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Second-order nonlinear optical processes convert light from one wavelength to another and

generate quantum entanglement. Creating chip-scale devices to efficiently control these

interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits

utilize the third-order optical nonlinearity, but an analogous integrated platform for second-

order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient

frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an

integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-

degenerate operation of the parametric oscillator at room temperature and tune its emission

over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we

observe cascaded second-order processes that result in parametric oscillation. These reso-

nant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and

quantum photonics platforms.
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The remarkable progress and impact of silicon photonics has
led to the development of complex and high-performance
optical systems for communications, sensing, and quantum

and classical information processing. In addition to linear pas-
sives, modulators, and detectors, many applications would sig-
nificantly benefit from versatile nonlinearities. Integrated
photonic circuits made with centrosymmetric silicon1,2 or
amorphous silicon nitride3–5 confine light in dispersion-
engineered waveguides and resonators to enhance the third-
order optical nonlinearity and have been used successfully to
demonstrate optical frequency combs6–8, wavelength conversion9,
and squeezed light generation10,11. Efforts continue to further
improve the efficiency and tailorability of these devices by
incorporating second-order nonlinearity to enable stronger
interactions at lower power and reduce the number of competing
nonlinear processes that emerge. Second-order nonlinearity can
be introduced by breaking the symmetry of a crystal12,13 or
heterogeneously integrating a non-centrosymmetric material14,15.

Alternatively, photonic circuits may be built directly from a χ(2)

nonlinear material such as aluminum nitride16 or lithium niobate
(LN). LN can be periodically poled to compensate for phase mis-
match due to dispersion17–23 and supports high-Q optical
resonances24, a large electro-optic coefficient25–27, and Kerr
nonlinearity28,29. Here we show ultra-efficient resonant χ(2) non-
linear optical functions (Fig. 1a) on a chip that incorporates quasi-
phase-matching with a nonlinear optical resonator. We overcome
parasitic effects that so far have limited the stability and perfor-
mance of integrated LN devices to demonstrate second-order pro-
cesses such as optical parametric oscillation, which have previously
only been observed in LN bulk resonators30,31. We operate an
optical parametric oscillator (OPO) across degenerate and non-
degenerate regimes and show tuning of the emission spectrum
across one THz by adjusting the frequency of the pump across
hundreds of MHz, all at room temperature. We also show fre-
quency doubling that leads to highly-enhanced effective third-order
nonlinearity, resulting in cascaded parametric oscillation. The pre-
sented coupled-mode theory accurately models the dynamics and
confirms the operating modes of the device.

In this work, we make waveguides from a thin film of X-cut
lithium niobate (Fig. 1b), which has its largest electro-optic and
χ(2) tensor components parallel to the surface of the chip. This
orientation has been used in recent demonstrations of tele-
communications modulators25,27, frequency combs26, cryogenic
frequency converters32–34, and sources exhibiting quantum
correlations35,36, which form an emerging thin-film LN platform.
We use magnesium oxide (MgO) doped lithium niobate to sup-
press pump-induced absorption and reduce the photorefractive
damage typically experienced by devices fabricated with undoped
congruently grown lithium niobate37.

Results
Due to both its geometry and material properties, the dispersion
of the waveguide introduces a phase velocity mismatch propor-
tional to Δn—the difference in refractive indices between fun-
damental (FH) and second harmonic (SH) modes as shown in
Fig. 1c. To achieve efficient nonlinear interactions, we compen-
sate for the phase velocity mismatch by periodically poling the
LN crystal. This quasi-phase-matching technique provides
momentum conservation and enables the use of the same fun-
damental transverse electric (TE) spatial mode at both
wavelengths19,20. These modes exhibit the tightest confinement
and have the strongest overlap with the large d33 component of
the χ(2) nonlinear tensor, thereby enabling a large nonlinear
interaction rate. We use a poling period of Λ= λSH/Δn ≈ 3.7 μm.
The inset of Fig. 1d shows a second-harmonic microscope pic-
ture of the periodic poling before waveguide fabrication. We
observe the formation of oblong shapes with greyscale fringes
between finger electrodes (black) that correspond to inverted
crystal domains38.

The waveguide forms a racetrack resonator with a straight
section length L of 3.2 mm (see Fig. 1d) that supports resonances
across a broad range of wavelengths. We employ a phase-
mismatched waveguide coupler design to efficiently couple light
into the resonator at both FH and SH frequencies39. Near the FH
and SH frequencies, we measure intrinsic quality factors

Fig. 1 Integrated, resonant second-order nonlinear optical device. a Schematic of a resonant second-order nonlinear optical device. Driving the cavity
with second harmonic light (blue) results in optical parametric oscillation at the fundamental; Driving at the fundamental frequency generates second
harmonic light. b Periodically-poled lithium niobate ridge waveguide that confines light to a small volume and supports nonlinear interactions. The
transverse electric field parallel to the surface of the chip is plotted for the fundamental spatial mode. c Effective index of the waveguide spatial modes as a
function of wavelength. Periodic poling compensates for the phase velocity mismatch (∝Δn) between fundamental and SH modes. d The racetrack
resonator used as a platform for nonlinear optics. Laser light is injected through an evanescent coupler on the top and undergoes nonlinear interaction in
the bottom, periodically-poled section. The resonator is not coupled to the waveguide below it, which serves as a tool for poling diagnostics. The laser
confocal microscope picture has been colorized; blue shading highlights the poling electrodes location during the fabrication process. Inset shows a second-
harmonic microscope picture of the poled region. Inverted domains stretch between black electrode fingers.
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exceeding 106, which dramatically enhance nonlinear processes
by increasing the lifetimes of the interacting photons.

