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ABSTRACT The aim of the present study was to
investigate the potential of a fast gas chromatography
(GC) e-nose for freshness discrimination and for pre-
diction of storage time as well as sensory and internal
quality changes during storage of hen eggs. All samples
were obtained from the same egg production farm and
stored at 20 ◦C for 20 d. Egg sampling was conducted
every 0, 3, 6, 9, 12, 16, and 20 d. During each sampling
time, 4 egg cartons (each containing 10 eggs) were ran-
domly selected: one carton for Haugh units, one car-
ton for sensory evaluation and 2 cartons for the e-nose
experiment. The e-nose study included 2 independent
test sets; calibration (35 samples) and validation (28
samples). Every sampling time, 5 replicates were pre-
pared from one egg carton for calibration samples and 4
replicates were prepared from the remaining egg carton
for validation samples. Sensors (peaks) were selected
prior to multivariate chemometric analysis; qualitative
sensors for principal component analysis (PCA) and

discriminant factor analysis (DFA) and quantitative
sensors for partial least square (PLS) modeling. PCA
and DFA confirmed the difference in volatile profiles
of egg samples from 7 different storage times account-
ing for a total variance of 95.7% and 93.71%, respec-
tively. Models for predicting storage time, Haugh units,
odor score, and overall acceptability score from e-nose
data were developed using calibration samples by PLS
regression. The results showed that these quality in-
dices were well predicted from the e- nose signals, with
correlation coefficients of R2 = 0.9441, R2 = 0.9511,
R2 = 0.9725, and R2 = 0.9530 and with training errors
of 0.887, 1.24, 0.626, and 0.629, respectively. As a result
of ANOVA, most of the PLS model results were not sig-
nificantly (P > 0.05) different from the corresponding
reference values. These results proved that the fast GC
electronic nose has the potential to assess egg freshness
and feasibility to predict multiple egg freshness indices
during its circulation in the supply chain.
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INTRODUCTION

Shell eggs are perishable and can rapidly undergo
quality deterioration during storage, causing a major
economic loss to the poultry industry (Freeland-Graves
and Peckman, 1987; Stadelman and Cotterill, 1995;
Caner, 2005; No et al., 2005). This quality decay is
associated with chemical, nutritional, functional, and
hygienic changes. The rate at which these changes oc-
cur during storage depends on temperature, humidity
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(Tabidi, 2011), gaseous environment (Jo et al., 2011),
storage time (Akyurek and Okur, 2009; Chung and Lee,
2014), hen age, and strain (Scott and Silversides, 2000;
Scott and Silversides, 2001).

The modern poultry industry is interested in evalu-
ating alternative methods that can be used to measure
quality parameters more quickly. The main quality pa-
rameters of interest are: freshness, weight loss, size of
air cell, albumen and yolk indices, Haugh units (HUs),
and albumen and yolk pH (Karoui et al., 2006; Jin et
al., 2011). Freshness, which is the characteristic most
commonly related to egg quality, declines after laying
mainly in a time- and temperature-dependent manner
(Karoui et al., 2006; Tabidi, 2011; Yimenu et al., 2017).
An alternative strategy for determining the level of egg
freshness can potentially be achieved by sensing the
organic volatiles emitted by eggs, by using electronic
noses (e-noses).

Fresh shell eggs have a very low concentration of or-
ganic volatiles, and this concentration increases during
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storage (Adamiec et al., 2002). Wang et al. (2014) re-
ported that the volatile components of egg yolk are
esters, alcohols, alkenes, and nitrogenous compounds
that change during the storage of shell eggs. Adamiec et
al. (2002) reported a trend toward increasing palmitic
acid and stearic acid released from the yolk of shell
eggs stored at 35 ◦C for 12 d. These organic acids
might have been the result of lipid hydrolysis. Yanag-
isawa et al. (2010) reported that an increase in hex-
anal during storage was observed via the identifica-
tion of volatile compounds from yolk. Brown et al.
(1986) reported the accumulation of compounds such
as dimethyl sulfide, dimethyl disulfide, dimethyl trisul-
fide, methyl thioacetate, methanol, ethanol, 1-propanol,
acetone, 2-butanone and ethyl acetate during storage.

