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Predicting treat-and-extend
outcomes and treatment
intervals in neovascular
age-related macular
degeneration from retinal
optical coherence tomography
using artificial intelligence
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Ursula Schmidt-Erfurth1*
1Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University
of Vienna, Vienna, Austria, 2Department of Ophthalmology, Federal University of Minas Gerais,
Belo Horizonte, Brazil

Purpose: To predict visual outcomes and treatment needs in a treat & extend

(T&E) regimen in neovascular age-related macular degeneration (nAMD)

using a machine learning model based on quantitative optical coherence

tomography (OCT) imaging biomarkers.

Materials and methods: Study eyes of 270 treatment-naïve subjects,

randomized to receiving ranibizumab therapy in the T&E arm of a randomized

clinical trial were considered. OCT volume scans were processed at baseline

and at the first follow-up visit 4 weeks later. Automated image segmentation

was performed, where intraretinal (IRF), subretinal (SRF) fluid, pigment

epithelial detachment (PED), hyperreflective foci, and the photoreceptor

layer were delineated using a convolutional neural network (CNN). A set of

respective quantitative imaging biomarkers were computed across an Early

Treatment Diabetic Retinopathy Study (ETDRS) grid to describe the retinal

pathomorphology spatially and its change after the first injection. Lastly, using

the computed set of OCT features and available clinical and demographic

information, predictive models of outcomes and retreatment intervals were

built using machine learning and their performance evaluated with a 10-fold

cross-validation.

Results: Data of 228 evaluable patients were included, as some had missing

scans or were lost to follow-up. Of those patients, 55% reached and

maintained long (8, 10, 12 weeks) and another 45% stayed at short (4, 6 weeks)

treatment intervals. This provides further evidence for a high disease activity in

a major proportion of patients. The model predicted the extendable treatment

interval group with an AUROC of 0.71, and the visual outcome with an AUROC

of up to 0.87 when utilizing both, clinical and imaging features. The volume of
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SRF and the volume of IRF, remaining at the first follow-up visit, were found to

be the most important predictive markers for treatment intervals and visual

outcomes, respectively, supporting the important role of quantitative fluid

parameters on OCT.

Conclusion: The proposed Artificial intelligence (AI) methodology was able

to predict visual outcomes and retreatment intervals of a T&E regimen from

a single injection. The result of this study is an urgently needed step toward

AI-supported management of patients with active and progressive nAMD.

KEYWORDS

neovascular age related macular degeneration, optical coherence tomography, anti-
VEGF (vascular endothelial growth factor), image analysis, retina, machine learning,
AI

Introduction

Age-related macular degeneration (AMD) is a complex,
multifactorial and heterogeneous disease with its late-stage
neovascular AMD (nAMD) form leading to a rapid and severe
vision loss (1). Anti-vascular endothelial growth factor (anti-
VEGF) therapy has revolutionized the treatment of nAMD
(2). Anti-VEGF drugs are highly effective in drying the retina,
but have a few important shortcomings. The high drug costs
and the need for frequent injections are placing a large
socioeconomic burden on healthcare systems as well as patients.
In particular, the need to comply with frequent hospital visits
and injections creates difficulties for patients to meet such an
intensive schedule, especially in developing countries where
tertiary centers are concentrated in few reference cities, but
also in locations with adequate infrastructure. As a result,
the real-world outcomes are largely inferior to the ones
observed in the clinical trials (3, 4). Lastly, inter-individual
treatment requirements are highly heterogeneous and there
is a clear need to tune the anti-VEGF treatment to an
individual’s disease profile, (5) to reduce the number of visits
and injections, while still improving patients’ visual function.
However, tools and imaging biomarkers to predict these
individual requirements are largely unknown and remain an
unmet medical and socioeconomic need in developed and in
developing countries (6).

