of GBM migra-
tory behavior and to find possible methods of intervention.

Chemotaxis is the process by which cells move in response to a 
chemical gradient, such as a cytokine, chemokine, or growth factor 
(Van Haastert and Devreotes, 2004). In cancer, these pathways can 
be hijacked to aid in dissemination of tumor cells (Condeelis et al., 
2005). Glioma cells are more susceptible to chemotactic cues than 
the healthy brain tissue due to up-regulation of chemokine recep-
tors and growth factor receptors. Epidermal growth factor (EGF) re-
ceptors (Ekstrand et  al., 1991), platelet-derived growth factor 
(PDGF) receptors (Nazarenko et  al., 2012), and fibroblast growth 
factor (FGF) receptor 2 (Brockman et al., 2003; The Cancer Genome 
Atlas Research Network, 2008) often have genomic amplification in 
GBMs, which, among other oncogenic functions, can all lead to che-
motaxis in response to their ligands. A variety of drugs targeting 
these migratory signals are being evaluated in clinical trials (Roussos 
et al., 2011). The chemoattractant C-X-C ligand 12 (CXCL12, also 
known as stromal cell–derived factor 1, or SDF1) and its receptor 
C-X-C chemokine receptor 4 (CXCR4), which is required for brain 
development (Nagasawa et al., 1996), also contribute to malignancy 
in a wide range of cancer variants, including gliomas. CXCR4 is 
highly up-regulated in invasive glioma tumor cells compared with 
noninvasive tumor cells (Ehtesham et al., 2006). Treatment with a 
small molecular inhibitor of CXCR4 has been shown to suppress the 
growth of GBM tumors in vivo (Rubin et al., 2003). In a model in 
which applied fluid flow enhanced migratory behavior, CXCR4 ap-
peared to modulate glioma migratory behavior independent of 
CXCL12 (Munson et al., 2013). This is especially significant, as con-
vection enhanced delivery (described by Debinski and Tatter, 2009), 
an experimental therapy popular in clinical trials, flows drugs directly 
into the tumor mass, which could theoretically increase glioma inva-
sion. CXCR4 is being targeted in an ongoing clinical trial.

Concentrations of autocrine chemotactic cues would decrease 
with distance from the bulk tumor, limiting its potential impact at the 

FIGURE 1:  Graphical summary of many of the factors involved in GBM invasion, presenting a 
GBM cell migrating away from the bulk tumor. GBM cells often migrate within perivascular 
spaces and along white matter tracts. Transmembrane receptors allow the cell to interact with 
both of these extracellular environments. The cytoskeleton rearranges to accommodate the 
directed migration down a migratory cue gradient, possibly including a chemokine gradient as 
depicted. Matrix metalloproteinases (MMPs) allow for remodeling of the extracellular matrix 
during migration. All of these factors present potential targets for halting GBM migration.

tumor edge. It has been suggested, how-
ever, that normal astrocytes can secrete a 
host of chemokines and other promigratory 
proteins that have been shown to enhance 
migration of glioblastoma stem-like cells 
(Rath et al., 2013), which could provide che-
motactic cues to invasive cells distal to the 
tumor mass. Additional methods through 
which healthy brain tissue could aid in gli-
oma invasion and survival have been re-
viewed elsewhere (Roos et al., 2017). GBM 
cell migration toward the vasculature has 
also been proposed to be induced by gradi-
ents of the chemotactic peptide bradykinin, 
which is released by the vascular endothelial 
cells in the brain (Montana and Sontheimer, 
2011). Durotaxis, in which cells migrate 
down a substrate-rigidity gradient, has not 
been well characterized for glioma cells. 
The effects of other mechanical properties 
of the substrate, such as the arrangement of 
the physical features (nanotopography), 
have been well studied. Changes in topog-
raphy can lead to changes in cytoskeletal 
organization, integrin expression, and cellu-
lar biophysical properties (Yim et al., 2010). 
Because of the importance of topography, it 