An e-nose is used to detect volatile substances and
consists of an array of sensors that collect chemical
signals that are afterwards analyzed and interpreted
in a way that imitates human nose sensory evalua-
tion by using a pattern recognition method of multi-
variate statistical techniques (Wei et al., 2015). The
e-nose has been used successfully in the food indus-
try for quality detection (Antoce and Namolosanu,
2011). Many studies have been involved with assess-
ment of fresh produce using e-nose methods in recent
years. Some researchers have reported the assessment
of egg freshness using e-nose methods in recent years.
Studies carried out on eggs include the discrimination
of eggs from 7 avian birds using GC–MS and e-nose
(Wang et al., 2014), studies of egg freshness during
storage (Dutta et al., 2003; Ming et al., 2010), and
monitoring of egg storage time and quality attributes
(Yongwei et al., 2009).

Fast gas chromatography (GC) electronic nose
(e-nose) is a highly selective and sensitive specialty gas
chromatograph, capable of performing very fast hydro-
carbon measurements at low concentration in labora-
tory or field environments (ALPHA MOS, 2002). Its
novel features include versatility and higher analysis
speed, giving productivity advantages over the more
traditional gas chromatographs (Marion et al., 2011).
This type of e-nose was used for the study presented
in this paper. In the literature, information can be
found about application of fast GC e-nose for authentic-
ity assessment of Polish homemade liqueurs (Śliwińska
et al., 2016), for rapid and precise discrimination of
wines (Antoce and Namolosanu, 2011), for discrimina-
tion of the geographic origin of extra virgin olive oil
(Melucci et al., 2016), for rapid analysis of spirit bever-
ages (Wísniewska et al., 2016), and for age identification
and brand classification of brandy (Yang et al., 2011).

There is no research that has reported the use of a
fast GC-based e-nose for egg freshness determination.
Moreover, most of the studies so far are focused solely
on discrimination of samples rather than on prediction
of sample quality. In most previous experiments, only
an e-nose was used, with no other tests conducted us-
ing other methods. Therefore, even if we could predict
the shell egg’s storage time, we still cannot precisely

determine its freshness degree since we do not have
other indices as a reference.

Therefore, 2 objectives were emphasized using a fast
GC e-nose: 1) to discriminate freshness of egg samples
stored for different times using multivariate chemomet-
ric techniques and 2) to build freshness prediction mod-
els from correlation analysis between e-nose signals and
sensory scores (Odor and Overall score), the HUs, and
storage times of eggs using the partial least squares
(PLS) model.

MATERIALS AND METHODS

Materials

Freshly laid special class unfertilized hen egg samples
were obtained directly from an egg company in Seoul,
and the storage experiments were conducted at Korea
Food Research Institute. Samples were stored in their
commercial packaging (cartons, each containing 10 egg
specimens) in a temperature-controlled storage cham-
ber set at 20 ◦C. This storage temperature was selected
to mimic the sample storage in a room temperature.
The storage relative humidity (RH) condition was 50
to 65% RH.

Sampling Procedure

In this study, 3 experiments were carried out: egg
volatile detection, internal quality measurement, and
sensory evaluation. The experiments were conducted
on eggs for a total shelf life period based on sensory
score (until an overall score of less than 2 is attained)
to observe the variation trends of sensory scores, inter-
nal quality, and egg volatile changes. Egg sampling was
conducted every 0, 3, 6, 9, 12, 16, and 20 d. During each
sampling time, 4 egg cartons (each containing 10 eggs)
were randomly selected: one carton for HUs, one car-
ton for sensory evaluation and 2 cartons for the e-nose
experiment.

Haugh Units The weight (in grams) of eggs was es-
tablished by individually weighing each egg using an an-
alytical balance (Carter, 1975). Then, eggs were broken
out on a flat, transparent glass surface using a spatula
to obtain internal parameter measurements. The height
of the thick albumen was measured using a digimatic in-
dicator (ID-C1050XB, Mitutoyo Co., Japan). HUs were
determined from the egg weight and albumen height of
a broken egg spread on a horizontal plate using the ex-
pression (1) (Haugh, 1937).