Currently, there is no universally accepted treatment
regimen that balances the frequency of treatment needed to
achieve the optimal visual outcomes with the burden of long-
term, frequent and high-cost treatment (7). Pro re nata (PRN)
regimen aim at decreasing the injection load by injecting only
“when needed,” but require monthly visits. On the other hand,
treat-and-extend (T&E) was designed as a proactive treatment
that can decrease the number of visits, while maintaining a
fluid-free macula with proactive intervention before fluid recurs

(8–10). T&E has become the most frequently used treatment
regimen as in contrast to PRN, it can enable patients to go as
long as 12 weeks between office visits and injections without
monitoring visits (11, 12). In addition to lessening the burden
on patients, T&E regimen help clinicians to cope with the
complexity and unpredictability of nAMD individual response
to therapy. Yet, the price to pay are more injections and a
somewhat unpredictable path to identify the right interval and
no clear control of disease activity over long-term maintenance.

Optical coherence tomography (OCT) is the standard
of care and the most commonly used imaging modality in
ophthalmology, providing real-time information on retinal
structure and assessing response to therapy (13). Clinicians
came to embrace the use of OCT imaging as the basis for dosing
with anti-VEGF drugs (14). Its fast scanning with microscopic
resolution creates large and detailed 3D volumetric scans of the
retina. However, the big data format of OCT images has started
to dramatically outperform the capacity of a human expert to
adequately evaluate the diagnostic and predictive information
contained within, and the discrepancy between the imaged
details and clinical conclusive insight is growing rapidly (6).

Artificial intelligence (AI) has a large potential in enabling
high performance medicine in general (15) and automating
retinal image analysis in particular (16). Driven by deep
learning, (17) AI has recently enabled fully autonomous
differential diagnosis from OCT scans, (18, 19) all operating
at the level of a retinal specialist. In the context of anti-
VEGF treatment support, there is still a largely underexplored
potential of AI to help guide long-term management and
further personalize it (20). In this paper, we aim at building
an AI-based model capable of predicting for each patient with
nAMD the visual response to anti-VEGF injections as well
as the treatment requirements during a T&E regimen. Our
core hypothesis is that the predictive signs of these future
outcomes and needs are contained in the OCT scans of the
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retina acquired at the very initial phase of the treatment course.
Using automated retinal image analysis based on deep learning,
a set of quantitative spatio-temporal biomarkers were extracted
from a pair of consecutive OCT scans only 4 weeks apart,
characterizing the retinal condition and its response to the first
anti-VEGF injection. Machine learning was then applied to train
a predictive model of the future visual outcomes and treatment
needs. Our model was trained and evaluated on the 1-year data
of the T&E treatment arm of a prospective and standardized
clinical trial involving treatment-naïve nAMD patients.

Materials and methods

Participants and imaging protocols

This post-hoc analysis was performed on the OCT scans,
clinical and demographic data of eyes of patients undergoing a
T&E regimen within the TReat and extEND (TREND) clinical
trial (ClinicalTrials.gov identifier: NCT01948830). TREND was
a 12-month, phase IIIb, randomized, visual acuity assessor-
masked, multi-center, interventional study assessing the efficacy
and safety of T&E vs. monthly 0.5 mg ranibizumab intravitreal
injections in patients with newly diagnosed nAMD (21). In
the TREND T&E arm, eyes were initially treated at monthly
intervals until disease activity resolved. When fluid was not
present anymore, the interval was extended by 2 weeks to
a maximum of 12-weeks. When fluid was again present, the
interval was shortened by 2 weeks up to a minimum of 4 weeks.
The opportunity of extending the interval was limited to two
attempts. At every visit, best corrected visual acuity (BCVA) was
measured, and an OCT acquired. Disease activity was assessed
by visual acuity and OCT criteria according to the investigator’s
judgment, based on the presence of intraretinal fluid (IRF) or
subretinal fluid (SRF) (21).

