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Abstract 

Background:  People live a long time in pre-diabetes/early diabetes without a formal diagnosis or management. Het-
erogeneity of progression coupled with deficiencies in electronic health records related to incomplete data, discrete 
events, and irregular event intervals make identification of pre-diabetes and critical points of diabetes progression 
challenging.

Methods:  We utilized longitudinal electronic health records of 9298 patients with type 2 diabetes or prediabetes 
from 2005 to 2016 from a large regional healthcare delivery network in China. We optimized a generative Markov-
Bayesian-based model to generate 5000 synthetic illness trajectories. The synthetic data were manually reviewed by 
endocrinologists.

Results:  We build an optimized generative progression model for type 2 diabetes using anchor information to 
reduce the number of parameters learning in the third layer of the model from O(N ×W) to O((N − C)×W) , where 
N is the number of clinical findings, W is the number of complications,  C is the number of anchors. Based on this 
model, we infer the relationships between progression stages, the onset of complication categories, and the associ-
ated diagnoses during the whole progression of type 2 diabetes using electronic health records.

Discussion:  Our findings indicate that 55.3% of single complications and 31.8% of complication patterns could be 
predicted early and managed appropriately to potentially delay (as it is a progressive disease) or prevented (by life-
style modifications that keep patient from developing/triggering diabetes in the first place).

Conclusions:  The full type 2 diabetes patient trajectories generated by the chronic disease progression model 
can counter a lack of real-world evidence of desired longitudinal timeframe while facilitating population health 
management.

Keywords:  Computer simulation, Disease progression model, Diabetes mellitus, type 2, Probabilistic generative 
model, Electronic health records
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Introduction
Patients with type 2 diabetes usually have few, if any, 
symptoms initially. Patients’ persist in the prediabetes 
phase for years; thus, the disease is often undetected until 
it progresses to a chronic condition as serious complica-
tions develop. It is estimated that more than 1 in 3 Amer-
ican adults (~ 88 million) and nearly 36% of the Chinese 
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adult population have prediabetes [1, 2]. When pre-dia-
betes converting to diabetes and that progression in early 
stages of diabetes, patients either have insulin resist-
ance where the body still produces insulin but is unable 
to effectively use insulin, or they don’t produce enough 
insulin, leading to accumulation of glucose in the blood-
stream. Diabetes affects multiple major organs and its 
most frequent complications include myocardial infarc-
tion, stroke, neuropathy, kidney damage, and microvas-
cular events [3–7].

In the medical field, a large amount of data (e.g., labora-
tory test results, clinical findings, diagnoses, symptoms, 
and medication treatments) recorded in electronic health 
record (EHR) systems can facilitate clinical knowledge 
discovery. However, EHR data has inherent limitations 
for studying progression of type 2 diabetes from predia-
betes to overt diabetes, including its static nature (e.g., 
family history information, genetic testing results), miss-
ing values, and irregularity (e.g., data are recorded at 
discrete time points with non-equal intervals). Disease 
progression models (DPM) require substantial domain 
knowledge on disease stages, vital indicators/ measure-
ments, and insight into the target diseases epidemiology. 
Watabe et al. [8] employed a hierarchical Bayesian frame-
work to infer the progression level to diabetes based on 
oral glucose tolerance tests. It is not a true DPM due to 
not focusing on the slow development of diabetes over 

time. Marini et  al. [9] developed a Dynamic Bayesian 
Network (DBN) model to simulate of development of 
several clinical complications of type 1 diabetes. Islam 
et al. [10] applied a machine learning pipeline to predict 
future development of type 2 diabetes based on finding 
an optimal set of risk-factors. This is not the case for our 
purpose because we aim to use a minimally supervised 
approach to generate the full trajectories of chronic dis-
eases, which does not require either a training dataset 
with patient disease stages labeled or domain knowledge 
that specifies the indicators for stage transitions.