HU = 100log
(
H + 7.51 − 1.7W 0.37) (1)

where H = the height of albumen (mm), W = the egg
weight when tested (g)

Sensory Evaluation Eggs were ruptured and spread
on a clean glass plate, and a 15-member sensory evalua-
tion panel (10 females and 5 males) was used to evaluate
the sensory characteristics. The panel consisted of
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Figure 1. Fast GC based HERACLES Electronic Nose with HS100 autosampler.

research staff at Korea Food Research Institute.
All panel members were familiar with egg freshness
characters and descriptive analysis procedure. Each
egg sample was assigned a 3-digit random code to
ensure that the panelists were not biased regarding
the samples. A previously prepared egg freshness chart
was also provided for reference. The evaluated sensory
characteristics were yolk and albumen color, yolk and
albumen spread ratio, off odor, freshness, and overall
acceptability using a 9-point scale ranging from very
good (9 points), good (7 points), average (5 points),
bad (3 points), to very bad (1 point). The mean of the
15 scores was considered the score of the egg sample
for each descriptor.

Egg Volatile Determination The fast GC e-nose
called Heracles II (Alpha M.O.S., Toulouse, France) was
used for the analysis. It consisted of a sampling system
(HS100 autosampler), a detector system containing 2
short different polarity columns (MXT-5 a polar and
MXT-1701 slightly polar) connected to 2 flame ioniza-
tion detectors (FID) for a global fingerprint and a data
acquisition and processing system (Alpha MOS propri-
etary software (Alpha Soft)).

For the calculation of Kovat’s indices and the identi-
fication of volatile organic compounds, the alkane C6–
C16 standard solution was used. The AroChemBase
(Alpha MOS, France) library was used for confirming
identification. The AroChembase is an add-on module
that can be used within the HERACLES e-nose soft-
ware, known as Alpha Soft. It allows one to pre-screen
the chemical compounds and give sensory features from
the HERACLES chromatograms (Marion et al., 2011).
Figure 1 shows a general scheme of the HERACLES II
Flash e-nose.

Two egg cartons (1 for calibration samples and 1
for validation samples), each containing 10 egg speci-
mens, were used for e-nose analysis during every sam-

pling time. After rupturing the eggs, the egg yolk was
separated from the egg white, and only yolk was used
for the following analysis. Egg yolk from 10 eggs (each
cartoon) were collected in 100 mL beaker and homog-
enized (IKA T18 basic, Ulttra-Turrax, Germany) at a
setting of 2× for 30 s. For the measurements, 4 g of
homogenized sample was taken in a 20 mL glass vial
provided with a pierce-able disk in the cap. All samples
were sealed with 20-mm-thick polytetrafluoroethylene
(PTFE)/silicone membrane caps.

A vial with a liquid sample was introduced into the
autosampler (Odor Scanner HS 100, Gerstel, Mülheim,
Germany) for headspace generation. Gas accumulated
in the headspace of the sample was used for the analy-
sis. The incubation time was 20 min at 60◦C, and the
agitation speed was maintained at 500 rpm. After the
incubation process, a gas sample was taken from the
headspace of the sample and transferred from the vial
to the GC injector port at 200 ◦C. Totally 9 samples
were analyzed during each sampling time; 5 replicates
for calibration samples (set 1) and 4 replicates for vali-
dation samples (set 2).

To obtain maximum sensor response, the operating
parameters for the e-nose were optimized for the egg
samples as shown in Table 1.

Data Analysis

Alpha Soft (V14.2, Alpha M.O.S, Toulouse, France)
software was used for instrument control and raw data
processing. Three multivariate chemometric methods,
principal component analysis (PCA), discriminant fac-
tor analysis (DFA), and partial least square (PLS),
were used for data analysis of results obtained by the
use of fast GC e-nose.
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Table 1. The analysis parameters for electronic nose operation.

Parameter Conditions

Dispenser operation conditions
Dispensing volume 2,000 μL
Dispensing time 21 s
Dispenser temperature 200 oC
Volumetric intensity of carrier gas flow 30 mL/min
Parameters of sorption trap operation
Trap temperature 50 oC
Retention time 26 s
Conditions for chromatographic analysis
Temperature program 50 oC (2 s) -

3 oC/s – 250 oC
(21 s)

Carrier gas Hydrogen
Dispenser temperature 270 oC
Detector operation conditions
Detector temperature 260 oC
Acquisition time 110 s

To discriminate different freshness degrees during
storage time, 2 methods were used: PCA and DFA.
PCA is a chemometric linear unsupervised pattern
recognition technique used for analyzing and reducing
the dimensionality of numerical datasets in a multivari-
ate problem. It can observe the classification results of
sample principal components through the PCA map.
PCA is used to evaluate the detection of outliers and the
discrimination and similarities between various samples
or groups. DFA is another widely used multivariate sta-
tistical method. Similar to PCA, it also uses a linear
combination of the original variable to construct a dis-
criminant function (ALPHA MOS, 2016; Melucci et al.,
2016).

