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Structural biology of peptides presented by class I and class II MHC proteins has  
transformed immunology, impacting our understanding of fundamental immune 
mechanisms and allowing researchers to rationalize immunogenicity and design novel 
vaccines. However, proteins are not static structures as often inferred from crystallo-
graphic structures. Their components move and breathe individually and collectively 
over a range of timescales. Peptides bound within MHC peptide-binding grooves are 
no exception and their motions have been shown to impact recognition by T cell and 
other receptors in ways that influence function. Furthermore, peptides tune the motions 
of MHC proteins themselves, which impacts recognition of peptide/MHC complexes 
by other proteins. Here, we review the motional properties of peptides in MHC binding 
grooves and discuss how peptide properties can influence MHC motions. We briefly 
review theoretical concepts about protein motion and highlight key data that illustrate 
immunological consequences. We focus primarily on class I systems due to greater 
availability of data, but segue into class II systems as the concepts and consequences 
overlap. We suggest that characterization of the dynamic “energy landscapes” of 
peptide/MHC complexes and the resulting functional consequences is one of the next 
frontiers in structural immunology.
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inTRODUCTiOn

Presentation of peptides by class I MHC (MHC-I) proteins to T cell receptors (TCRs) is a key compo-
nent of cellular immunity. The first structures of peptide/MHC-I structures illustrated how peptides 
were presented by MHC-I proteins, lying in an extended form embedded within a binding groove 
formed by two flanking α helices and a β sheet floor (1). The general architecture of peptide/MHC-I 
complexes is widely recognized, with representations found within thousands of reviews, research 
publications, and textbooks ranging from general biology to advanced immunology. The solution of 
peptide/MHC-I structures answered fundamental questions in immunology, including how a single 
receptor can simultaneously recognize both self (MHC) and non-self (peptide) in antigen recogni-
tion (2). The subsequent solution of structures of complexes between TCRs and peptide/MHC-I 
complexes illustrated at an atomic level how simultaneous recognition of self/non-self occurs (3, 4).
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FigURe 1 | Conformational changes in peptides and heterogeneity in peptides bound to class I MHC (MHC-I). (A) Illustration of the change in the backbone of the 
Tax11–19 peptide bound to HLA-A2 upon binding of the A6 T cell receptors (TCR). The conformational change is centered upon amino acids 6 and 7, with a maximal 
displacement of 3 Å occurring at the α carbon of position 6. The root mean square (RMS) deviation for contiguous peptide backbone atoms between TCR-free and 
TCR-bound is 1.3 Å. (B) Statistics of peptide conformational changes that occur upon TCR binding for all peptide/MHC-I complexes for which TCR-free/bound 
structures exist in the Protein Data Bank. The figure shows a Box plot of peptide backbone RMS deviations between free and bound structures. Individual values are 
indicated by red dots, and the interquartile range between the 75th and 25th percentiles indicated in yellow. Whiskers extend to the furthest values that lie within the 
75th and 25th percentile value ±1.5× the interquartile range. RMS deviations are binned according to the Freedman–Diaconis rule for a total of 12 bins (12). The 
blue dashed curve indicates the population distribution. Complexes and TCR-free/bound PDB codes are provided for the 25th, 50th, and 75th percentile values, as 
well as for the points that demarcate the whiskers and for the system which displayed the largest peptide conformational change upon binding. (C) Weak electron 
density for the triply modified 10-mer peptide GP2 bound to HLA-A2 (top) and the 11-mer peptide BZLF1 bound to HLA-B35 (bottom) (13, 14). Gaps in the density 
show regions where conformational heterogeneity is likely to exist. Density is calculated from a 2Fo−Fc map and contoured at 1σ. (D) Multiple conformations of the 
anchor modified MART-127–35 ALG nonameric peptide bound to HLA-A2 (15). The electron density was sufficiently clear to allow refinement of the backbone at 
positions 4 and 5 in two different conformations (blue and gold regions).
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The first high-resolution crystal structure of a TCR-peptide/
MHC-I complex was that of the A6 TCR bound to the HTLV-1 
Tax11–19 antigen presented by HLA-A2 (3). Comparison of the 
TCR-bound complex with that of the free peptide/MHC-I 
revealed that the peptide undergoes a conformational change 
upon TCR binding, centered around the central core—the peptide 
is essentially “squished” into the binding groove by the receptor 
(5) (Figure 1A). Many subsequent structures demonstrated that 
peptide conformational changes frequently occur upon TCR 
binding (Figure  1B). The regularity of this occurrence is likely 
related to the fact that in MHC-I complexes peptides are usually 

not flat within the binding groove, but bulge due to the tethering 
of the N- and C-terminal residues, with the degree of bulging 
increasing with peptide length (6–9). Peptides can also be “pulled” 
away from the binding groove in response to TCR binding, an 
occurrence which could be related to the identity of the primary 
anchor residues (10, 11).