Type 2 diabetes is a chronic disease with a progression 
trajectory that can span 30 + years from pre-diabetes 
to severe complications and death meaning that most 
EHR datasets only cover a portion of the relative longi-
tudinal trajectory. In order to cover the full longitudinal 
trajectory, synthetic data generated using probabilistic 
generative models can be a suitable proxy. Sukkar et  al. 
[11] used unsupervised hidden Markov models to cre-
ate a general disease progression model. Wang et  al. 
[12] utilized a three-layer pipeline (Fig.  1) consisting of 
the Markov Jump Process, Markov Chain, and noisy-or 
Bayesian network to similarly create an unsupervised 
disease progression model that infers progression from 
the onset of comorbidities. In this model, a comorbidity 
is a disease or syndrome that co-occurs with the target 
disease. Comorbidities are assumed to be conditionally 

Fig. 1  The outline of Wang et al.’s model, where K  is the number of disease stages, M is the number of complications, and N is the number ICD 
codes
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independent, given the state of the target disease. The 
bottom layer is a bipartite noisy-or Bayesian network that 
is used to infer the presence of the comorbidities from 
the observed clinical findings (e.g., ICD codes). Given a 
set of ICD codes, Wang et al. assume an observed clini-
cal finding was “activated” by the presence of any of the 
comorbidities with a certain activation probability; it is 
also possible that none of the comorbidities is present 
and the finding was activated by an always-on hidden 
cause with a leak probability. This layer allows the model 
to deal with large amounts of clinical findings. The pros 
of Wang et al.’s model [12] are visible. Its structure is flex-
ible enough to be well suited to the setting, especially 
for modeling sparse and noisy observations. The model 
can be used to consider either irregular patient visits or 
a continuous-time disease progression. The gap in the 
literature our study focuses on is to improve the time 
complexity of Wang et al.’s model and adapting the model 
design to a new population.

In this study, we aim to infer full progression trajecto-
ries of type 2 diabetes via synthetic patient generation. 
Firstly, to learn more efficiently the probabilistic rela-
tionships between chronic disease progression stages, 
complication categories, and clinical diagnoses based on 
the real incomplete patient records in EHR data sets, we 
optimize Wang et  al.’s model [12] (see Fig.  1). Then we 
suit the optimized model to build a progression model 
for type 2 diabetes using a real EHR data set. We further 
demonstrate the full progression of type 2 diabetes by 
means of synthetic patients generated by the learned pro-
gression model and how the model can facilitate popula-
tion health management.

Methods
Dataset settings
Data was derived from a 17-hospital-based regional 
healthcare delivery network managed by the local Center 
for Disease Control (CDC) in Shanghai, China. The data 
integrates real world electronic health record (EHR) 
data with “follow-up” data (that was generated from that 
tracks patient outcomes for those same patients). Data 
were coded using the International Classification of Dis-
eases—Version 10 (ICD-10-CM) codes. This study was 
approved by Shanghai CDC’s Institutional Review Board 
(IRB).

Our dataset consists of 9298 real patients with con-
firmed type 2 diabetes over an 11-year timespan 
from January 2005 to January 2016, in which 43.3% 
(4028/9298) were male, 100% had been hospitalized in 
the facility at some point during the timespan for any 
cause, and a 3.9% mortality rate (367/9298, 188 males and 
179 females). We retrieved a total of 1311 distinct ICD 
codes relating to these patients’ comorbidities from the 

data. We next removed infrequent ICD-10 codes (i.e., 
1223 of 1311) that appeared less than 30 times, leaving 88 
distinct ICD-10 codes for use in the generative models. 
Considering that type 2 diabetes progress slowly, we inte-
grated the patient records within 1 year into a time slice 
as an encounter. Since the model needs to calculate the 
interval between two adjacent encounters, we excluded 
patients whose total number of time slices are less than 
2 from the data. Figure 2 shows the number of positive 
observations in each encounter for each real patient, and 
demonstrates our data are very sparse. Furthermore, note 
that it is a big challenge to learn a full progression model 
for type 2 diabetes using data which time span are shorter 
than the common type 2 diabetes progression.