has been debated whether glioma cell migration paths are due to 
secreted biochemical cues or topography-related biomechanical 
cues. Both white matter tracts and the vasculature present, at least 
at the cellular scale, a linear pathway on which glioma cell migration 
can occur. Distant migration is less commonly found in the gray mat-
ter of the brain (Chicoine and Silbergeld, 1995), which is character-
istically a random, nonlinear ECM of the same components as white 
matter (Bignami et al., 1992), so presenting a linear migratory path-
way is thought to be able to induce the distant migration seen in 
the white matter. This theory was tested on electrospun poly(ε-
caprolactone) (or PCL), nanofibers of linear or random organization. 
It was found that aligned fibers induced migration at over four times 
the velocity on randomly organized fibers (Johnson et  al., 2009). 
Changing the mechanical properties of the nanofibers also induced 
large changes in migration speed (Sharma et al., 2013). Unexpect-
edly, at high cell densities on large width tracks velocity increases to 
the same level as seen on small linear tracks or in vivo. This calls into 
question whether mechanical confinement or the presence of linear 
tracks are the actual migratory cue (Monzo et al., 2016). Regardless, 
these linear tracks were harnessed as migratory cues to guide brain 
tumor cells into a cytotoxic hydrogel, significantly reducing tumor 
volume, displaying potential clinical value (Jain et al., 2014).

Electrical cues also play a role in directed migration of GBM 
cells. Direct-current electric fields (dcEFs) occur endogenously and 
regulate numerous biological processes such as wound healing and 
embryogenesis (Nuccitelli, 1988). One method by which dcEFs af-
fect these processes is galvanotaxis, in which directed cell migration 
occurs in a physiologically comparable dcEF toward either the an-
ode or cathode (Mycielska and Djamgoz, 2004). The mechanisms of 
galvanotaxis are still being explored, but it is postulated to depend 
on changes in intracellular Ca2+ concentrations and ion channel ac-
tivities (Onuma and Hui, 1988). In the brain, an endogenous dcEF 
was found to guide migration of neuroblasts from the subventricular 
zone to the olfactory bulb in adult mice (Cao et al., 2013). Owing to 
the galvanotactic response of these and other brain cells, it was 
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therefore hypothesized that galvanotaxis may play a role in GBM 
invasion (Huang et al., 2016). In two dimensions (2D), all GBM sub-
types tested showed anode-directed migration while neural pro-
genitor cells displayed cathodic directedness. Another group 
found, however, that GBM cells switch preferences in three dimen-
sions (3D), migrating toward the cathode instead of the anode (Sato 
et al., 2009). A recently popularized clinical treatment method of 
alternating, intermediate frequency electric currents, called tumor 
treating fields, could possibly inhibit migration through galvanotac-
tic mechanisms (Ahirwar et al., 2015).

Substrate
The brain parenchyma contains a complex network of vasculature 
that traverses both the white matter and gray matter. White matter 
is composed of myelinated neuronal axons. In contrast, gray matter 
contains mostly unmyelinated nerve cell bodies and associated 
dendritic processes. As mentioned in the preceding section, HGG 
cells have been shown to migrate distantly in the perivascular spaces 
or down the white matter tracts, two components of the histological 
secondary structures of Scherer that characterize glioma invasion 
patterns (Scherer, 1940). Histological images of glioma cells infiltrat-
ing perivascular and white matter microenvironments are seen in 
Figure 2. This demonstrates the morphological plasticity of GBM 
cells, allowing them to inhabit the diverse extracellular environ-
ments present in the brain. Oligodendrocytes contain membrane-
bound inhibitors of cell attachment that prevent most cells from 
spreading or migrating along the white matter tracts (Caroni and 
Schwab, 1988). This may account for much of the static, nonmigra-
tory composition of the adult brain (Schwab and Caroni, 1988). Glio-
blastoma cells, however, are able to attach to and migrate along 
these cell surfaces, a behavior that was inhibited by metalloprotease 
blockers (Paganetti et al., 1988). As for the extracellular matrix, the 
basement membrane of the vasculature usually consists of fibronec-
tin, collagen, and laminin. The extravascular brain parenchyma lacks 
any significant quantities of these extracellular matrix proteins, but 