In some crystal structures of peptide/MHC-I complexes, pep-
tides are poorly refined in the binding groove, with side chains 
and even backbones lacking electron density (Figure 1C). There 
can be multiple reasons for weak or missing electron density in 
protein structures, such as poor crystal morphology or even the 
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existence of multiple peptides in one crystal, as was the case in the 
very first structure of HLA-A2 (16). Another reason for poor elec-
tron density is structural heterogeneity, stemming from the exist-
ence of multiple peptide conformations or the interconversion 
between different conformations on the timescale of the X-ray 
diffraction experiment. Such heterogeneity was demonstrated in 
an early experiment with the GP2 HER-2/neu epitope, which had 
missing density in the peptide center when bound to HLA-A2 
(17). In other cases, electron density is clear enough to identify 
peptides in multiple conformations (15) (Figure 1D).

What do binding-induced conformational changes and struc-
tural heterogeneity have in common? They are both indicative of 
molecular motion, or protein dynamics. Proteins are not static 
molecules, and their atoms move independently and collectively 
over a wide range of timescales. Peptide/MHC complexes are no 
exception, and peptide conformational changes, weak electron 
density, and structural heterogeneity give some insight into the 
influence that motion can have in antigen recognition. Below, 
we outline how peptide motion can be important in influencing 
antigenicity and suggest how it may be considered in efforts to 
predict and even manipulate immune recognition.

THeOReTiCAL COnSiDeRATiOnS OF 
PROTein MOTiOn

Although not long considered in structural and molecular 
immunology, the study of protein dynamics has a long and rich 
history. The first computational studies of protein motion were 
performed in the 1970s [e.g., Ref. (18)] and experimental studies 
using various forms of spectroscopy [fluorescence, nuclear mag-
netic resonance (NMR)] date to the 1960s (19). The question of 
how protein motion drives biological function was considered as 
early as 1972 in discussions about conformational changes occur-
ring in hemoglobin as it performs its physiological functions (20).

Often, protein dynamics that influence molecular recognition 
are described using terms such as induced fit, preexisting equilib-
rium, or conformational selection. Induced fit is commonly used to 
describe structural differences that are apparent between free and 
bound structures, whereas preexisting equilibrium or conforma-
tional selection is often used to describe rapid motion that occurs 
in an un-bound protein. Although used to describe distinct 
scenarios, each of these terms ultimately reflects the influence 
of motion (21, 22). The distinctions boil down to timescales, or 
the rates at which proteins exhibit flexibility and undergo con-
formational changes. Timescales and rates in return relate to the 
heights of free energy barriers between conformations and the 
frequencies with which these barriers are overcome. In that sense, 
classical induced fit and preexisting equilibria/conformational 
selection mechanisms reflect extremes on a continuum—slow, 
or low frequency motion with high barriers for the former, and 
rapid, high frequency motion with low barriers for the latter 
(Figure 2A). The barriers between different structural states can 
be modulated by changes in the molecular environment, contrib-
uting to “induced fit” changes occurring during binding—but 
nonetheless, induced fit inherently reflects a propensity to move. 
In some cases, assignment of structural changes to either induced 

fit or conformational selection can be clear, such as seen with 
recognition of peptides by the A6 and G10 TCRs (23, 24). More 
often though, when induced fit, structural heterogeneity or poor 
electron density is indicated from crystal structures, the heights 
of the barriers can only be guessed at, so where on the continuum 
the associated protein motions lie is often unknown.

How can protein motions—fast, slow, or intermediate— 
influence molecular recognition, such as occurs between a TCR 
and peptide/MHC complex? To form the most stable complexes 
(i.e., those with the lowest free energy), proteins need to opti-
mize shape and chemical complementarity within the protein–
protein interface. If motions are required to achieve this, then 
these motions can limit the rate at which complexes form, in 
turn limiting the overall affinity of the complex. An example is 
found in the antibody maturation process, during which muta-
tions are introduced that remove conformational heterogeneity 
and its associated motion from the antibody binding site (27). 
Accordingly, one signature of antibody maturation is an increase 
in the rate of association rates as maturation proceeds, strength-
ening binding (28).