Model optimization
The time efficiency of Wang et  al.’s is largely dependent 
on the number of a variety of variables and time slices. 
More specifically, given 1000 distinct ICD codes (i.e., N) 
of patients’ clinical findings relating to type 2 diabetes, 10 
complications (i.e., W), and 5 disease stages (i.e., K), the 
number of model parameters is 10,125 calculated by the 
following formula.

The idea of our optimization is to prune (i.e., reduce 
the number of parameters) the fully connected observ-
able bottom layer. We consulted our medical experts 
to add some clinical pieces of knowledge. They believe 

(1)

(K × K )+ 2(K ×W )+ (N ×W )

= (5× 5)+ 2(5× 10)+ (10× 1, 000) = 10, 125

Fig. 2  An illustration of before and after optimizing the observable 
bottom layer
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that most ICD-10 codes only belong to one com-
plication relating to type 2 diabetes. We referred to 
these pieces of medical knowledge as “anchors.” A 
set of anchors as prior knowledge given by our medi-
cal experts is set to a known probability of obtaining 
a better-interpreted clustering result of the complica-
tion group. Due to no recalculation, the model can 
save most of the time to run and performs excellently. 
Also, anchors are few enough to make the model unsu-
pervised. In our optimized model, we considered the 
observed data as clinical diagnoses (i.e. Fw,p,t are ICD-
10 codes), and the third layer as complications related 
to a group of corresponding clinical diagnosis (i.e. 
Cn,p,t are complications). Figure  2a shows that the ini-
tial layer is fully connected. As shown in Fig. 2b, given 
a set of anchors {(C1, [F2]), (C2, [F1, F5]), (C3, [F3])} cor-
responding to a set of complications {C1,C2,C3} and a 
set of clinical diagnoses {F1, F2, F3, F4, F5} . The anchors 
help strengthen any possible links with high probability 
based on prior knowledge (i.e., blue lines). Using anchor 
(C2, [F1, F5]) , which is means clinical diagnoses F1 and 
F5 should be clustered into complication C2 , we prune 
all other links to F1 and F5 , and only links C2 → F1 and 
C2→ F5 are left. Since few anchors exist, it is impossi-
ble to determine all possible links with low probability, 
so that some necessary lines may remain. For example, 
for a clinical diagnosis F4 , none of the anchors helped 
at removing the black lines, and it remains a fully con-
nected with all three complications C1,C2,C3.

In addition, we considered an alternate to improve 
efficiency; that is, to give an enlarged time granular-
ity and reduce the number of time slices. We integrate 
the patient records within 1 year into a single time slice. 
This is a mild assumption in our case because generally 

type II diabetes is a common chronic disease with a slow 
progression.

Data analysis and statistics
As a comparison, we trained the original Wang et  al. 
model on our data and compared the run time against 
our optimized J Med Internet Res J Med Internet Res 
model using a computer with 2 GeForce GTX1080 Yi 
11G cards.

We first change the following main parameters of our 
optimized model to suit type 2 diabetes and learn a gen-
erative unsupervised progression model, where disease 
stages/states and onset of diabetes complications were 
hidden variables. Type 2 diabetes’ disease stages/states 
were specified as 5 (i.e., K = 5 ) by referencing the diabe-
tes complications severity index (DCSI) [13]. With two 
medical experts’ help and literature reviewing [14], we set 
the number of complication categories to 12 (see Table 1), 
namely W = 12 . Note that N = 88 because there are 88 
distinct ICD-10 codes after data preprocessing.

Then using the learned progression model, we infer the 
personal progression trajectories of real patients based 
on the history medical records. For comparison pur-
poses, our medical experts helped to retrieve two addi-
tional representative cases with different development 
rates. We used the maximum a posteriori (MAP) infer-
ence that gives a point estimate by maximizing a poste-
rior probability, the conventional approach in Bayesian 
statistics to infer progression trajectories based on exist-
ing evidence.