The DFA is based on a search for directions along
which the groups are as far apart as possible and the
samples of the same group are as close together as pos-
sible. The DFA model also used to identify and classify
unknown samples. Unlike PCA its aim is to maximize
distances between groups, minimizing at the same time
classification between samples in the same group; in
this way, unknown samples may be projected onto this
new scores map and assigned to one of the groups of the
training set. In contrast to PCA, DFA is used to dis-
tinguish groups not to make the actual data visualiza-
tion. In the case of the PCA the differences between the
samples within the selected groups cannot be neglected
(Buratti et al., 2004; ALPHA MOS, 2016; Wísniewska
et al., 2016).

A multivariate PLS analysis-based model was devel-
oped to predict the storage time, HUs, odor score, and
the overall acceptability score of the eggs. PLS modeling
is a common method used in quantitative multivariate
analysis. The PLS algorithm is based on linear regres-
sion methods. Y is the matrix containing the quanti-
tative measurements, Y’ is the matrix containing the
productive values, and X is the matrix built with the
detector measurements (gas sensors). To simplify, it can
be said that the PLS model looks for a matrix B mini-
mizing the distance between Y and Y’ with Y’ = X.B.
After model building, the matrix B is used to predict
the quantitative information contained in an unknown
sample. The measurement matrix is then multiplied by
B to obtain the prediction (ALPHA MOS, 2016).

To investigate the predictability of the e-nose regard-
ing changes in quality descriptors during storage, pro-
jection of validation samples onto optimized calibra-
tion models derived from PLS regressions performed
with e-nose data (X-matrix) and the storage time, the
HUs, the odor score and the overall acceptability score
changes during storage (Y-matrices) was carried out.
The calibration models were based on data from cali-
bration samples. These calibration models were used for
prediction of validation samples. The models developed
and used are shown in Table 2.

Correlation coefficients (r) between reference and
predicted values were used to determine predictions us-
ing PLS models. Training error, which is the mean of
the difference between the predicted values and the cal-
culated values of the samples declared as calibration
samples, was also used to evaluate the PLS models.
Using the statistical analysis system (SAS, 2008), anal-
ysis of variance (ANOVA) was performed. To examine
whether there were significant differences between PLS
model results and corresponding reference values, the
Tukey’s studentized range test (HSD) at the 95% con-
fidence level was calculated.

RESULTS AND DISCUSSION

Haugh Units

Haugh unit (HU) values decreased significantly
(P < 0.05) with increased egg storage time (Figure 2).
The HU reduction occurs due to a decrease in the thick
albumen height, because during egg storage, albumen

Table 2. Overview of data analysis strategy for calibration and prediction models.

Prediction Training sample X-data Y-data Calibration model

Storage time set 1 E-nose D of Storage C-model (storage time)
Haugh units set 1 E-nose Haugh unit values C-model (HU)
Odor set 1 E-nose Odor scores C-model (odor)
Overall acceptability set 1 E-nose Overall acceptability scores C-model (overall acceptability)

Validation Unknown sample X-data via Calibration model Y predicted
Storage time set 2 E-nose C-model (storage time) D of storage
Haugh units set 2 E-nose C-model (HU) Haugh unit value
Odor set 2 E-nose C-model (odor) Odor score
Overall acceptability set 2 E-nose C-model (overall acceptability) Overall acceptability score
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Figure 2. Changes in the Haugh units of eggs during storage at 20◦C (mean ± SD, n = 10).

becomes thinner and loses CO2, which allows the elec-
trostatic complex between lysozyme and ovomucin to
rupture, which helps increase the pH of eggs (Scott
and Silversides, 2000). This result is in agreement with
those of Samli et al. (2005); Akyurek and Okur (2009);
and Akter et al. (2014), who reported a significant
(P ≤ 0.05) decrease in HU due to storage time and
temperature.