A related mechanism is associated with the population of 
multiple conformational states—the various “wells” between the 
barriers in Figure 2A. Conformational heterogeneity is directly 
related to entropy: the more states that are populated, the greater 
the entropy. If heterogeneity is reduced upon binding as is usually 
expected, then structural heterogeneity will increase the entropic 
cost for binding, and affinity will weaken. Again using antibodies 
as an example, affinity maturation is associated with a reduction 
in antibody conformational heterogeneity and lower entropic 
costs for binding (27).

Consider TCR recognition of a peptide/MHC-I complex in 
the context of the above discussion. A peptide that must move 
to optimize fit with a TCR, such as the Tax11–19 antigen presented 
by HLA-A2 in Figure 1A, will result in slower binding compared 
to a more rigid peptide presented in an optimal conformation. 
Indeed, recognition of the Tax11–19/HLA-A2 complex by the A6 
and B7 TCRs proceeds with association rates in the range of 
~0.5 × 106 M−1 s−1, orders of magnitude slower than the diffusion 
controlled limit (29). Other TCR binding reactions associated 
with peptide conformational changes occur with similar rates, or 
even slower (although it is important to note that TCR motional 
properties can also influence association rates, confounding the 
assignment of slow association rates purely to peptide conforma-
tional changes) (30). Clear demonstration of entropic penalties 
associated with peptide conformational changes or motion are 
more difficult to find given the varied contributions to binding 
entropy changes, but many TCRs bind with unfavorable entropy 
changes (31).

ASSeSSing PePTiDe MOTiOnS in MHC-i 
BinDing gROOveS

As discussed above, indications of peptide motions within the 
MHC-I binding groove can come from crystallographic struc-
tures. This can include the presence of multiple peptide confor-
mations, missing electron density, or significant conformational 
changes occurring upon TCR binding. However, moving from 
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FigURe 2 | Free energy landscapes and peptide tuning of the class I MHC (MHC-I) energy landscape. (A) Schematic showing the variation in protein-free energy 
with conformation. Atomic coordinates are along the x axis and free energy is along the y axis. Wells along the conformation axis represent different structural 
substates separated by barriers. The heights of the barriers yield the rates at which the protein moves between (or samples) different conformations. Low barriers 
translate into rapid, high-frequency motions, whereas high barriers translate into slower, low-frequency motions. The number and energy levels of the structural 
substates separated by the barriers gives the protein entropy. (B) Peptide tuning of the MHC-I energy landscape. Ligplot analysis (25) of the interactions the Tax and 
Flu M1 peptides make with HLA-A2. Peptides are shown with purple bonds and contacting MHC residues are indicated. Interactions formed by hydrophobic atoms 
are shown with red hashes. Hydrogen bonds are shown with green lines with distances indicated. HLA-A2 residues making significant interactions in one complex 
but not the other are circled in red. (C) Illustration of how peptides can tune the MHC-I energy landscape. The image shows a traditional folding funnel, with the 
native peptide/MHC-I architecture at the bottom of the funnel. Zooming into the tip of the funnel reveals the energy landscape of the assembled complex, as 
diagrammed in panel (A). Due to the different interactions formed by different peptides as shown in panel (B), the energy landscape is altered, changing MHC-I 
protein dynamics. Figure adapted from Ref. (26) and used by permission.
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structural indications of motion to more detailed, actual assess-
ments of motion requires additional experiments.

The simplest approach is to use crystal structures as the basis 
for molecular dynamics (MD) simulations. MD simulations 
take the initial set of atomic coordinates and compute the time-
dependent variations in structure using classical laws of motion 
and a “force field” that describes the interactions between atoms. 
With ever-growing improvements in computer hardware, MD 
simulations have advanced considerably, such that we are now 
seeing simulations of entire protein folding reactions on time-
scales extending beyond microseconds (32). MD simulations have 

been used extensively to study the motions of peptides bound to 
MHC-I proteins (15, 33–51), as reviewed recently by Freund and 
colleagues (52). MD simulations have the advantage of tracking 
actual motion in atomic detail, capturing different conformations 
as a function of time. In most cases, however, MD simulations are 
limited to capturing motions that occur on fast timescales, and of 
course are virtual, with confidence in the results depending on the 
quality of the initial structure and a wide range of parameters that 
can be tuned to optimize speed versus accuracy.