We next followed Wang et al.’s assumption to generate 
synthetic patient with full progression trajectories of type 
2 diabetes by initializing each patient to timestamp 0 in 
state I, and using our optimized model to generate the 

Table 1  Anchor settings

Bold is any diabetes-related ICD code

*Diabetes itself needs an anchor to deal with the case of “no complications.”

Serial number Complication Comorbidities (ICD-10 code-based anchors)

1* Diabetes E11.9 (Diabetes without complications)

2 Acute complications E11.0 (Diabetes with coma), E11.1 (Diabetes with ketoacidosis), K81 (Cholecystitis), J20 (Bronchi-
tis)

3 Cardiovascular I25 (Chronic ischemic heart disease), I10 (Hypertension)

4 Nephropathy E11.2 (Diabetes with renal complications), N18 (Chronic nephrosis)

5 Ophthalmopathy E11.3 (Diabetes with ophthalmic complications), H26.9 (Cataracts, unspecified)

6 Peripheral vascular E11.5 (Diabetes with peripheral circulatory complications), I83 (Varicose vein of lower extremity)

7 Cerebrovascular I63 (Cerebral infarction), G45 (Transient cerebral ischemic attacks)

8 Neuropathy E11.4 (Diabetes with neurological complications), G63.2 (diabetic polyneuropathy)

9 Metabolic complications E11.6 (Diabetes with other specified complications), E78 (Lipidemia)

10 Tumor Z51.1 (Chemotherapy session for neoplasm), C34 (Malignant neoplasm of bronchus), C16 (Malig-
nant neoplasm of stomach)

11 Musculoskeletal M48 (Spondylodynia), M13 (Arthritis), M81 (Osteoporosis)

12 Autoimmune diseases K52 (Gastroenteritis), E04 (Goiter), J45 (Asthma)
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patient’s subsequent stages and the complication onsets 
corresponding to those stages until the last stage.

Results
A total of 35,210 encounters with 64,383 positive obser-
vations were input into our optimized model to generate 
5000 (that is a specified number) synthetic patient tra-
jectories. We averaged over these 5000 patient records 
and computed the average holding time for each state, as 
summarized in Fig. 3a. Figure 3a covers a 23.9-year pro-
gression path of type 2 diabetes, which is approximately 
double the timespan of the available data (i.e., 11 years). 
Specifically, the average duration of each disease stage/
state and the prevalence of each complication at different 
stages are computed.

The time to run the original Wang et al.’s model based 
on our data was more than 10 days (each iteration needs 
about one hour, and each execution requires thousands 
of iterations). In contrast, our optimized model runs 
to converge within 8  days. Anchors are few enough (12 
anchors) that we consider the model to be minimally 
supervised.

Figure 3b and c illustrate the inferred maximum poste-
rior probability results for the two real individuals’ per-
sonal disease progression trajectories. For individual A, 
the MAP inference only infers one possible complication 
as “complication 9: metabolic complications;” and our 
model also gives such a finding and further predicts that 
the progression will move to the next stage (i.e., stage II) 
in the ninth year. Individual B is the case of rapid deterio-
ration. While having no ICD-10 codes related to diabetes 

directly (i.e., E11.9), our model determines the onset of 
diabetes because of finding some specified complications 
(e.g., E11.6); in clinical practice, these complications can 
be found after people with type 2 diabetes diagnosed. 
Our model assigns state II at the beginning of this pro-
gression trajectory and predicts that nephropathy (i.e., 
E11.2) and cardiovascular (i.e., I50.9) may show up after 7 
years. At that time, individual B’s transition from state II 
to state III is highlighted. The model also points out that 
ophthalmopathy (i.e., H26.9) will quickly follow develop-
ing state III in the next year. Then the progression path 
will subsequently move into state 4 under a life-threaten-
ing condition. Even though anemia (i.e., D64.9) belongs 
to peripheral vascular complications, yet there is no evi-
dence to support it—our model indicates its activation 
probability is slightly small.