The HU decreased from 81.70 to 46.75 during 20 d of
storage. This finding implies that the deterioration of
egg quality increased in a storage time dependent man-
ner. Therefore, one should bear in mind that the dete-
rioration of internal egg quality is a function of storage
time. Similar results were also demonstrated by other
researchers: the HU was significantly (P ≤ 0.05) af-
fected by storage time (Jin et al., 2011; Tayeb, 2012;
Tebesi et al., 2012; Yimenu et al., 2017).

Sensory Quality

Various sensory quality attributes (yolk color, albu-
men color, yolk spreadability, albumen spreadability,
off-odor, freshness, and overall acceptability) were eval-
uated, and it is apparent from Figure 3 that all sensory
descriptors had a decreasing trend during the storage
period.

It is also noticeable that all of the curves (yolk color,
albumen color, yolk spreadability, albumen spreadabil-
ity, off-odor, freshness, and overall acceptability) de-
creased quickly after the d 6, while during the first 6
d, the overall acceptability score curve only declined
slightly, and the odor score remained nearly the same.
This indicated that the egg sample did not decrease
in quality up to d 6. Therefore, in the first 6 d, it re-
mained fresh, with its color (yolk and albumen) and
odor changing little.

E-Nose Analysis Results

The egg samples stored for 0 to 20 d (2 egg car-
tons, each containing 10 egg specimens, were taken ev-
ery sampling time; 5 replicates were prepared from one
carton for calibration samples and 4 replicates were pre-
pared from the remaining carton for validation samples)
were analyzed by e-nose under the optimum experimen-
tal parameters, and the e-nose signals were processed by
multivariate data analysis techniques. Using fast GC e-
nose, the chromatographic peak area is treated as input
data for multivariate chemometric analysis. All samples
were classified and plotted in space according to the
degree of similarity and difference in the data. These
parameters are related to the number and size of chro-
matographic peaks recorded by the fast GC e-nose. For
all analyses, sensors (peak areas) with the highest per-
formance power were automatically selected using the
sensors menu function of the Alpha Soft software.

Principal Component Analysis Calibration sam-
ples were used for PCA analysis. Qualitative sensor
(peak) selection was performed to select only those
sensors that provide the best discrimination possible.
The variables chosen for PCA, namely, qualitative sen-
sors (the most discriminant peak areas of specific com-
pounds), were treated as an input dataset for chemo-
metric analysis. This dataset is presented in Figure 4,
and the names of selected substances are listed in
Table 3. Due to satisfactory discrimination of sample
groups after application of the PCA method, the cho-
sen variables were also used as input data in the DFA
method.

Figure 5 presents PCA score plots based on the peak
area values for discrimination of egg sample freshness
stored for different d. PC1 explains 67.65% of the total
variance, and PC2 contributes 27.85% of the total vari-
ation. The first 2 PCs cumulatively represent 95.7% of
the data variance, which appeared to provide sufficient
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Figure 3. Changes in the sensory quality of eggs during storage at 20◦C (mean ± SD, n = 15).

Figure 4. Mean bar graphs of selected peak areas used as raw data in chemometrics representing key chemical compounds, which are important
for discrimination of egg freshness (where C00 = d 0, C03 = d 3, C06 = d 6, C09 = d 9, C13 = d 13, C16 = d 16, and C20 = d 20). Along the
x-axis are variables (sensors) and values along the y-axis represent abundance.

information to explain the odor difference of egg sam-
ples. The discrimination index was 85%, which indicates
how distant each cluster is from the other. Based on the
distance between each sample cluster, the samples were
divided into 7 groups in Figure 5.

The egg yolk samples appear classified into 2 groups:
d 13, d 16, and d 20 samples are placed on the second
and third quadrants of the PCA map, whereas the sam-
ples from d 0, d 3, and d 6 are situated on the first and
fourth quadrants of the map. The d 9 samples appear
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Table 3. Key chemical compounds (variables), which were im-
portant for sample discrimination (qualitative) and prediction
(quantitative).