The OCT scans were macula-centered covering the volume
of 6 mm × 6 mm × 2 mm and were acquired with a
Cirrus HDOCT III (Carl Zeiss Meditec, Inc., Dublin, CA,
United States) having 128 B-scans with 512 × 1024 pixels,
Spectralis (Heidelberg Engineering, Heidelberg, Germany)
having 49 B-scans with 768 × 496 pixels, or Topcon OCT-2000
(Topcon, Tokyo, Japan) having 128 B-scans with 512 × 885
pixels. The majority of the scans were acquired with Spectralis
(65%), followed-by Cirrus (25%), and Topcon (10%). The
OCT scans of all patients were collected centrally by Vienna
Reading Center (VRC) according to a predefined imaging
protocol. OCT images of patients that gave informed consent
for research analysis were transferred post-hoc to the Laboratory
for Ophthalmic Image Analysis (OPTIMA) at the Medical
University of Vienna in a pseudonymized format to perform
the AI-based analysis. The post-hoc analysis presented here was
conducted in compliance with the Declaration of Helsinki and

approval was obtained by the Ethics Committee at the Medical
University of Vienna (EK Nr: 1246/2016).

Automated optical coherence
tomography analysis

To semantically describe the content of the volumetric
OCT scans, a series of fully automated image segmentations
was performed to detect and quantify the following OCT
imaging biomarkers known to be associated with the nAMD
progression (Figure 1).

Retinal fluid compartments
Detection and quantification of fluid was performed on

every B-scan of an OCT volume with an evaluated deep-
learning based image segmentation method (22). Every pixel
was classified with a multi-scale convolutional neural network

FIGURE 1

Quantitative OCT biomarker thickness maps: intraretinal fluid
(IRF) in red, subretinal fluid (SRF) in blue, pigment epithelium
detachment (PED) in green, hyperreflective foci (HRF) in orange,
and photoreceptor (PR) layer thickness in purple. Follow-up
scan was acquired 4 weeks after the initial treatment. Change
refers to the difference between the baseline and the first
follow-up.
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(CNN), and assigned a probability of belonging to one of
the four classes: background, retina, IRF or SRF. In addition,
pigment epithelial detachment (PED) was identified as a
region in-between RPE and Bruch’s membrane, which were
automatically segmented using the Iowa Reference Algorithms
(23, 24).

Hyperreflective foci
We defined HRF as small, dot-shaped lesions with equal or

higher reflectivity than the retinal pigment epithelium (RPE).
Analogous to fluid quantification, HRF were segmented with
a CNN model previously developed for this purpose, which
has been shown to perform similar to a trained human image
grader (25). Every pixel of the scan was assigned a probability of
belonging to an HRF.

Photoreceptors
Photoreceptor layer segmentation was performed with a

previously developed and validated CNN (26). The method
delineates two surfaces defined as the inner boundary of
the IS/OS junction and the outer boundary of the outer
photoreceptor segments. The photoreceptor integrity was then
represented in the form of a 2D thickness map defined by the
distance between the two segmented surfaces.

Predictive model development

The 2D en-face thickness maps of the photoreceptors, HRF,
as well as the IRF, SRF, and PED as quantitative biomarkers
were computed from the segmented OCT scans at the baseline
and the first follow-up visit, which we used as an observation
period (Figure 1). The thickness maps obtained from the
scans acquired with Spectralis were resampled with bilinear
interpolation to match the 128 B-scan resolution of the ones
acquired with Cirrus/Topcon. To measure the change of retinal
morphology after the first injection, the difference maps between
the follow-up and the baseline visits were computed. To
decrease the dimensionality of our representation, we spatially
divided the retina into three regions corresponding to the
central 1 mm, a parafoveal ring (1 to 3 mm) and a perifoveal
ring (3 to 6 mm). Then, for each imaging biomarker a mean
value of each of the three spatial regions was computed to
transform a 2D thickness map into a 3-dimensional feature
vector. The features from biomarkers IRF, SRF, PED, and
HRF were represented as volumes in nanoliters (nl), and PR
as thickness in µm. The five biomarkers over three time
points and intervals (baseline, follow-up, change) form a set
of 45 (5 × 3 × 3) quantitative features characterizing the
retinal pathomorphology in a spatio-temporal manner. To this
set of OCT-derived features we further included the BCVA
values at baseline, the follow-up visits and the change, as
well as two available demographic features: age and sex. In

total, each individual eye was hence characterized with a 50-
dimensional feature vector, which served as a set of predictors
for training predictive models of treatment intervals and
visual responders.