Direct experimental measurements of peptide motions are 
less common than MD simulations, owing to the challenges of 
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producing and working with peptide/MHC-I complexes. NMR 
spectroscopy is the gold standard for experimentally monitoring 
protein motion in atomic detail. NMR can provide motional 
detail across fast (picosecond to nanosecond) and slow (millisec-
ond or greater) timescales and in some cases, can give insight into 
structural aspects of motion (e.g., amplitudes and directions). 
However, NMR on proteins the size and complexity of peptide/
MHC complexes is technically challenging and of low through-
put. Correspondingly, NMR has seen less use in studying peptide/
MHC-I complexes (53–58). In two recent NMR studies, peptides 
bound to MHC-I proteins were shown to interconvert between 
conformations seen in different crystallographic structures 
(53, 56), confirming the expectation that crystallographically 
observed conformational changes reflect the propensity to move.

Fluorescence spectroscopy is commonly used to study protein 
motion, and it has seen some use in studying peptide/MHC-I 
complexes (35, 45, 59–62). In one notable study, fluorescence 
polarization was used along with MD simulations to show 
that allelic variations in HLA-B27 led to differences in peptide 
motions (35). A limitation of fluorescence is a reliance on bulky 
fluorescent labels, which can perturb structure and dynamics 
(63) [though in at least one case, intrinsic tryptophan fluores-
cence has been used to study MHC-I behavior (62)]. Infrared 
spectroscopy is another approach that may prove to be of use 
in studying the motions of peptides bound to MHC proteins, 
as it can report on fast motions using approaches analogous to 
NMR, but with reporters that are less perturbative—and some-
times non-perturbative in the case of C-D probes—to the native 
structure and dynamics of interest (64, 65).

PePTiDe MOTiOnS AnD AnTigeniCiTY: 
MODiFieD PePTiDeS AnD TUMOR 
neOePiTOPeS

From the discussion thus far, it is evident that motion of peptides 
in MHC-I binding grooves will impact TCR binding, influencing 
association rates, entropic penalties, or both. Although exceptions 
are known, in general peptide antigenicity scales with the affinity 
of the TCR for the peptide/MHC complex, with thresholds at the 
high and low limits (30, 66, 67). All other factors being equal, 
increasingly mobile peptides will be recognized more weakly by 
TCRs, with correspondingly reduced antigenicity.

The clearest example of the influence of peptide motion on 
antigenicity comes from the family of MART-1 tumor antigens 
and associated variants. The MART-127–35 nonamer (sequence 
AAGIGILTV) is weakly immunogenic, attributed to its weak 
binding to HLA-A2 (68, 69). Weak binding stems from the pres-
ence of a suboptimal alanine at the first primary anchor position 
(peptide position 2). Modification of peptide primary anchors is a 
well-known strategy for improving peptide binding, and in some 
cases, antigenicity (70). Curiously, replacing the second alanine 
of the MART-127–35 nonamer with leucine eliminates antigenicity 
with multiple T cell clones, despite strengthening MHC binding. 
The crystal structure of the anchor modified variant bound to 
HLA-A2 showed multiple conformations of the peptide in the 
binding groove, compared to a single conformation with the 

native, unmodified peptide (15). NMR confirmed the crystal-
lographic data, showing the modified peptide indeed sampled 
multiple conformations (38). Exploration of peptide motions 
using MD simulations suggested the multiple conformations 
were attributable to rapid, nanosecond motions in the backbone 
of the modified peptide that were absent from the native peptide 
(comfortingly, the MD simulations recapitulated the conforma-
tions that were seen crystallographically). Binding experiments 
with recombinant TCRs confirmed the more dynamic modi-
fied peptide was in fact recognized more weakly, explaining its 
reduced antigenicity.

The results with the MART-1 nonamer suggest that screening 
for changes in peptide motion may be useful in helping predict 
antigenicity. One area where this may be particularly helpful is in 
predicting the antigenicity of “neoepitopes” arising from muta-
tions present in tumor genomes. Neoepitopes are of considerable 
interest in cancer immunotherapy (71). However, predictive 
algorithms historically used in identifying immunodominant 
epitopes from viral genomes have performed poorly in predicting 
neoepitope antigenicity (37, 72). Toward this end, we used struc-
tural modeling and MD simulations to investigate a small set of 
neoepitopes and their wild-type counterparts bound to the mouse 
MHC-I protein H-2Kd. Although only a small number of peptides 
were examined, there was a positive relationship between muta-
tions which led to reduced peptide motions and antigenicity (37). 
The relationship between peptide rigidity and immunogenicity 
is consistent with the results seen with the MART-1 nonamer, as 
well as the theoretical considerations noted above: mutations that 
reduce motion should enhance T cell recognition by increasing 
TCR association rates and decreasing entropic costs for binding. 
Other factors are undoubtedly important to consider in neoanti-
gen immunogenicity (peptide processing, MHC binding, amino 
acid composition, etc.), but incorporating structural modeling 
and predictions of how mutations alter fast peptide dynamics 
may provide another layer of sophistication for prediction meth-
ods and increase the likelihood of identifying those neoepitopes 
most likely to induce tumor rejection.