Names of variables (sensors)
from—retention times in
column 1 (MXT-5) or in
column 2 (MXT-1701) Name of the compound Formula

Qualitative sensors
17.37–1 Propan-2-one C3H6O
24.78–1 Acetic acid C2H4O2
39.43–1 Cyclopentanone C5H8O
23.76–2 Ethane, 1,1-dichloro- C2H4Cl2
56.44–2 Nonane 3-methyl C10H22
61.19–2 Psi-Cumene C9H12

Quantitative sensors
14.53–1 Trimethylamine C3H9N
17.37–1 Propan-2-one C3H6O
20.08–1 Ethane, 1,1-dichloro- C2H4Cl2
24.78–1 Acetic acid C2H4O2
27.83–1 1-Hydroxy-2-propanone C3H6O2
39.43–1 Cyclopentanone C5H8O
16.75–2 2-Methylbutane C5H12
17.38–2 Pentane C5H12
19.71–2 1,1-Dichloroethene C2H2Cl2
23.76–2 Ethane, 1,1-dichloro- C2H4Cl2
27.06–2 2-Methylbutanal C5H10O
29.04–2 Benzene C6H6
41.19–2 [E]-2-Octene C8H16
50.08–2 2-mercaptoethanol C2H6OS
56.44–2 Nonane 3-methyl C10H22
61.19–2 Psi-Cumene C9H12

on the first and second quadrants. This may indicate
that in the first 0 to 6 d, fresh eggs stored at 20 ◦C
in the storage chamber still remained fresh, and the
change in their volatile gases was low. Thus, the data
that the e-nose extracted were similar to each other. In
general, all the samples can be clearly classified into 7
clusters according to their storage time.

The distribution of the samples in the PCA score
plots shows good trends, which may indicate that the
egg quality information contained in the e-nose signal

has a strong correlation with the storage time. More-
over, the peak area values, may also have some correla-
tion with the sensor values (the samples in the same
group may have similar levels of volatile chemicals).
These results are comparable with the sensory score re-
sults. In addition, it suggests good quality of the sensor
response used as input (calibration set) for construction
of further DFA and PLS prediction models.

Discriminant Factor Analysis The DFA plot devel-
oped from the same data and sensors that provided the
PCA plot is shown in Figure 6(A). It is a 2-dimensional
spatial plot defined by 2 discriminant functions and
shows clear discrimination of the different storage
period samples. The first discriminant function (DF1)
explains 78.54% of the total variation, and the second
discriminant function (DF2) explains 15.17% of the to-
tal variation. The total variation contributed by the 2
discriminant functions is 93.71%, which means these 2
variation sources reflect 93.71% of the original informa-
tion.

As it is shown in Figure 6(A), similar to the PCA
result, the discrimination was confirmed as all samples
from the same d are grouped together and there was
no intersection between the various groups analyzed.
These discriminated groups correctly correspond to dif-
ferent storage d. In Figure 6(A), it can be seen that
samples belonging to the same group of storage times
are definitely closer than in the case of PCA. On the
other hand, differences between individual samples be-
longing to the same storage times are disappearing.

To determine whether the unknown samples are iden-
tified by the e-nose as having a volatile chemical profile
close to the calibration samples, the projection of the
validation samples onto the DFA model was performed.
As we can see in Figure 6(B), all the validation sam-
ples, except d 3 samples, were placed close to the most
likely (samples of the same storage d) group created by
the calibration samples, confirming that the DFA model
can discriminate and classify the egg samples according

Figure 5. PCA score plots of eggs stored for 0 to 20 d. Individual symbols indicate replicate samples taken at different storage time. Where
C00 = d 0, C03 = d 3, C06 = d 6, C09 = d 9, C13 = d 13, C16 = d 16, and C20 = d 20.
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Figure 6. DFA model analysis results based on electronic nose data obtained from egg yolk samples ((A), calibration plot; (B), validation
plot) for the discrimination of eggs stored for 0 to 20 d. Individual symbols indicate replicate samples taken at different storage time. C00 = d
0, C03 = d 3, C06 = d 6, C09 = d 9, C13 = d 13, C16 = d 16, and C20 = d 20.

to their freshness. The cross validation result had a val-
idation score of 75, indicating that approximately 75%
of the validation samples were fairly well recognized by
the DFA model.

The Partial Least Squares Method The PLS algo-
rithm established a model that describes the relation-
ship between the sensor signals and the egg quality in-
dices (the odor score, the overall acceptability, and the
HUs), as well as the storage time. The same samples
used for DFA were used during PLS regression analysis
for model development. Unlike in the case of PCA and
DFA, quantitative sensors (peaks) were selected dur-
ing PLS analysis. During the training phase, sensor re-
sponses from the e-nose were trained and matched with
the egg quality index values determined by conventional
methods and the storage time.