Figure 3 indicates possibilities to help understand dia-
betes and associated complications. We wonder if any 
retrospective possibilities can be generated and evalu-
ated. With illness trajectories viewed by our medical 
experts, we generated Tables 2 and 3 to show the transi-
tion from a later state to an earlier state based on the last 
state (i.e., stage V). Table 2 is to calculate all probabilities 
of showing before stage V based on one single complica-
tion, and Table 2 is on two commonly shown complica-
tion patterns that reflects the co-occurrence of several 
complications (i.e., such as pattern [3, 7, 8] and pattern 
[4, 5, 6]). For example, complication 2 as “acute com-
plications” occurred in state V has 2096 virtual patients 
accounting for 41.9% (2096/5000), and is extremely low 
(161 virtual patients accounting for 7.7%, 161/2096) 

Fig. 3  A Comparison of complications of 5000 virtual patients learned by our optimized model (a) as well as two representative patients retrieved 
by our medical experts (b & c). Note that for (a), we first use 35,210 encounters with 64,383 positive observations to learn our generative model. 
We next use this learned generative model to generate 5000 (that is a specified number) synthetic patient trajectories. Thus, 8.5, 13.0 19.3, 23.9, etc., 
were the mean progression years at stages I to V, respectively
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compared with stage V. We followed our experts’ opin-
ions to keep; for example, complication 6 as “periph-
eral vascular” can either occur as a single one or in with 
other complications such as [6] (14.6%), [4, 6] (2.8%), [5, 
6] (2.5%), [4, 5, 6] (0%) in stage I (compared with stage 
V). Note that relevant clinical meanings amongst the pat-
terns are not the focus of this study. The table aims to 
demonstrate the information and knowledge among the 
entire disease progression via virtual patients, which can 
facilitate population health management.

Discussion
Our main finding was that it was feasible to optimize a 
minimally supervised generative model to simulate syn-
thetic patient trajectories from EHR data focused on the 
progression of complications in prediabetic patients and 
patients diagnosed with type 2 diabetes. Our proposed 
model is built upon a model proposed by Wang et  al. 
[12], which focused on modeling a chronic obstructive 
pulmonary disease (COPD) patient cohort. The model we 
modified, enhanced and employed for learning disease 
progression is scalable; it can comfortably accommodate 
new sources of data with clinical findings or outcomes. 
For instance, the lists of medications prescribed or proce-
dures performed, the distribution over the initial disease 
stages/states (e.g., a function of age, gender, and family 
history), and patient’s social-behavioral history and hab-
its (e.g., smoking, alcohol use) can be included as a sup-
plement. With progression trajectories depicted by our 
optimized model, we can obtain some insights. These 
include, but are not limited to, what disease stages/states 
the patient traverses, how rapidly the disease develops, 
which complications can be found, and how long speci-
fied complications give the stage transition. This model 
is suitable for finding relationships between disease pro-
gression and complication patterns. Therefore, modi-
fication of parameter values, number of complication 

groups, number of target disease progression stages, etc., 
can be adopted to modeling other chronic disease (e.g., 
obesity and metabolic diseases) and their complications.

Previously, the idea of “synthetic patient simulations” 
were utilized for educational purposes (e.g., pre- and 
post-registration health care professional education 
[15]). In this way, learning of disease progression can also 
achieve the purpose of teaching patients or health pro-
fessionals, and even healthy non-patients included. This 
is because; there exists no the completely GOLD crite-
ria for partitioning type 2 diabetes stages/states, accord-
ing to the American Diabetic Association guidelines. 
Take the DCSI (diabetes complications severity index) 
as an example; while having a higher citation count, the 
DCSI remains a reference designed by Glasheen et  al. 
[13] rather than an indicator used widely in clinical prac-
tice. Our study may offer some evidence to help evalu-
ate such indicators and then to facilitate uniform clinical 
guidelines. According to Tables 1 and 3, for example, our 
findings indicate that 55.3% of single complications and 
31.8% of complication patterns could be predicted early 
and managed appropriately to potentially delay (as it is a 
progressive disease) or prevented (by lifestyle modifica-
tions that keep patient from developing/triggering diabe-
tes in the first place). Figure 3a indicates some interesting 
clinical insights. First, we found that metabolic compli-
cations showed up most frequently, which is through-
out the entire progression of type 2 diabetes starting at 
the very beginning. In contrast, autoimmune diseases 
were the most infrequent. Second, the top 3 complica-
tions, are cardiovascular, cerebrovascular, and metabolic 
complications, imply that it is necessary to recommend 
laboratory tests regularly for prediabetic patients. Third, 
nephropathy and ophthalmopathy both are microvascu-
lar complications and may be useful to study in the early 
stages, especially in the transition from stage I to II. Last, 
acute complications, as well as nephropathy, peripheral 