FIGURE 2:  Glioblastoma (GBM) migration patterns in brain parenchyma. (A) Perivascular 
migration. GBM cells adhere to and migrate along the canonical extracellular matrix proteins 
surrounding the vasculature. Hematoxylin and eosin (H&E) stained. (B) White matter infiltration 
of GBM cells showing elongated morphology between parallel bundles of axons in the white 
matter. Luxol fast blue myelin stain and H&E stain.

instead consists primarily of hyaluronic acid 
(HA, also referred to as hyaluronan; Rao, 
2003; Bellail et  al., 2004). The brain ECM 
and its effect on glioma invasion is further 
reviewed in Ferrer et al. (2018). The vastly 
different mechanisms required to traverse 
these different areas of the brain call into 
question whether glioma cells are intrinsi-
cally programmed to adapt to each environ-
ment or environmental selection leads to 
substrate-specific clonal evolution.

Owing to frequent perivascular migra-
tion, angiogenesis was previously thought 
to be elicited by GBM cells. Anti-angiogenic 
agents are being actively investigated as a 
possible treatment mechanism, and have 
been shown to provide clinical efficacy, at 
least transiently, in a multitude of cancer 
types. However, treatment of GBM cells 
with a popular antibody that functionally in-
hibits VEGFR2, bevacizumab, has been 
shown to lead to very short-term cessation 
of invasion followed by a long-term increase 
of invasive behavior (Páez-Ribes et  al., 
2009). Another group recapitulated these 
findings and showed that migration occurs 
on the preexisting brain microvessels, dis-

placing the noncancerous cells in the perivascular space (Baker 
et  al., 2014). This process was completely vascular endothelial 
growth factor (VEGF) independent.

To migrate efficiently through the dense extracellular space in 
the brain, GBM cells degrade and remodel the ECM. Matrix metal-
loproteinases (MMPs) are responsible for the degradation of the 
majority of ECM proteins, a process that has been previously re-
viewed in more detail (Birkedal-Hansen et al., 1993). GBM cells have 
been shown to overexpress MMPs 2 and 9 (Forsyth et  al., 1999) 
compared with healthy brain tissue, and overexpression of MMPs 
has been linked to increased GBM invasion and poor prognosis 
(Rao, 2003). Additionally, inhibition of MMPs has led to reduced 
glioma invasion in vitro (Tonn and Goldbrunner, 2003). No clinical 
studies, however, have shown MMP inhibition to be effective in pre-
venting glioma spread (Tonn et al., 1999). This could be due to GBM 
cells secreting other ECM proteins, such as tenascin-C, fibronectin, 
vitronectin, and collagen, while degrading the native ECM and 
causing increased glioma cell migration (Deryugina and Bourdon, 
1996). Additionally, the clonal expansion of glioma cells in the cell 
culture environment may eliminate the adaptation to different envi-
ronments found in primary tumor cells. GBM cells were also shown 
to respond to changes in their mechanical environment with differ-
ential ECM assembly and MMP or HA synthase expression (Wang 
et al., 2014). HA is also much more abundant in glioma ECM than in 
the normal brain (Delpech et al., 1993).

Even with degradation of the ECM, the brain parenchyma pres-
ents a severe mechanical challenge to migrating GBM cells. Cell 
processes are tightly packed in the brain parenchyma, with submi-
crometer pore sizes (Thorne and Nicholson, 2006). To migrate 
through these environments, GBM cells adopt a migratory behavior 
similar to neural progenitor cells in which they extend a long process 
that defines the migratory pathway, followed by the nucleus and cell 
body (Beadle et al., 2008). The nucleus of the cell deforms to allow 
migration through the pore. Movement of the nucleus through the 
pore, but not the leading process, was shown to require myosin II. In 
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fact, they later showed that despite the abundance of promigratory 
factors involved in glioma migration, blocking myosin II effectively 
prevents migration of GBM in spatially constrained environments 
(Ivkovic et al., 2012).