The resonances around the fundamental and second harmo-
nic bands have frequencies ωm and Ωk, with corresponding
linewidths κA,m and κB,k. We drive with pump frequency nearest
to ω0 and Ω0 in the following experiments. The FH mode fre-
quencies vary with index as ωm ≈ ω0+ ζ1m+ ζ2m2/2, where ζ1 is
the free spectral range and ζ2 is a dispersion parameter. Tem-
perature tuning of the devices changes the relative detuning
between the modes and gives us fine control over the modal
detuning μ ≡Ω0− 2ω0. The small free spectral range of our
device (17.26 GHz and 16.45 GHz at the FH and SH, respec-
tively), allows us to tune μ while keeping the device within a few
degrees of room temperature.

The χ(2) optical nonlinearity of the material causes two FH
resonances at ωm and ωn, and the SH resonance at Ωk to interact
with each other at a rate gk,nm. All of the dynamics of this system
are captured by a set of coupled-mode equations for the funda-
mental (Am) and second harmonic (Bk) field amplitudes. These
amplitudes correspond to intracavity energies ℏωm∣Am∣2 and

ℏΩk∣Bk∣2, and evolve in time as

d
dt

Am ¼ � κA;m
2

Am � 2i∑
kn
gk;nmA

�
nBke

�iδk;nmt ð1Þ

d
dt

Bk ¼ � κB;k
2

Bk � i∑
mn

g�k;nmAmAne
þiδk;nmt ; ð2Þ

with δk,nm≡Ωk− ωn− ωm. To operate as an optical parametric
oscillator (OPO), a laser driving term is added to the first equa-
tion, while adding a laser driving term to the second equation
causes second harmonic generation (SHG) and eventually
operation as a cascaded OPO.

Optical parametric oscillation occurs when the second-
harmonic mode is driven to a sufficiently large steady-state cav-
ity occupation ∣B0∣2. The system will begin to oscillate at this
input power, either as a degenerate OPO with emission into ω0

mode or as a nondegenerate OPO emitting into a pair of modes
ω±m. The mode of oscillation is that with the lowest threshold
Pth,m, which strongly depends on laser detuning Δ, modal
detuning μ, total loss κ, extrinsic loss κ(e), and dispersion ζ2m2:

Pth;m ¼ _Ω0

16jg0;�mmj2
1

κðeÞB;0
Δ2 þ κB;0=2

� �2� �

´ Δþ μ� ζ2m
2

� �2 þ κA;mκA;�m

� �
:

ð3Þ

The pair of modes ω±m with the lowest loss rates will experi-
ence the lowest threshold and oscillate first as we increase the
pump power. Above the threshold, the OPO output power fol-
lows a square-root function of the input power PB,0 provided that
the input power is not sufficiently large to produce simultaneous
oscillation of multiple mode pairs:

Pout ¼
4ηB;0
Ω0

ηA;mωm þ ηA;�mω�m

� �
´ Pth;m

ffiffiffiffiffiffiffiffiffiffi
PB;0

Pth;m

s
� 1

 !
:

ð4Þ
Here ηk;j � κðeÞk;j=κk;j is the cavity-waveguide coupling efficiency

for k∈ {A, B} and j being the index of a specific mode.
Driving the fundamental frequency ω0 generates light at the

second harmonic mode Ω0. The efficiency of this process has a
linear dependence on input power in the low power regime. Once
the additional nonlinear conversion loss experienced by the FH
mode (proportional to 8∣g0,00A0∣2/κB,0 with zero detuning)
approaches the cavity linewidth κA,0, the cavity’s effective cou-
pling efficiency to the input light is reduced. This leads to a sub-
linear P−1/3 dependence as the process now converts a substantial
amount of pump photons to second harmonic photons in the
resonator. A competing oscillation instability leading to para-
metric oscillations may prevent observing this power law.

At high FH pump powers, the intracavity SH photon popula-
tion at Ω0 is large enough to create an instability in the field
amplitude of FH modes Am, causing parametric oscillations when
the generated SH intracavity photon number exceeds the
threshold condition:

B0

		 		2 ≥ 1

16 g0;�mm

			
			2

2δ þ μ� ζ2m
2

� �2 þ κA;mκA;�m

� �
: ð5Þ

We call this a cascaded OPO, since a cascade of two back-to-
back χ(2) processes leads to parametric oscillation. The threshold
for a cascaded OPO is a function of pump detuning δ, modal
detuning μ, and dispersion ζ2m2.