Treatment-interval by patient groups
Two patient groups were defined based on the treatment

interval established during the trial. The first group
corresponded to non-extendable patients, the ones that
primarily stayed at or later fell-back to 4–6-week maximum
intervals. The second group, corresponded to the extendable
patients, the ones that reached and maintained a treatment
interval of at least 8-weeks or more. For the interval to be
considered as maintained a patient had to have received at least
two treatments with such an extended interval.

Treatment-responder by patient groups
To identify groups of patients with respect to their visual

response to treatment, BCVA trajectories were modeled with
latent class mixed models (LCMM) using lcmm package
for R (R Foundation for Statistical Computing, Vienna,
Austria) (27). The linear mixed model has become a standard
statistical tool to analyze longitudinal measurements and
LCMM extends it to account for non-observed heterogeneity
that may exist in the population, in our case this being the
responder/non-responder status. BCVA trajectories produced
by the latent process were modeled by a quadratic function
of time, and the model included no baseline covariates. We
assumed a large number of latent classes (six) to identify
diverse patient subgroups in an unbiased way based on their
visual response alone, expecting to later merge them into
the two clinically relevant groups indicating responder/non-
responder.

Machine learning
To build a predictive model of the treatment interval

groups, and the visual responder groups, a random forest
classifier (28) was trained on the spatio-temporal feature vectors.
Random forest was grown with 2,000 trees, minimum node
size of 1, and 7 features randomly sampled as candidates at
each split of a tree. For this, R-Package “randomForest” (v4.6-
12) that implements Breiman and Cutler’s random forests for
classification and regression was used, on a hardware with a
3.30 GHz CPU and 32GB of RAM. The performance of the
predictive model was evaluated using a stratified 10-fold cross-
validation. Thereby, the cohort is stratified into 10 equal sized
subsamples with the condition that the proportion of each
class in all the folds is approximately equal, ensuring that each
fold is representative of the entire cohort. At each of the 10-
folds, 90% of the data was used for training and validation,
and 10% for test. Out-of-bag (OOB) error on the training set
was used as a validation error to tune the hyperparameters of
the random forest.
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Statistical analysis

The predictive model produces a probabilistic estimate
of a sample belonging to each class, and the performance
was measured with an area under the receiver operating
characteristic (ROC) curve (AUC) and summarized by the
sensitivity and specificity at an optimal operating point.
Confidence intervals (95%) of AUC were obtained with 1000
bootstraps. To evaluate the predictive role of the individual
features, the importance measure we used relied on permuting
the value of a feature and measuring how much the permutation
decreases the prediction accuracy of the model.

Results

Study cohort and descriptive analysis

Out of 650 participants in TREND, 544 gave an informed
consent for research use of the data. From that cohort, the 270
patients that were randomized to the T&E arm were considered
for the purpose of this study. For predictive modeling, a total of
10 patients were discarded due to a missing OCT scan from the
first two visits (baseline or the first follow-up). Furthermore, 22
eyes were lost to follow-up, 5 were found to have bad quality
scans, and 5 were found to have two or more visits missing
injections or to have more than 12-week intervals, deviating
from the trial protocol. Finally, 228 evaluable eyes from as
many patients were considered for cross-validation. The mean
(SD) age of these patients was 75.2 (± 8.2) years (range 51–
90); 55% were female. Mean (SD) baseline BCVA was 58.4
(± 13.2) letters and mean total number of injections received
over 12 months was 9.1.

An analysis of population mean fluid volumes and BCVA
trajectory during the trial is shown in Figure 2. One can observe
a rapid decrease in IRF volume already after a single injection.
Similarly, SRF decreases quickly, but slower than IRF and it
requires more injections for complete resolution. PED decreases
in volume after the first injection, but never diminishes further
and remains of substantial size throughout the treatment course.
The largest increase in mean BCVA was consistently noted after
the very first injection. This confirms most strikingly the general
effectiveness and the utility of anti-VEGF drugs in clearing the
retina from fluid and improving the visual function.