Cell migration is sensitive to the mechanical properties of the 
substrate (Pelham et al., 1997), and the brain presents unique me-
chanical challenges to migrating GBM cells. The brain is one of the 
most compliant tissues in the body. The Young’s modulus ranges 
from several hundred pascals (Elkin et al., 2007) to several kilopascals 
(Hrapko et al., 2007), depending on factors such as testing condi-
tions, anatomical origin of the sample, postmortem time, and donor 
characteristics (Hrapko et al., 2007). There are also regions with sharp 
variations in stiffness, presenting a severe mechanical challenge to 
migration (Franze, 2013). The basement membrane of the perivascu-
lar region has a much higher stiffness than the brain parenchyma 
(Candiello et al., 2007). GBM tumor cell lines have been shown to 
migrate rapidly on stiffer substrates, while failing to migrate effec-
tively on compliant substrates with elastic moduli comparable to the 
brain parenchyma in 2D (Ulrich et al., 2009), and much lower migra-
tion velocities were seen in 3D (Ananthanarayanan et  al., 2011). 
Another study, using a model of force transmission in cell migration, 
showed that the optimal stiffness for glioma cell migration was 
100 kPa, 100-fold higher than that for optimal migration of healthy 
forebrain neurons and much higher than the brain parenchyma 
(Bangasser et  al., 2017). The study showed that this increased 
response to stiff substrates was due to a much larger number of 
molecular motor clutches in glioma cells, and that softer substrates 
lead to a decrease in cell motility. These could explain the perivascu-
lar migratory behavior, but not how the cells can diffusely migrate 
through the much softer brain parenchyma. Engineered strategies 
for studying the effect of the microenvironment on glioblastoma 
have been extensively reviewed (Rape et al., 2014).

One potential explanation is that ECM secretion by migratory 
cells can regulate the cell response to the mechanical environment 
by inserting elastic fibrils between cells and the fabricated substrate. 
Presenting an elastic fibril between the cell and the substrate can 
even mediate the cell-sensed stiffness of the substrate (Weinberg 
et al., 2017), but this has not been extensively explored in regard to 
gliomas. The ECM does stiffen in response to increasing pressure 
(Pogoda et al., 2015) resulting from tissue expansion during tumor 
growth and the resistance to this expansion by the skull (Ricard 
et al., 2003), and this in turn could also have profound effects on the 
stiffness sensed by the cells. Another explanation is that the estab-
lished glioma cell lines do not accurately recapitulate the mechano-
sensitive behavior of primary tumor cells. In fact, of the three major 
subtypes of GBM, the majority of the commonly used cells lines are 
representative only of the mesenchymal subclass (Verhaak et  al., 
2010) and were used in the studies that showed an optimal sub-
strate stiffness for migration to be higher than that of the brain pa-
renchyma (Bangasser et  al., 2017). Different primary glioma cells 
have diverse substrate migratory preferences, with some migrating 
dependently and others migrating independently of substrate stiff-
ness (Grundy et al., 2016). It has been postulated that these differing 
mechanosensitive behaviors could be subclass specific; GBM cell 
lines that migrated independent of rigidity were of the proneural 
subclass, which may be consistent with the fact that neurons branch 
mostly in a rigidity-independent manner (Georges et al., 2006).

INTRACELLULAR FACTORS
Cytoskeleton
For cell migration to occur, the cytoskeletal structure must be 
conducive to migration. This is orchestrated by a combination of 

signaling pathways, which cause actin polymerization and myosin-
based force that can be transmitted to the substrate. This process 
has been reviewed in more detail (Blanchoin et al., 2014), and how 
it pertains to tumor invasion has also been reviewed in other sources 
(Friedl and Wolf, 2003). As such, cytoskeletal proteins and involved 
signaling pathways may be attractive targets for inhibiting glioma 
cell motility.