A model for HU evaluation from sensor responses
was built. To determine the accuracy of the model, the
training samples (only sensor responses from calibra-
tion samples) were introduced into PLS. For the train-
ing phase, PLS gave output data in terms of HUs (pre-
dicted value). Figure 7(A) shows predicted (measured)
versus actual (reference) values of HUs. The correla-
tion coefficient between the predicted and actual val-
ues is 0.9511. HU predictions were found to be fairly
good with training error of 1.24. These results reveal a
high correlation between e-nose results and typical HU
analysis. It confirms the high performance of our e-nose
as a rapid and alternative method for HU evaluation of
hen eggs. To confirm the accuracy and validation of our
model, the validation samples were projected onto the
PLS model developed by the calibration samples. As we
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Figure 7. PLS model results for the prediction of Haugh units (HU) based on electronic nose data obtained from (A) calibration and (B)
validation egg yolk samples. The prediction is shown as measured (predicted by e-nose) vs. reference (measured by conventional method) HU
values. Individual symbols indicate replicate samples taken at different storage time. C00 = d 0, C03 = d 3, C06 = d 6, C09 = d 9, C13 = d 13,
C16 = d 16, and C20 = d 20.

can see in Figure 7(B), all the validation samples were
well correlated.

The e-nose data from calibration samples showed
very good correlation (R2 = 0.9441) with d of storage
as shown in Figure 8(A). This may have been due
to the formation of deteriorative volatiles in the eggs
as storage time increases. The training error of the
prediction model was 0.887 that shows its high accu-
racy. Projection of the e-nose data from the valida-
tion sample for prediction of storage time onto the cal-
ibration model (Figure 8(B)) was successful, as all un-

known samples lie close to their respective group on the
correlation line.

The modeled relationships between the e-nose sig-
nal data and the sensory score data are shown in Fig-
ures 9 and 10 for 2 sensory descriptors (odor and overall
acceptability). The calibration of the models resulted
in high correlation coefficient of R2 = 0.9725 (Fig-
ure 9(A)) and R2 = 0.9530 (Figure 10(A)) for the pre-
diction of odor and overall acceptability scores, respec-
tively. The training errors were 0.626 for odor scores and
0.629 for overall acceptability scores. The prediction of
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Figure 8. PLS model results for the prediction of storage time based on electronic nose data obtained from (A) calibration and (B) validation
egg yolk samples. The prediction is shown as measured (predicted by e-nose) vs. reference (measured by conventional method) d of storage.
Individual symbols indicate replicate samples taken at different storage time. C00 = d 0, C03 = d 3, C06 = d 6, C09 = d 9, C13 = d 13, C16 =
d 16, and C20 = d 20.

sensory descriptors for validation samples as projected
onto their respective calibration model is shown in Fig-
ures 9(B) and 10(B). The prediction of the sensory qual-
ity changes during storage for validation samples was
found to be very good that each sample was placed on
the regression line close to its respective group.

It should be noted that both the calibration samples
and the validation samples stored for 0–20 d could be
correctly predicted. In addition, the signals determined
by the e-nose from the egg yolk samples indicated that
the changes in egg volatiles showed better correlation
with the changes in sensory score values during the stor-

age period. That the highest correlation coefficient was
obtained for odor scores may be due to similar detection
of odor by the sensory panelists and the e-nose.

As observed in Table 4, the PLS models resulted in
e-nose predicted values comparable with the reference
values measured by conventional methods. Overall, the
training and unknown samples were predicted correctly.
As a result of ANOVA, most of the PLS prediction re-
sults from the e-nose sensor signals of egg yolk samples
were not significantly different from the correspond-
ing reference values (Table 4). Significantly (P < 0.05)
different results were seen only between: reference and
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Figure 9. PLS model results for the prediction of odor scores based on electronic nose data obtained from (A) calibration and (B) validation
egg yolk samples. The prediction is shown as measured (predicted by e-nose) vs. reference (measured by conventional method) odor scores.
Individual symbols indicate replicate samples taken at different storage time. C00 = d 0, C03 = d 3, C06 = d 6, C09 = d 9, C13 = d 13, C16 =
d 16, and C20 = d 20.

validation odor scores on d 0, reference and validation
HUs values on d 3, and reference and prediction as well
as validation storage times on d 9, d 13, and d 20. These
results suggest that it is possible to monitor and predict
egg freshness by detecting egg yolk using the fast GC
e-nose technique.