Patients grouped by the frequency pattern of the received
treatment are displayed in Figure 3. We observed the following
patterns: All patients effectively received a loading dose
consisting of two consecutive injections at the baseline and
the first follow-up. Further, 18% of patients required intensive
monthly treatment (left side of Figure 3) and 22% were
continually extended as soon as a dry retina was achieved after
2–4 initial injections (right side of Figure 3). The remaining 60%
of the patients experiencing an individualized treatment course

due to a variable response pattern. Overall, 55% of patients were
extendable per our definition, reaching and maintaining long (8,
10, 12 weeks), while the other 45% were non-extendable, staying
at short (4, 6 weeks) treatment intervals.

Identification of responders/non-responders following
the LCMM modeling with six latent groups is shown in
Figure 4. The clustering of the BCVA time trajectories revealed
responders and non-responders for two different baseline
BCVA levels: High (BCVA > 50 Letters), and Low (BCVA < 50
Letters), with their respective prevalence provided in Table 1.

Artificial intelligence for predicting
best corrected visual acuity treatment
responders/non-responders

A ROC curve of the predictive model, representing the
trade-off between specificity and sensitivity, is shown in
Figure 5A. The AUC for predicting the responders was 0.87
(CI: 0.80–0.91). The AUC was 0.83 and 0.77 when considering
only baseline features or only the imaging baseline + follow-up
features, respectively. An operating point that maximizes both
sensitivity and specificity would yield a sensitivity and specificity
of 80%. The drop in predictive performance of 0.1 AUC when
excluding non-imaging BCVA features clearly indicates that
BCVA at the latest observed time-point was the single most
important prognostic factor. Sub-analysis of the performance
of the model based on imaging features only, revealed a
performance of 0.72 (CI: 0.55–0.86) and 0.70 (CI: 0.58–0.81), for
Low and High baseline BCVA subgroups, respectively.

A detailed analysis of feature importance for predicting
responders confirmed that BCVA at week 4 and BCVA at
baseline were the two most predictive factors. Focusing on
imaging features only (Figure 5B), we found that the volume
of IRF and its change from baseline to follow-up were the two
most predictive imaging features relevant for BCVA outcomes.
The two demographic variables were not found to play a role.

Artificial intelligence for predicting
treatment requirements

A ROC curve of the predictive model is shown in
Figure 6A. The AUC for predicting the extendable from
the non-extendable group was 0.71 (CI: 0.64–0.78). The
AUC was 0.64 and 0.69 when considering only the baseline
features or only the imaging baseline + follow-up features,
respectively. For predicting the actual treatment intervals, the
false positives (patients wrongly predicted to be extendable)
are considered more adverse than the false negatives (patients
wrongly predicted to remain at short treatment intervals).
Thus, the operating point should be set to favor specificity
over sensitivity. Using such conservative operating points at
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FIGURE 2

Mean fluid volume in the central 6-mm during the course of T&E treatment for each of the three fluid types: intraretinal (IRF), subretinal (SRF)
and sub-RPE (PED). Fluid volumes are expressed in nanoliters (nl) and put in correspondence with the mean change in BCVA from baseline.

FIGURE 3

Treatment patterns of eyes in the T&E arm. Each column corresponds to one eye. Each row corresponds to a visit and the corresponding
4-week interval. A loading dose of two injections is apparent, as all the eyes received an injection at the baseline and the first follow-up visit.
The eyes with an individual treatment were sorted by the last extension interval.

80% specificity, the predictive model detected the extendable
patient groups with a sensitivity of 46% (Figure 6A). The
drop in predictive performance from 0.71 to 0.64 when only
the baseline scans were considered shows the importance of
observing the retinal response after an injection is given. When
excluding non-imaging BCVA features the AUC remained
similar, hence for this task BCVA was not a very important
prognostic factor.

The top 10 most Important features for this predictive
task are shown in Figure 6B. The feature importance was
correlated with the response to the initial anti-VEGF treatment,
with the most important features being measured after the first
injection. The list was led by features related to SRF, unlike the
previous model where IRF-related features were prominent. In
comparison to the imaging data, only the BCVA change from
baseline to the first follow-up was being featured within the top
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FIGURE 4

Latent class mixed model (LCMM) with six latent classes of the BCVA trajectories during the T&E treatment. The resulting mean (± 95% CI) BCVA
trajectories are displayed. The number of patients per latent class was 1:4, 2:173, 3:58, 4:12, 5:15, 6:8. Responders (latent classes: 2,5) and
non-responders (latent classes: 1,3,4,6) are clearly distinguishable.