We experimentally probe the nonlinear devices with the setup
presented in Fig. 2a; we use two input paths to drive the resonator
with fundamental and second harmonic frequency light—shown
in red and blue, respectively. We use the path connected to a
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Fig. 2 Characterization of nonlinear devices. a Experimental setup. We
couple light at around 775 or 1550 nm wavelengths onto the chip by
aligning a lensed fiber to a cleaved edge facet to excite the coupling
waveguide. Light is outcoupled from the chip and demultiplexed to detect
the fundamental and second harmonic light separately. b Scanning the
near-infrared laser shows that second-harmonic generation occurs at
wavelengths corresponding to modes of the resonator. c Scanning the
blue pump laser across wavelength shows that many resonances surpass
the parametric oscillation threshold. VOA variable optical attenuator,
EDFA erbium-doped fiber amplifier, FPC fiber polarization controller, PM
power meter, OSA optical spectrum analyzer, APD avalanche
photodiode.
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tunable laser operating in telecommunication wavelengths to
study the SHG and cascaded parametric oscillation processes. To
drive a direct OPO, we use the input path connected to the
shorter wavelength laser. The light is coupled into and out of the
chip using lensed fibers. We separate the output light using a free-
space setup with a dichroic mirror and send it to Si and InGaAs
avalanche photodiodes. We show examples of transmission
spectra and corresponding SHG and OPO signals in Fig. 2b and c,
respectively. We expect to see variation in the efficiency of
second-order processes when probing multiple resonances due to
changes in the modal detuning μ across the band for a fixed
temperature due to the FSR mismatch between FH and SH and
variations of the quality factors of participating modes. For
spectrally-resolved measurements, we send part of the FH light to
the optical spectrum analyzer. We calibrate the fiber-to-chip
coupling efficiency based on power transmission measurements
and fits of theoretical models to nonlinear response data (see
“Methods”). The typical edge coupling efficiency across devices
on the chip is 25–40% at telecom wavelengths and 10–20% for the
second harmonic depending on fibers and alignment. For each
experiment, we measure these efficiencies to within less than a
percent uncertainty (see Table 1 in the "Methods" section). All of

the presented data refers to the on-chip power, accounting for the
edge coupling loss.

We study the OPO by driving the device at around 765.8 nm
and recording the generated light at close to twice the wave-
length. We temperature tune the modal detuning μ close to zero
to achieve degenerate operation (see Fig. 5 in the "Methods"
section). Given the modal detuning’s temperature dependence
and our device’s comparatively small free-spectral range (about
17 GHz), we achieve an optimal operating point close to the
room temperature, at 25.65 ∘C. For the threshold measurement
we detune μ from zero to allow the most efficient pair of modes
at ω±m to oscillate, following Eq. (3) (see also the condition
defined by Eq. (16) in the “Methods” section). We plot the
power of the generated near infrared light in Fig. 3a. The output
power vs. input power curve reveals the threshold of oscillation
around 73 μW, which we extract from fitting Eq. (4). A max-
imum efficiency of 11% is measured. Tuning the pump laser
wavelength allows for effective selection for the frequencies of
oscillating signal-idler pairs of modes. By changing the laser
detuning Δ, we observe seven different OPO wavelength pairs
generated in the resonator. Figure 3b shows the OPO emission
spectrum as a function of pump detuning with a pump power of
250 μW. By tuning the pump laser by just 650 MHz, we can
address signal modes across a band of over 1 THz. Figure 3c
shows the pump transmission and OPO emitted power as a
function of the pump detuning. Detunings of the pump laser
relative to the SH cavity mode result in exciting different OPO
modes. We can resolve steps on the transmission and OPO
emitted power that correspond to switching between different
operation modes.

To demonstrate second harmonic generation, we drive the FH
mode at 1549.4 nm and measure the resulting frequency doubled
light at the output. The device temperature is 30.5 ∘C. Figure 4a
shows the peak SH power generated as a function of input FH
power. A maximum efficiency of 12% is achieved with 390 μW of
input power in the feed waveguide, which agrees with the
coupled-mode theory (solid lines) that includes only the A0 and
B0 fields. Figure 4b shows how the transmission lineshape and the
SH response change as a function of pump power. As the pump
power increases, the transmission lineshape widens and becomes
shallower due to the additional two photon loss induced by the
nonlinearity. At pump powers around 200 μW, the transmission
lineshape forms two distinct valleys, consistent with our coupled-
mode theory simulations.

At higher input powers (the yellow shaded region of Fig. 4b),
the SH response becomes asymmetrical with a distinct drop in
SH power for negative pump detunings, δ < 0. At these powers,
the intracavity SH light is intense enough to create an instability
in the field amplitude of the fundamental modes at ω±m, causing
parametric oscillations as visualized in Fig. 4c. The cascade of
two χ(2) processes creates the parametric oscillation. The nor-
mal dispersion of the waveguide (ζ2 < 0) creates a lower
threshold condition for negative pump detunings (δ < 0),
see Eq. (5). The drop in SH output power at those laser
detunings is because SH light at Ω0 converts back to FH power
at ω±m.