CONCLUSIONS

With proper selection of the qualitative sensors
(peaks) used for multivariate chemometric analysis,

samples belonging to different storage times were well
discriminated by the e-nose. The PCA and DFA anal-
ysis results indicated that it was possible for a fast GC
e-nose to discriminate the freshness quality (different
storage time) of eggs, and they provided a theoretical
and experimental basis for monitoring the freshness of
eggs.

The e-nose’s ability to predict storage time, HUs,
and sensory score values from eggs was verified in
the research. After appropriate quantitative sensor
(peak) selection, the PLS regression provided accurate
quality index models between e-nose signals and the
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Figure 10. PLS model results for the prediction of overall acceptability scores based on electronic nose data obtained from (A) calibration
and (B) validation egg yolk samples. The prediction is shown as measured (predicted by e-nose) vs. reference (measured by conventional method)
overall acceptability scores. Individual symbols indicate replicate samples taken at different storage time. C00 = d 0, C03 = d 3, C06 = d 6, C09
= d 9, C13 = d 13, C16 = d 16, and C20 = d 20.

storage time, HUs, odor score, and overall acceptabil-
ity score changes during storage with correlation co-
efficients of R2 = 0.9441, R2 = 0.9511, R2 = 0.9725,
and R2 = 0.9530, respectively. The training errors were
0.887, 1.24, 0.626, and 0.629, respectively. By perform-
ing ANOVA for comparing reference and prediction
mean values, evidence was obtained for the predictive
power of the fast GC e-nose regarding the storage time
and quality indices. PLS provided a clear indication of
the GC based e-nose’s ability—it could clearly detect
a positive trend in the prediction of the sensory score,
HU and storage time values based on its responses, and
the results demonstrated its capability.

These results confirm that the fast GC e-nose, with
good selection of the sensors (peaks) used for multi-
variate chemometric analysis, has the potential of be-
ing a reliable instrument for the assessment and predic-
tion of egg freshness during its circulation in the supply
chain.
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Table 4. ANOVA of PLS model result mean values for quality
indices of egg during storage.

Storage
period Descriptor Reference∗ Prediction∗∗ Validation∗∗∗

C00∗∗∗∗ Odor score 9a, ∗∗∗∗∗ 9.076a,b 9.31b

Overall score 8.93 8.722 8.97
Haugh units 81.7 81.302 81.28
Storage time (d) 0 0.6438 0.008575

C03 Odor score 8.33 8.42 7.9875
Overall score 7.8 8.004 7.535
Haugh units 77.45a 73.616a,b 71.4875b

Storage time (d) 3 2.628 3.915
C06 Odor score 7.87 7.386 8.0575

Overall score 7.2 6.894 7.615
Haugh units 66 69.81 70.66
Storage time (d) 6 5.428 3.565

C09 Odor score 5.13 5.124 5.1325
Overall score 5.07 4.476 4.4725
Haugh units 64.17 63.792 61.53
Storage time (d) 9a 11.55b 11.6475b

C13 Odor score 5.07 5.22 5.0725
Overall score 3.73 4.554 4.3975
Haugh units 54.27 57.372 57.51
Storage time (d) 13a 11.342b 11.73b

C16 Odor score 3.07 3.336 3.4
Overall score 2.2 2.51 2.575
Haugh units 52.22 50.636 50.2775
Storage time (d) 16 16.58 16.43

C20 Odor score 2.67 2.578 2.7775
Overall score 1.93 1.706 1.92
Haugh units 46.75 46.03 46.7375
Storage time (d) 20a 18.828b 18.275b

∗Measured by conventional methods.
∗∗Predicted from training data.
∗∗∗Predicted from unknown data.
∗∗∗∗C00 = d 0, C03 = d 3, C06 = d 6, C09 = d 9, C13 = d 13, C16 =

d 16, and C20 = d 20.
∗∗∗∗∗Means sharing the same superscript within a row are not signifi-

cantly different from each other at P < 0.05.
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