eXTenSiOn OF PePTiDe DYnAMiCS 
inTO MHC-i PROTeinS

Despite the common illustrations that render peptides and 
MHC-I proteins as distinct components (e.g., Figure  1), pep-
tides are usually closely packed within MHC-I binding grooves 
[excluding those that are unusually long and bulge extensively 
(7, 8, 73–75)]. Therefore, it should not be surprising that peptide 
features can influence features of the peptide-binding groove. The 
possibilities for peptide-dependent structural shifts in MHC-I α 
helices were first noted in 1996 (76). More recently, we performed 
a comprehensive analysis of 51 structures of peptide/HLA-A2 
complexes and found systematic deviations in the width of the 
peptide-binding groove and the bends and positions of both the 
α1 and α2 helices (26).

If there are peptide-dependent structural MHC-I shifts, there 
must be peptide-dependent MHC-I motions. Indeed, this was 
observed in 2009 when recognition of the Tax and Tel1p peptides 
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by the A6 TCR was shown to yield different conformations in the 
α2 helix of HLA-A2 (34). It was shown that the α2 helix moved 
differently on the nanosecond timescale with the two peptides 
bound, which contributed to the structural shift seen with TCR 
binding to Tel1p versus Tax. The motions underlying the helix 
conformational change fit were found to be dependent on peptide 
structural features, and were correlated with differential peptide 
dynamics. Importantly, the different positioning of the MHC 
α2 helix was necessary for optimal interactions with the TCR, 
demonstrating that the “tuning” of HLA-A2 motions by the Tax 
and Tel1p proteins was indeed functionally important. Peptide-
dependent alterations in the properties of the MHC-I α2 helix 
have been seen in other cases (77), suggesting that this region of 
the protein may be particularly sensitive to features of different 
peptides.

Returning to the MART-1 peptide system, via MD simula-
tions, alteration of the MART-127–35 nonamer was shown to alter 
the fluctuations of the α1 and α2 helices (38). More recently, 
fluorescence anisotropy and hydrogen/deuterium exchange was 
used to show that peptide-dependent tuning of MHC-I protein 
dynamics is a general phenomenon, not limited to particular pep-
tides or a single site in the peptide-binding domain (26). Further 
evidence has been seen in a NMR study of HLA-B35, where it was 
shown that different peptides altered MHC sampling of minor 
conformations that had not been observed crystallographi-
cally (58). A recent analysis of temperature factors in peptide/
MHC-I structures provided additional data and highlighted 
regions which might be particularly susceptible to include the 
α1 and α2 helices, as well as regions in the α3 domain and even 
β2-microglobulin (52). Thus, there is a structural and dynamic 
“extension of antigenicity” from the peptide to the MHC protein, 
with significant potential to influence TCR and T cell recognition. 
There is also evidence that allele-specific variations in different 
MHC-I proteins can modulate the susceptibility for influencing 
protein motions (35, 36, 44, 47–49, 78), suggesting a previously 
unrecognized complexity in how MHC genetics can influence 
antigenicity.

How can different peptides modulate MHC protein dynam-
ics? Although they may be structurally similar, at the atomic 
level different peptides will form many different interactions 
with an MHC protein, as shown in Figure  2B. The different 
interatomic interactions will be of disparate energies; even a 
hydrogen bond between two identical atoms will be of dif-
ferent strengths if the geometries differ (26, 76). Thus, the 
free energies of structural substates will vary with different 
peptides bound. This is diagrammed in Figure  2C, which 
shows a peptide/MHC “folding funnel” leading from unfolded/ 
unassembled protein to the assembled peptide/MHC-I native 
state. Different peptides will tune the energy landscape of the 
assembled complex as discussed above. In other words, the levels 
of the wells describing different structural states will move up or 
down depending on the identity of the peptide. This will change 
the heights of the barriers between them, altering the rates of con-
formational exchange, i.e., changing protein motions. Moreover, 
with different energies for different substates, the overall entropy 
of the protein will change, potentially leading to different entropy 
changes upon TCR binding and impacting binding affinity. Note 

that as crystallographic structures do not show energy and do 
not provide clear insights into structural substates, alterations in 
peptide/MHC dynamics can occur even in the absence of any 
apparent crystallographic differences (58). This same phenom-
enon explains how allelic variations can change peptide–protein 
dynamics: amino acid differences between MHC variants result 
in altered protein–peptide contacts, affecting the free energies of 
structural substates and with corresponding impacts on protein 
dynamics.