Radial glia cells (Ge et al., 2006; Nguyen et al., 2006) and glioma 
cells (Manning et al., 2000; Slhia et al., 2005) both exhibit decreases 
in migration following increased Rho signaling. These developmen-
tally normal cells also show increased migration along nanotopo-
graphic cues in the same manner as GBM cells, presenting evidence 
that glioma cells are migrating in a manner reminiscent of radial 
migration in corticogenesis, an idea that has been previously ex-
plored (Beadle et al., 2008). Radial glia cells in the developing brain 
present long, linear processes along which neural progenitor cells 
migrate to exit the stem cell niche and enter developmental areas of 
the brain. These similarities between radial glial and glioma migra-
tory behavior are consistent with the notion that that cancer mirrors 
embryogenesis pathways (Kelleher et al., 2006) through the epigen-
etic reactivatioon of embryonically active genes (Ames et al., 2017; 
Zhou et al., 2018). Based on these similarities, it is possible that the 
down-regulation of RhoA that initiates cell migration in corticogen-
esis has similar mechanisms to the same phenomenon observed in 
glioma invasion. While RhoA down-regulation is required for migra-
tion in corticogenesis, RhoA is still required at low levels, implying a 
biphasic dependence on RhoA. Consistently, it was found that myo-
sin II, which is activated downstream in the Rho-ROCK pathway, may 
biphasically affect migration in astrocytomas. Low concentrations of 
a myosin II inhibitor increased migration, whereas higher concentra-
tions inhibited migration (Salhia et al., 2005). Another group found 
that glioma cells that can migrate on compliant substrates became 
sensitive to substrate stiffness when myosin-generated contractile 
force was increased through RhoA or ROCK activation (Wong et al., 
2015), suggesting that the biphasic RhoA/myosin II dependence 
could underlie the different sensitivity of glioma subtypes to sub-
strate stiffness that was discussed earlier. It was also found that mice 
with implanted tumors expressing constitutively active RhoA had a 
30% increase in mean survival time, providing the basis of a possible 
clinical application (Wong et al., 2015).

The Arp2/3 complex is an actin nucleator involved in the cyto-
skeletal remodeling necessary for lamellipodia protrusion and is ac-
tivated downstream from Rac. Formins, on the other hand, are in-
volved in unbranched actin assembly, including stress fibers and 
filopodia. These different actin nucleators have been reviewed in 
more detail (Blanchoin et al., 2014). Not much evidence has been 
gathered to define the role of different actin nucleators in glioma 
invasion. The mechanical confinement theory for nanotopography-
induced migration of glioblastoma cells was shown to be formin 
dependent, however, while Arp2/3 independent (Monzo et  al., 
2016). Another group showed that the Arp2/3 complex contributes 
significantly to glioma cell migration, although the drug used in this 
work only allowed observation for a short duration before cytotoxic 
effects (Liu et al., 2013). Finally, a recent paper showed that GBM 
invasion was hindered by a drug that disrupts actin polymerization 
in a method that was not reliant on Arp2/3, although formin reliance 
was not investigated (Hayashi et al., 2016).

Transmembrane receptors
Integrins mediate the adhesion to and migration along many com-
mon ECM proteins, such as collagens, fibronectin, and laminin 
(Barezyk et al., 2010), which are found in the perivascular region in 
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the brain. In the brain parenchyma, CD44 is considered the trans-
membrane receptor held primarily responsible for cell adhesion to 
the HA-rich ECM (Merzak et  al., 1994). Both integrins and CD44 
have been extensively studied in cancer and play a significant role in 
the invasive behavior of malignant gliomas.

Integrin antagonists have been used to target HGGs and GBMs 
ever since cilengitide was first synthesized in the early 1990s as an 
RGD peptide-based competitive inhibitor of integrin binding to na-
tive RGD sequences in the ECM (Mas-Moruno et al., 2010). Cilengit-
ide treatment alone did not result in any significant inhibition of tu-
mor growth; however, combined treatment with cilengitide did 
enhance radiotherapy efficacy in vitro (Burke et al., 2002), showing 
its potential as a treatment component, if not a stand-alone treat-
ment. Unfortunately, this potential did not translate to clinical test-
ing, with no survival benefit being observed (Stupp et al., 2014). 
This has resulted in a string of new integrin inhibitors being studied, 
including several other RGD-based treatments (reviewed by 
Danhier et al., 2012) with promising in vitro results. Another recent 
integrin antagonist is GLPG0187, which was shown to cause detach-
ment and cell death of mouse glioma tumor cells (Silginer et al., 
2014). While clinical trial results for these new integrin antagonists 
have yet to be released, a possible explanation for cilengitide failure 
is that glioma cells are capable of migrating not just perivascularly, 
but also down the white matter tracts using CD44 as a transmem-
brane receptor for the HA-rich environment, which would not be 
inhibited by these integrin antagonists.