We spectrally resolve the cascaded parametric oscillations as a
function of laser detuning and confirm that the first sideband
fundamental modes oscillate at a threshold of 690 μW of on-chip
pump power. Figure 4d shows multiple sideband oscillations that
occur at a pump power of 930 μW. Particular signal-idler pairs
oscillate as a function of pump laser detuning as expected from
Eq. (5). Disorder in the mode spacing and quality factors causes
certain mode pairs to oscillate before others, consistent with
coupled-mode simulations.
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Fig. 3 Optical parametric oscillation. a Threshold characterization of the
OPO, we increase the 765.8 nm laser power until the oscillation begins at a
threshold of around 73 μW; above it, the OPO power output follows a
square-root relation. Dotted line represents detection noise floor. b Tuning
of non-degenerate OPO emission with pump wavelength, at a pump power
of 250 μW. We can select OPO signal/idler pairs spanning 1537–1545 nm
(1527–1519 nm) as the pump is swept over 650MHz. c SH resonance
lineshape (blue points) aligned with the OPO response (red points)
collected above threshold (250 μW) shows steps corresponding to
switching between signal/idler pairs.
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Discussion
We expect to find ultra-efficient second-order nonlinear photonic
circuits, such as the frequency doubler and parametric oscillator
demonstrated in this work, in a number of emerging low-power
and quantum applications in the near future. Together with the
high-performance integrated devices and components that are
being developed for the thin-film LN platform, the promise of a
new class of versatile integrated photonic technologies may soon
be realized. In addition to sources of broadband and quantum
light for sensing and communications, integrated ultra-low-power
OPOs can be used for computation with coherent Ising
machines40 and cluster states41,42. Note: In the final stages of
preparing this manuscript we became aware of a demonstration
of low-power optical parametric oscillator in a lithium niobate
microresonator43.

Methods
Fabrication. We fabricate all devices with X-cut thin-film lithium niobate-on-
insulator (LNOI) wafers. The material consists of a 500 nm film of LN bonded to a
2 μm layer of silicon dioxide on top of an LN handle wafer.

We pattern the optical devices using electron beam lithography (JEOL 6300-
FS, 100-kV) and transfer the design to the LN via Argon ion milling with Ar flow
of 15 sccm and a 750 V accelerating voltage. The waveguide width is 1.2 μm, and
the etch depth is 300 nm which leaves a 200 nm slab of LN beneath the

waveguide. We deposit 700 nm of PECVD silicon dioxide at a temperature of
350 ∘C as cladding.

We perform the periodic poling step before waveguide fabrication. For periodic
poling, we use electron-beam evaporated Cr electrodes with an electron beam
lithography-based liftoff process and apply high-voltage pulses similar to Nagy
et al.44 to invert the crystal domains. Upon completion of the poling, we remove
the electrodes. We only pole one side of the racetrack resonator, but, in principle,
both sections could be quasi-phase-matched and increase the nonlinear coupling
rate. This design would require careful control of the relative phase of the
fundamental and second harmonic light. The waveguide we used has normal
dispersion; as a result, the bandwidth of the quasi-phase-matching was
about 10 nm.

Chip edge facet preparation is done using a DISCO DFL7340 laser saw. High
energy pulses are focused into the substrate to create a periodic array of damage
locations, which act as nucleation sites for crack propagation and result in a
uniform and smooth cleave.

Experimental setup. We characterize fabricated devices in a simplified
experimental setup shown in Fig. 2a. In the FH input path, we use SMF-28
fibers. 5% of the laser light (Santec TSL-550, 1480–1630 nm) goes into a Mach-
Zehnder interferometer (MZI) with an FSR of 67.7 MHz used to calibrate the
relative wavelength during laser wavelength sweeps (not shown in Fig. 2a). 95%
of the light goes to erbium-doped fiber amplifier (EDFA) with a fixed output
power of 250 mW followed by a variable optical attenuator. Next, the light
passes through a fiber polarization controller (FPC), and we tap 5% of it just
before the input lensed fiber for power calibration with a power meter (Newport
918D-IR-OD3R). The light then couples to the chip facet through an SMF-28
lensed fiber.
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Fig. 4 Second harmonic generation and cascaded OPO. a 774.7 nm output power as a function of 1549.4 nm input power (blue circles, left axis) and SHG
efficiency (green diamonds, right axis). Solid lines represent theoretical prediction. Light yellow shading corresponds to the region where we observe
cascaded OPO. Darker shaded region have competing third-order nonlinear processes. b Transmission (top) and SH (bottom) lineshapes evolve as a
function of power. We plot theoretical curves (solid lines) on the top of data (red and blue points) up to the limit where the two-mode model breaks down
and results in a cascaded OPO. A single parameter, the modal detuning μ, is varied by about 0.04κ between fits. c Cascaded OPO scheme—photons at the
fundamental frequency drive the SHG process and create light at 2ω. Sufficiently high power of the SH can drive the parametric oscillation back in the
fundamental frequency range. dMeasured cascaded OPO, we observe light generation in modes symmetrically spaced from the pump frequency as the SH
develops asymmetric lineshape shape (top panel).