Peptide-dependent protein motion could also explain observa-
tions of peptide-dependent binding of other proteins to MHC-I, 
such as NK receptors (79). Indeed, it is believed that alterations 
in protein fluctuations is a key mechanistic component of peptide 
loading and exchange, perhaps in conjunction with partial peptide 
dissociation and the corresponding alterations in MHC dynamics 
(42, 44–46, 48). In classic biochemical terms, peptides are acting as 
allosteric effectors, modifying the binding of these other proteins 
and subsequent immunological functions. The underlying mecha-
nisms by which peptides allosterically alter motions at remote sites 
is not clear, but could involve either discrete pathways of motion 
or more global alterations of the protein energy landscape and 
subsequent dynamics (80).

DYnAMiCS in CLASS ii MHC (MHC-ii) 
PROTeinS

The discussion above has centered on peptide motion within 
MHC-I proteins. Are there parallels with class II MHC proteins? 
The theoretical possibility of course exists, and the biochemical 
and functional implications are the same: peptide motion in 
MHC-II binding grooves can influence the binding of TCRs and 
other receptors, and peptides and MHC-II allelic variations have 
potential to influence MHC-II protein motions in functionally 
significant ways. MHC-I and MHC-II proteins are structurally 
homologous. However, in MHC-II, the peptide termini extend 
from the binding groove and, therefore, MHC-II-bound peptides 
are more extended, lack the bulges seen with peptides bound to 
MHC-I, and are more hydrogen-bonded to the protein (1). Likely 
for these reasons, large-scale peptide conformational changes 
upon TCR binding are seen less frequently with MHC-II systems 
(although there is less structural data for MHC-II). However, 
TCRs also bind peptide/MHC-II complexes with slow kinetics 
and occasionally unfavorable entropy changes (30, 31). Hairpin-
style secondary structures have been seen in class II-presented 
peptides (81) and flanking regions of class II-presented peptides 
that lie outside of the groove can impact TCR binding, possibly 
due to dynamic effects (82). Therefore, although the data are less 
apparent, motions of peptides bound to MHC-II systems should 
also be considered when taking stock of the physical influences 
on TCR binding and peptide antigenicity. Furthermore, there 
is clear evidence for peptide influences on the motion of the 
MHC-II molecule, particularly in regions that interact with the 
peptide-exchange catalyst HLA-DM, as well as a fundamental role 
for protein motion in MHC-II peptide-exchange itself (83–86). 
Thus, in addition to having converged on fundamentally similar 
structures and functions, MHC-I and MHC-II protein functions 
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may be similarly influenced by—and take advantage of—peptide 
and protein motional properties.

COnCLUSiOn

Structural biology of peptides presented by MHC proteins has 
transformed our understanding of immunology, with impacts 
ranging from our understanding of fundamental immune 
mechanisms to the design and optimization of vaccines. 
However, considering peptide/MHC complexes not as static 
structures but as molecules that move and breathe has opened 
new avenues of investigation and shed new light on factors that 
impact immunogenicity. The mobility of peptides within MHC 
protein binding grooves can impact antigen immunogenicity, 
regardless of whether mobility or conformational variability is 
apparent from crystallographic structures. This is relevant in 
vaccine design, as well as predicting immunogenic epitopes from 
pathogen and tumor genomes. Efforts to predict peptide mobil-
ity may be particularly helpful in screening cancer neoepitopes, 

which have proven particularly challenging for predictive 
immunology. Peptides also “tune” the mobility of MHC proteins 
themselves, contributing to antigenicity and affecting interac-
tions with other proteins. The latter can include the machinery 
of peptide loading and exchange as well as other activating and 
inhibitory immune receptors. Broader characterization of the 
energy landscapes of peptide/MHC complexes and the resulting 
functional consequences is clearly one of the next frontiers in 
structural immunology.
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