In the study of CD44 in GBM invasion, a variety of models have 
been used, in addition to the widely used brain slice model. One 
group studied invasion in the astrocyte-rich brain stroma by cultur-
ing astrocytes to hyperconfluence before plating GBM cells 
(Gritsenko, et al., 2017). In this method, astrocytes develop a 3D 
scaffold that self-assembles an ECM that is presumably similar to 
that assembled in the brain. Other groups have modeled migration 
using HA-RGD hydrogels (Ananthanarayanan et al., 2011) and be-
tween an HA hydrogel and an ECM protein-coated surface (Rape 
and Kumar, 2014) as substrates. More recently, a method was devel-
oped that elegantly models multiple steps of invasion by embed-
ding a cell reservoir in a 3D HA-RGD matrix featuring an open chan-
nel, representing bulk tumor, brain parenchyma, and the vasculature, 
respectively (Wolf et al., 2018). This model, though simple, was able 
to elicit the multiple-step invasive process described in vivo, with 
migration occurring through the matrix via long extended pro-
cesses, followed by rapid migration along the vasculature.

Despite the multiple methods developed to study the impor-
tance of CD44 in GBM invasion, data has been reported on the im-
portance of CD44 expression levels on glioma migration and its ef-
fects on patient survival, with different groups claiming it has 
positive, negative, or no impact on GBM invasion. These apparent 
contradictions were reconciled when a recent paper showed that 
survival, as well as glioma migration speed, depends biphasically on 
CD44 expression (Klank et al., 2017). As the authors of this study 
note, these findings correlate with previous work that showed that 
migration depends biphasically on cell-ECM adhesion strength (Di-
Milla et al., 1993). They also showed that CD44 expression varies for 
different glioma subtypes, with proneural subtypes expressing lower 
CD44 levels, intermediate expression found in proliferative sub-
types, and highest expression in mesenchymal subtypes. Fastest 
migration occurs with intermediate expression levels. They also 
note that this complicates potential CD44 antagonist-based thera-
pies, as decreasing CD44 levels or availability in the mesenchymal 
subtype (one of the most common glioblastoma subtypes [Phillips 
et al., 2006]) would lead to increased migratory speed and wors-

ened patient prognosis. Clarifying the relative importance and dif-
ferent functions of CD44 and integrins in glioma cell migration could 
inform the development of glioma therapies that target these trans-
membrane receptors. Also, in addition to its role in adhesion, CD44 
has been shown to promote the GBM stem-like phenotype and con-
tribute to radiation resistance (Pietras et al., 2014). The role of CD44 
in glioma invasion is reviewed in further detail by Mooney et  al. 
(2016).

CONCLUSION
Although significant progress on blocking various mechanisms in-
volved in cell migration has resulted in reduced glioma invasiveness 
in vitro, these findings have not translated to prolonged survival of 
HGG patients. This may be due to the fact that most studies in vitro 
explored only a single target, while many other mechanisms exist 
and are utilized in vivo. Approaches targeting combinations of vary-
ing migratory mechanisms, such as combining CD44 and integrin 
antagonists, have not been extensively explored to date and may 
produce a more effective treatment. Targeting multiple key players 
in migration concurrently, such as transmembrane receptors and 
cytoskeletal remodeling pathways, is another logical pathway to 
explore. Another reason for the lack of clinical success could be 
that diffuse migration of glioma cells commonly occurs before diag-
nosis, so that arresting migration would not lead to less invasion or 
increased success of localized treatments. Future work on early de-
tection and targeting a full range of migratory mechanisms to halt 
the migration of heterogeneous glioma cells may lead to clinical 
success.
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