Table 3  Two commonly complication patterns’ statistics of transition from a later state to an earlier state given by 5  K 
generatedpatients

All probabilities are based on stage V

Complication pattern stage [3 Cardiovascular, 7 cerebrovascular, 8 neuropathy] [4 Nephropathy, 5 ophthalmopathy, 6 peripheral 
vascular]

Number V 1132 717

Probability 22.6% (1132/5000) 14.3% (717/5000)

Later to earlier (%) [3] [7] [8] [3, 7] [3, 8] [7, 8] [3, 7, 8] [4] [5] [6] [4, 5] [4, 6] [5, 6] [4, 5, 6]

V → IV 69.2 95.7 88.1 66.3 61.0 84.2 58.5 96.8 75.9 85.2 73.5 82.7 63.9 62.1

V → III 61.7 94.3 49.7 57.9 30.4 46.7 28.4 81.3 66.4 37.2 54.3 30.7 25.2 21.3

V → II 61.2 82.4 39.2 49.6 23.2 31.9 18.5 68.9 66.1 17.4 44.2 12.3 11.2 7.9

V → I 55.6 55.6 20.9 30.0 11.2 11.0 6.0 22.2 14.2 14.6 3.2 2.8 2.5 0



Page 8 of 9Wang et al. BMC Medical Informatics and Decision Making          (2022) 22:174 

vascular, and musculoskeletal complications present an 
increased risk after stage II. Figure 3a indicates that auto-
immune diseases are a relatively rare complication. This 
is expected as existing knowledge about type 2 diabetes; 
namely, developing type 2 diabetes doesn’t mean that the 
body cannot produce insulin (such like type I diabetes, 
which is an autoimmune disease; the immune system 
attacks the pancreas, so it can’t make insulin) [14]. The 
fact that the body is often unable to effectively use insulin 
to accumulate glucose in the bloodstream [3, 14]. Nev-
ertheless, these prior research have found evidence that 
insulin resistance may be the result of immune system 
cells attacking the body’s tissues rather than just a meta-
bolic disorder, which warrants further investigation.

Although having constrained the continuous-time 
Markov model to allow only forward transitions, syn-
thetic patient simulations without disease stages/states 
of absence can help better understand the evolution 
of chronic illnesses in reverse. Therefore, we can try to 
conduct research in population medicine through this 
research and take population health management as pro-
active management to improve health and resolve health 
disparities relating to diabetes and prediabetes.

The main limitation of our study is that this work was 
based on a single chronic disease, type 2 diabetes, and 
thus our results may not generalize to other chronic con-
ditions. In addition, our study only used one kind of data, 
ICD-10 codes, and therefore might limit clinical insights 
on population medicine which could include other 
sources of data, e.g., population-level data, monitoring, 
surveillance data, and social media data..

Conclusions
In this study, we employed the generative nature of Wang 
et  al.’s model [12] to infer the progression of complica-
tions in type 2 diabetes patients. After adding 12 anchors 
based on prior domain knowledge, the model’s fully 
connected observable bottom layer is pruned to reduce 
runtime significantly. These anchors only use few man-
ual efforts so that our model is minimally supervised. 
Our main findings are (1) that a generative model can 
help solve incomplete and/or insufficient data problems 
to better understand the whole trajectories of lowly and 
long progression of chronic disease, and (2) it is feasible 
to facilitate population health management (e.g., predia-
betes) as a statistical retrospect or prediction of synthetic 
patient trajectories.
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