Table 1 Summary of the measured device parameters.

Device λA (nm) λB (nm) QA (106) QðiÞ
A ð106Þ QB (106) QðiÞ

B ð106Þ g0,nm (kHz) ηFH (%) ηSH (%)

OPO λA;m ¼ 1521:05
λA;�m ¼ 1542:43

765.77 QA;m ¼ 0:68
QA;�m ¼ 0:94

QðiÞ
A;m ¼ 0:80

QðiÞ
A;�m ¼ 1:50

0.88 1.50 150 37 13

SHG 1549.40 774.70 0.74 1.2 0.82 1.2 130 26 11

We summarize the wavelengths (λA and λB), total (Q), and internal (Q(i)) quality factors of all of the resonances used in our OPO and SHG experiments. We list the nonlinear coupling factors (g0,nm) and
edge coupling efficiencies at both wavelengths (ηFH and ηSH) for particular devices.
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In the SH path, we use a Velocity TLB-6700 laser that operates in the
765–781 nm range. This entire path uses 780HP fiber to maintain single-mode
operation. A 5% tap outcouples part of the light an MZI with an FSR of 39.9 MHz
to calibrate laser wavelength sweeps (not shown in Fig. 2a). A variable optical
attenuator controls the remaining laser power, and we control the polarization with
an FPC. 5% of the light goes to a power meter (Newport 918D-SL-OD3R) for input
power calibration, and we focus the rest of it on the chip facet through a 780HP
lensed fiber.

Once the light exits the output edge facet of the chip, we collect it into a lensed
SMF-28 fiber, similar to the one used in the FH input path. We outcouple the light
into free space and demultiplex with a 1000 nm short pass dichroic mirror. After
the dichroic mirror, SH and FH paths are additionally filtered to ensure no cross
talk, and we detect SH and FH light with avalanche photodiodes (Thorlabs
APD410A and Thorlabs APD410, respectively). Variable optical attenuators are
used before the APDs to avoid saturation. We split 50% of the FH light into an
optical spectrum analyzer (OSA, Yokogawa AQ6370D) for spectrally-resolved
measurements of the OPO.

We use different, but similar, devices on the same chip for the SHG and OPO
experiments. The chip sits directly on a thermo-electric cooler for temperature
adjustment.

OPO characterization. We characterize all of the optical resonances that take part
in the optical parametric oscillation using linear spectroscopy at powers sub-
stantially below nonlinear effects. For these measurements, we sweep the wave-
length of tunable lasers in the FH and SH bands and fit the transmission dips with
lorentzian lineshapes. We determine the total and intrinsic quality factors of the
second harmonic mode to be QB,0= 0.88 × 106 and QðiÞ

B;0 ¼ 1:5 ´ 106, respectively.
We find the quality factors of the OPO signal modes corresponding to the curve
in Fig. 2a to be: QA,m= 0.68 × 106, QðiÞ

A;m ¼ 0:8 ´ 106, QA,−m= 0.94 × 106,

QðiÞ
A;�m ¼ 1:5 ´ 106. We perform an independent second harmonic generation

measurements to determine if the FH and SH modes are under or overcoupled.
The analysis of transmission lineshapes as a function of pump power confirms
that all modes are undercoupled. From the determined threshold of 73 μW we
deduce a coupling rate ∣g0,−mm∣ of 150 kHz which is close to the simulated value of
186 kHz.

We measure the input fiber-to-chip coupling with an independent transmission
measurement using 780HP lensed fibers at the input and the output chip edges. We
assume the input and output coupling is identical, an assumption based on
experience with multiple devices on the chip used for the experiment, and find the

input edge coupling efficiency to be 13%. We extract the output fiber-to-chip
coupling efficiency at the OPO wavelength by fitting the data in Fig. 3a to ηFHPout
using Eq. (4). We infer ηFH= 37% coupling efficiency, which we confirm with an
independent transmission measurement.

SHG characterization. We characterize the modes contributing to the second
harmonic generation in an analogous way to the OPO. From the Lorentzian fits at
low power we find quality factors of QB,0= 0.82 × 106, QðiÞ

B;0 ¼ 1:2 ´ 106, QA,0=

0.75 × 106, and QðiÞ
A;0 ¼ 1:2 ´ 106. Moreover, we use a method for fitting nonlinear

lineshapes at high power, as mentioned in the main text. For this purpose, we
solve Eqs. (31) and (30) numerically and fit the resulting curves as a function of
detuning to the data. We use the ten lineshapes at the pump power between 80
and 620 μW, which allows us to observe changes due to the second-order non-
linearities but avoid the effects of the cascaded OPO. From this procedure we find
average QA,0= 0.74 × 106, and QðiÞ

A;0 ¼ 1:2 ´ 106 and standard deviation of <4%
which agrees with the low power fit. From fitting nonlinear lineshapes, we also
extract the coupling rate ∣g0,00∣ to be about 130 kHz, which agrees with our the-
oretical prediction of 170 kHz. In the main text, we use averaged values to plot the
theoretical lineshapes and only vary the modal detuning to account for small
temperature fluctuations. For the SHG device, we make transmission measure-
ments and find the coupling efficiencies to be to be 26% and 11% at the FH and
SH, respectively.