5% of the most important features. Again, the two demographic
features were not found to have a predictive role.

Discussion

Our study shows that artificial intelligence is able to classify
patients in responders or non-responders, and predict the
individual treatment needs, based on visual acuity and imaging
biomarkers solely from the first two OCT exams (baseline
and 1 month after the injection). The AUC for identifying
responders varied between 0.77 and 0.87 depending on which
information was made available to the model. Though baseline
BCVA was found to be the most important predictor, the
imaging-based biomarkers, in addition to being an objective
measure, showed their value in distinguishing outcomes of
patients with similar baseline BCVA. The predictive model of
future treatment intervals reached an AUC of 0.71 representing
the variability of predicting future treatment needs at the

TABLE 1 Visual function responder/non-responder subgroups
stratified by baseline (BSL) visual acuity. The number of patients and
their prevalence is reported for each subgroup.

Baseline BCVA (Letters) Responder Non-responder

High (≥50) 173 (64.1%) 16 (05.9%)

Low (<50) 15 (05.6%) 66 (24.4%)

69.7% 30.3%

individual level. The “fair” performance illustrates the difficulty
of this prediction task, which is partly hindered by the short
1-year duration of the trial, not allowing to identify the stable
retreatment interval for every patient.

Treat-and-extend has become the most popular treatment
regimen (11, 12) due to a decrease in the number of visits with
non-inferior visual outcomes compared to monthly injections
in clinical trials (21). However, the discussion regarding the
most appropriate treatment regimen is still ongoing because
T&E may imply overtreatment when a patient could be
extendable for more than 2 weeks at a time and by its proactive
nature of intervention. Therefore, the use of AI for individual
treatment prediction has a high potential to avoid unnecessary
visits as well as procedures which potentially lead to severe
complications such as endophthalmitis or retinal detachment.
The TREND study nicely represents the heterogeneity in anti-
VEGF treatment response even in a clinical trial cohort,
where inclusion and exclusion criteria make the patient sample
rather standardized. On one hand, around 18% of patients
required intensive monthly treatment (non-extendable). On
the other hand, 22% were continually extended after a dry
retina was achieved after 2–4 initial injections (extendable), the
maximal interval in TREND. The remaining 60% of the patients
experienced an individual treatment pattern with changing fluid
status of the macula. There is therefore a clear need to tune
the anti-VEGF treatment in nAMD to a personalized regimen.
In the absence of clear inclusion/exclusion criteria and an
overwhelming number of patients in the real-world, this need
is even more urgent.
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FIGURE 5

Performance of predicting responders/non-responders. (A) Receiver operating characteristic (ROC) of prediction from: baseline (AUC = 0.83),
baseline + follow-up (week 4) (AUC = 0.87), and baseline + follow-up restricted to imaging features only (AUC = 0.77). (B) The 10 most
important imaging-only features from the first two visits [baseline (M0) and month one (M1)] for predicting responders/non-responders.

FIGURE 6

Performance of predicting extendable patients. (A) Receiver operating characteristic (ROC) of prediction from: baseline (AUC = 0.64),
baseline + follow-up (week 4) (AUC = 0.71), and baseline + follow-up restricted to imaging features only (AUC = 0.69). (B) The 10 most
important imaging features from the first two visits [baseline (M0) and month one (M1)].