We calculate the theoretical relationship between the pump power, SHG
power, and SHG efficiency by numerically solving Eqs. (31) and (30) for zero
detuning. For the solid lines plotted in Fig. 4a, we use quality factors and the
nonlinear coupling rate from the measurements described in the previous
paragraph.

Resolving OPO lines. We use an OSA (Yokogawa AQ370D) to characterize the
frequency content of the OPO output spectrum as a function of pump laser
detuning. With a constant pump power, we repeatedly sweep the laser wavelength
across the SH resonance and record the SH and FH response with APDs (see
section “Experimental setup”). A portion of the generated FH light is detected by
the OSA operating in zero-span mode with a 0.1 nm filter bandwidth, which is less
than the ~0.135 nm free spectral range of the FH modes. We step the center
wavelength of the OSA across a 40 nm span with a 50% overlap in OSA filter spans.
We record the detected power on the OSA synchronously with the APD detector
voltages for each wavelength step. Repeated laser sweeps with different OSA filter
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Fig. 5 Tuning between degenerate and nondegenerate optical parametric oscillation. a Tuning of the OPO close to μ= 0, at a pump power of 250 μW.
We observe degenerate parametric oscillation at 1531.7 nm (m= 0) and nondegenerate operation for blue-detuning of the pump laser. b SH resonance
lineshape (blue points) aligned with the OPO response (red points) collected above threshold with 250 μW of on-chip pump power. The distinct feature at
zero-detuning corresponds to degenerate oscillation. c Sweeping the pump laser over four neighboring modes shows that the signal/idler pair center
frequencies are different for each OPO. This is due to the different modal detuning μ= 0 experienced by each OPO due to the difference in dispersion at
765 and 1530 nm. The higher frequency OPOs have larger ∣μ∣ (see discussion in the section “Parametric oscillation theory”). This shows that additional
tuning range of the device's output frequency can be extended to about 2.75 THz by utilizing multiple OPOs of a single resonator while keeping the chip
temperature fixed. d SH resonance lineshape (blue line) aligned with the OPO response (red line) collected above threshold at 250 μW of pump power
on chip.
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center wavelengths produce a map of the OPO frequency content as a function of
laser detuning shown in Fig. 3b.

To characterize the cascaded parametric oscillations as shown in Fig. 5d, we first
find every potential OPO line’s precise location (ωm) by performing a broad sweep
of the FH pump laser and record the resonance frequencies. We then proceeded
with the measurement in an identical fashion to the standard OPO, but with the
0.1 nm wide OSA filters placed precisely at the FH mode locations without any
overlap between filters.

Coupled mode theory equations. The Hamiltonian of the system is used to find
the equations of motion in the rotating frame.

d
dt

Am ¼ � κA;m
2

Am � 2i∑
kn
gk;nmA

�
nBke

�iδk;nmt �
ffiffiffiffiffiffiffiffiffi
κðeÞA;m

q
Fme

�iðωL�ωmÞt ð6Þ

d
dt

Bk ¼ � κB;k
2

Bk � i∑
mn

g�k;nmAmAne
þiδk;nmt �

ffiffiffiffiffiffiffiffi
κðeÞB;k

q
Gke

�iðΩL�ΩkÞt ; ð7Þ

with δk,nm=Ωk− ωn− ωm. Am is the fundamental field amplitude at ωm, and Bk is
the second harmonic field amplitude at Ωk.

Parametric oscillation theory. We consider the case where the SH modes are
driven at frequency ΩL and the A modes are not excited and calculate the stability
criterion for the A modes based on Eq. (7):

d
dt

B0 ¼ � κB;0
2

B0 �
ffiffiffiffiffiffiffiffi
κðeÞB;0

q
G0e

�iðΩL�Ω0Þt : ð8Þ

We go into a rotating frame B0 ¼ ~B0e
�iΔt with frequency Δ=ΩL−Ω0 defined

as the detuning between the laser drive and the B mode, which we can solve in
steady-state to obtain:

~B0 ¼

ffiffiffiffiffiffiffiffi
κðeÞB;0

q
G0

iΔ� κB;0=2
: ð9Þ

We now consider two A modes at frequencies ωm and ω−m which are coupled
by the intracavity population of B0. Their coupling leads to a pair of equations

d
dt

Am ¼ � κA;m
2

Am � 2ig0;�mmA
�
�mB0e

�iδ0;�mmt

d
dt

A�
�m ¼ � κA;�m

2
A�
�m þ 2ig�0;�mmAmB

�
0e

iδ0;�mmt

which become unstable for sufficiently large ∣B0∣. To see this note that
δ0,−mm= (Ω0− 2ω0)− ζ2m2 allowing us to move into a rotating frame with