Moreover, our analysis impressively demonstrates the
overall high levels of exudative activity in nAMD disease: Half
of the patients cannot be extended to 2 month intervals or
beyond which is distinctly above the retreatment regimens in
clinical practice globally (29). Obviously, the TREND study
administered ranibizumab which used to be the most frequently
applied substance in anti-VEGF therapy. In 2022, aflibercept
is the blockbuster drug in terms of revenue, however, little

difference was found in respect to efficacy and durability
between both drugs when patients were either switched (30) or
compared head-to-head in a prospective trial (31). The RIVAL
study looked at a treat-and-extend regimen and found that
neither aflibercept nor ranibizumab were superior to the other
regarding 12-month average visual acuity gains and injection
numbers. The search for novel substances with longer in vivo
durability is therefore a most busy field with brolucizumab
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leading to severe complications (32) and faricimab with
a combined anti-VEGF and anti-angiopoetin profile (33).
Faricimab was found to be equivalent in BCVA outcomes, but
a similar need for frequent retreatments in the group with
high disease activity. Long-term maintenance can be achieved
using intraocular refillable implants (34). At month 9, the mean
CFT change from baseline was similar in the Port Delivery
System 100-mg/ml and monthly intravitreal ranibizumab 0.5-
mg arms which makes the device a promising alternative for
eyes with high leakage activity. AI tools may reliably identify
those candidates already following the first injection. Globally,
bevacizumab is the most frequently used compound due to its
low cost, and trials have already demonstrated differences in
fluid resolution speed and durability (35). Such benchmarking
of anti-fluid capacities of substances can be easily performed
by comparing AI-based fluid resolution patterns, analogous to
the one shown in Figure 2. The arrival of biosimilars will
substantially change the landscape of agents used in nAMD in
respect to healthcare budgets (36). For optimization of regimens
and outcomes, however, efficacy profiles will be needed to start
adequate long-term care from the therapeutic start.

The introduction of OCT imaging allowed first qualitative,
and later also quantitative assessments of pathomorphologic
features of the retina, becoming essential in active monitoring,
treatment decisions and patient visit management on an
individualized basis. Yet, as imaging technology becomes more
sophisticated, the discrepancy between image details and clinical
interpretation is growing (6). There, AI becomes a useful tool
as it has been applied to retinal OCT imaging to quantify
fluid, (22, 37) provide prognosis, (38, 39) and predict treatment
requirements in nAMD patients undergoing an anti-VEGF PRN
regimen, (40, 41) and more recently treatment demands in
real-world cohorts (42, 43).

In this study, automated OCT quantification was performed
for the following OCT imaging biomarkers associated with
nAMD disease progression: macular fluid compartments (IRF,
SRF, PED), which are well known to be the most important
imaging biomarkers for anti-VEGF guidance, HRF that have
been reported to be a negative prognostic factor for visual
function in nAMD, (44, 45) and photoreceptor integrity as
visualized by OCT, which are hypothesized to be important
surrogate markers of treatment outcomes (46). Analyzing fluid,
we observed a rapid decrease in IRF and SRF volume already
after a single injection, however, SRF decreased slower than IRF,
which is consistent to the literature (47). The TREND study
protocol considered the presence of intraretinal or subretinal
fluid as disease activity, to be treated in all cases. SRF-related
features were more important features for predicting treatment
requirement, unlike the previous experiment for identifying
responders/non-responders, which IRF-related features were
dominating. Yet, one must consider that such a retrospective
analysis does not identify the optimal retreatment scenario,
but what the investigators decided based on the protocol of

the trial. As SRF resolves more slowly under therapy, non-
extended or shortened intervals would mostly be triggered by
the SRF fluid type. This does not necessarily mean that even
small amounts of SRF, should be treated to achieve more visual
gain. PED decreases after the first injection, but remains of
substantial size throughout the treatment course even with
further improvement of IRF, SRF, and BCVA, endorsing the slow
response of these lesion types to anti-VEGF injections treatment
(48). A treatment-agnostic large scale analysis of BCVA changes
dependent on fluid volumes of all types in the HAWK &
HARRIER study clearly highlighted the fact that an increase in
volume in all compartments was independently associated with
visual loss (49).

The closer relation of IRF compared to SRF for predicting
responder/non-responders for visual outcomes, despite slower
SRF depletion, can be explained by the predominant location
of SRF outside of the 1 mm center macula and the high impact
of foveal IRF on BCVA. In addition, the FLUID study has
postulated a possible tolerance of SRF in the foveal center
without having a substantial negative impact on visual outcomes
(50). However recent reports showed a negative impact of SRF
fluctuations on photoreceptor integrity, a positive correlation
between EZ integrity on OCT images and BCVA and a
correlation between residual SRF and short term-BCVA loss
using AI tools (51, 52). These findings reflect that a more
detailed analyses of retinal fluids and their locations are essential
to predict and manage nAMD treatment. Furthermore, other
biomarkers as subretinal hyperreflective material (SHRM), as
well as the development of fibrosis and atrophy under the
influence of different fluid types have sparked the interest of
the scientific community and are associated with long term
loss of visual function. Since TREND was a 1-year study, these
biomarkers probably did not affect the outcomes for the first
year but should be considered for any longer investigation
in patients with AMD. In addition, the TREND evaluable
subcohort in this study included 228 patients and due to this
relatively small sample size, deep learning approaches based on
CNN that would perform the prediction from the pair of raw
3D OCT scans or from the intermediate 2D feature maps were
not attempted but would be a promising alternative in a similar
scenario involving a larger number of participants.

There are two main distinguishing features of this work.
First, we now included HRF volume and photoreceptor layer
thickness, reflecting atrophy or intraretinal edema, as additional
biomarkers, which have not been explored before for these
predictive purposes. Second, we defined the visual outcome
subgroups based on the complete patient BCVA trajectory, as
opposed to relying on a visual test from a single visit at the end
of the study and a predefined response threshold. We found
the LCMM-based modeling to be a promising step toward the
discovery of visual response subgroups and to offer a more
comprehensive evaluation of the visual response. From the
methodological perspective, this study follows the approach
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explored in previous works (38, 41–43), where the retina was
first characterized with a set of quantitative biomarkers, followed
by machine learning to build the predictive model. The results
of predicting the treatment requirements (AUC of 0.71) fell
slightly below the performance reported there, but within the
confidence interval, where in Gallardo et al. (43) they obtained
an AUC of 0.79, and in Bogunovic et al. (41) an AUC of 0.77
for predicting high-demand patients. It is worth noting that
in these related works, the high demand corresponded to the
top tercile, and the patient cohort was larger (>300), which
facilitated the learning task.

This study has inherent limitations for being a post-hoc
analysis performed on patients from one arm of the TREND
study, and for the study being of 1-year duration. First, as
mentioned above, the protocol oriented to always treat the
presence of retinal fluid, while both intraretinal and subretinal
and fluid tolerance is still a controversial topic with a strong
impact on the number of injections. Second, the images were
not acquired specifically for this analysis, but for the previously
performed clinical trial. The algorithms applied have been
developed and tested for Spectralis and Cirrus scans but
not Topcon. Qualitatively, the segmentation performance on
Topcon scans, which constituted only 10% of the scans, was
found to be similar to the one on Cirrus, and the two scanners
produced comparable image style, and signal to noise ratio.
Furthermore, due to a small sample size we resorted to cross-
validation and an external validation on an independent test
set is required to confirm the model’s generalizability. Finally,
we believe that SHRM, fibrosis, and atrophy may be important
biomarkers for predicting visual acuity outcomes in nAMD,
which should be considered for future investigations with
longer follow-up.

Detailed analysis of OCT images using AI is becoming
a powerful tool to predict anti-VEGF treatment requirement
based on the quantitative fluid response pattern. Despite a
more appropriate patient counseling and increased patient’s
adherence to the treatment, this prediction will also improve
resource management and avoid under- or over-treatment.
Considering that in many developing countries the tertiary and
academic centers are concentrated in few reference cities, a
more rational manage of injection bursts may avoid unnecessary
dislocation for patients’ visit and treatment. Forecasting
of treatment requirement by automated and objective AI-
based quantification of treatment response might also be
useful to identify patients who benefit from the upcoming
long-acting therapy approaches. Together with the advent
of biosimilars, advances in AI-based image analysis may
allow a novel level of optimization of the most frequently
applied intervention in the entire field of medicine. Further
studies are necessary, including real-world data with larger
patient populations to establish an image-guided prediction for
clinical decision of treatment intervals in the management of
neovascular AMD.
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