Am ¼ ~Am exp �i
Δþ μ� ζ2m

2

2
t

� �
ð10Þ

where μ≡Ω0− 2ω0 is the modal detuning between the driven SH and closest FH
mode, which in our experiment is set by tuning the temperature. In this frame, the
equations become time-independent, and we obtain the stability criterion
(assuming κ±m are equal for simplicity):

16jg0;�mmj2jB0j2 ≥ ðΔþ μ� ζ2m
2Þ2 þ ðκA;mÞ2: ð11Þ

To relate this to the input photon flux at the SH frequency Ω0, we replace B0
using Eq. (9), to obtain

16jg0;�mmj2jG0j2κðeÞB;0 ≥ ðΔ2 þ ðκB;0=2Þ2Þ ´ ððΔþ μ� ζ2m
2Þ2 þ ðκA;mÞ2Þ: ð12Þ

We can see from here that the lowest degenerate oscillation threshold can be
achieved when μ= 0 and Δ= 0:

4jg0;�mmj2jG0j2κðeÞB;0 ≥ ðκB;0=2Þ2ðκA;m=2Þ2 or; ð13Þ

Pth;0 ¼
_Ω0

64jg0;00j2
κ2B;0κ

2
A;0

κðeÞB;0
: ð14Þ

More generally, the OPO will oscillate first in the mode m for which Pth,m is the
lowest, where

Pth;m ¼ _Ω0

16jg0;�mmj2
1

κðeÞB;0
ðΔ2 þ ðκB;0=2Þ2Þ ´ ððΔþ μ� ζ2m

2Þ2 þ ðκA;mÞ2Þ: ð15Þ

Here we’ve assumed again that the losses for the ±m modes are equal.
Equation (15) shows that we can use the modal detuning μ and the driving
detuning Δ to select which modes reach threshold first and oscillate as the
power is increased. Assuming that g0,−mm does not change significantly with the
mode number, we see that for on-resonant driving Δ= 0, a minimum threshold
can be achieved when μ= ζ2m2, as long as μ and ζ2 have the same sign. In our
case, the waveguide has normal dispersion, so ζ2 is negative, and we have
roughly ζ2/2π=−100 kHz. The relation m �

ffiffiffiffiffiffiffiffiffi
μ=ζ2

p
shows that the mode

number selected is very sensitive to the modal detuning (set by temperature)
which makes the degenerate oscillation mode challenging to obtain in a system
with a large resonator and therefore very small ζ2 mode-spacing dispersion
parameter.

Interestingly, if the modal detuning μ is held constant while the pump
detuning Δ is swept, the oscillation threshold can select very different modes m
with only small changes in Δ. When the laser is nearly resonant with Ω0, so Δ is
small compared to the B mode linewidth, the first term in parenthesis in Eq.
(15) is minimized and does not vary strongly with detuning, while the second
term is minimized whenever Δ+ μ ≈ ζ2m2. This means that with a fixed laser
input power, sweeping the laser across the second harmonic mode causes
oscillation at very different mode numbers and explains the spectrum in
Fig. 3b. For example, if we set Δ≪ κB,0, we would obtain an approximate
equation for the oscillating mode index (which should be rounded to obtain an
integer, and requires μ+ Δ to have the same sign as ζ2):

m �
ffiffiffiffiffiffiffiffiffiffiffiffi
μþ Δ

ζ2

s
ð16Þ

For the real device, we observe disorder in the loss rates for different signal
modes, which can result from fabrication imperfections or coupler dispersion. We
can account for that in our threshold calculation

Pth;m ¼ _Ω0

16jg0;�mmj2
1

κðeÞB;0
ðΔ2 þ ðκB;0=2Þ2Þ ´ ððΔþ μ� ζ2m

2Þ2 þ κA;mκA;�mÞ: ð17Þ

To obtain a relation for the OPO power output, we solve Eqs. (6)–(7) for
specific modes in steady-state. For the zero detuning of the pump mode Δ= 0 and
assuming μ= ζ2m2, we have:

Am ¼ 4ig0;�mmA
�
�mB0

κA;m
ð18Þ

B0 ¼
2ig�0;�mmAmA�m þ

ffiffiffiffiffiffiffiffi
κðeÞB;0

q
G0

κB;0=2
: ð19Þ

Now, if we note that the oscillating amplitudes and coupling rate are complex
Am ¼ jAmj expðiθmÞ, gk;00 ¼ jgk;00j expðiφÞ, we can substitute Eq. (18) to (19) and
obtain

κA;mκB;0
8ijg0;�mmj2

jAmj
jA�mj

� 2ijAmjjA�mj þ

ffiffiffiffiffiffiffiffi
κðeÞB;0

q
jg0;�mmj

G0e
iðφ�θm�θ�mÞ ¼ 0: ð20Þ

This requires the exponential expðiðφ� θm � θ�mÞÞ to be purely imaginary,
φ− θm− θ−m= π/2+ d ⋅ π, where d 2 Z. This phase relation shows that the
sum of the phases of the OPO output are locked to the phase of the pump. As a
result, we can use Eq. (18) to find that

jAmj
jA�mj

¼
ffiffiffiffiffiffiffiffiffiffiffi
κA;�m

κA;m

s
; ð21Þ

and solve Eq. (20) for the photon flux of both signal modes of the OPO:

Am

		 		2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
κA;�m

κA;m

s ffiffiffiffiffiffiffiffi
κðeÞB;0

q
G0

2jg0;�mmj
� κB;0κA;m

16jg0;�mmj2
ð22Þ

A�m

		 		2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
κA;m
κA;�m

s ffiffiffiffiffiffiffiffi
κðeÞB;0

q
G0

2jg0;�mmj
� κB;0κA;�m

16jg0;�mmj2
: ð23Þ

To analyze the total output power of the OPO in experiment, we sum over the
power of two signal modes

Pout ¼
4ηB;0
Ω0

ðηA;mωm þ ηA;�mω�mÞ ´Pth;m

ffiffiffiffiffiffiffiffiffiffi
PB;0

Pth;m

s
� 1

 !
; ð24Þ

with ηk ¼ κðeÞk;0=κk;0 for k= A, B being the cavity-waveguide coupling efficiency.
PB,0 is the pump power of the SH mode and Pth,m is a generalized OPO
threshold, which includes disorder in the total loss rates of fundamental
modes:

Pth;m ¼ _Ω0

64jg0;�mmj2
κ2B;0κA;mκA;�m

κðeÞB;0

¼ _Ω0

16ηB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κA;mκA;�m

p
C0;m

; ð25Þ

where C0;m � 4jg0;�mmj2=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κA;mκA;�m

p
κB;0Þ is the vacuum cooperativity for mth

pair of signal modes. Note that this relation agrees with Eq. (17) for the case of
modal and laser detuning optimized for mth OPO sideband.

Second-harmonic generation efficiency. Starting from the coupled mode Eqs. (6)
and (7), we now assume that only A0 is excited, i.e., we are driving the mode at ω0

and all other mode FH amplitudes are 0:

d
dt

A0 ¼ � κA;0
2

A0 � 2i∑
k
gk;00A

�
0Bke

�iδk;00 t �
ffiffiffiffiffiffiffiffi
κðeÞA;0

q
F0e

�iðωL�ω0 Þt ð26Þ
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d
dt

Bk ¼ � κB;k
2

Bk � ig�k;00A
2
0e

þiδk;00 t : ð27Þ
To solve these equations, we go into a frame that rotates with the laser detuning

frequency δ= ωL− ω0, so A0 ¼ ~A0e
�iδt , Bk ¼ ~Bke

�ið2δ�δk;00Þt ¼ ~Bke
�ið2ωL�ΩkÞt :

d
dt

~A0 ¼ iδ � κA;0
2

� �
~A0 � 2i∑

k
gk;00~A

�
0
~Bk �

ffiffiffiffiffiffiffiffi
κðeÞA;0

q
F0 ð28Þ

d
dt

~Bk ¼ ið2ωL �ΩkÞ �
κB;k
2

� �
~Bk � ig�k;00~A

2
0: ð29Þ

We can solve these in steady state to obtain:

~Bk ¼
ig�k;00~A

2
0

ið2ωL � ΩkÞ � κB;k
2

ð30Þ

0 ¼ iδ � κA;0
2

� �
~A0 þ∑

k

2jgk;00j2j~A0j
2

ið2ωL � ΩkÞ � κB;k
2

~A0 �
ffiffiffiffiffiffiffiffi
κðeÞA;0

q
F0 ð31Þ

There are a couple of interesting things to note about the last equation. Note that
each SH mode at Ωk contributes effective nonlinear loss and detuning terms to the
FH mode at ω0:

Detuning: �∑
k

2ð2ωL �ΩkÞ
ð2ωL �ΩkÞ2 þ κB;k

2

� �2 g2k;00 A0

		 		2 ð32Þ

Loss: ∑
k

2κB;k

ð2ωL � ΩkÞ2 þ
κB;k
2

� �2 g2k;00 A0

		 		2 ð33Þ

For large 2ωL−Ωk≫ κb, we see an effect which is primarily a frequency shift and
looks much like a χ(3) cavity frequency shift.

From here on, we assume that only one SH mode (k= 0) is significantly excited.
The photons generated at the B0 mode frequency are emitted from the device

generating a photon flux ∣Gout,0∣2 at the SH frequency where Gout;0 ¼
ffiffiffiffiffiffiffiffi
κðeÞB;0

q
~B0. To

find ~B0, we need to calculate ~A0 (Eq. (30)), which is given implicitly by

0 ¼ iδ � κA;0
2

� �
~A0 þ

2jg0;00j2 ~A0

		 		2
ið2ωL � Ω0Þ �

κB;0
2

~A0 �
ffiffiffiffiffiffiffiffi
κðeÞA;0

q
F0: ð34Þ

For the fits shown in the paper, this equation was solved numerically. Here we
assume δ= 0 and approximate the solutions in two limits, (1) the low-power limit
where the first term is dominant, and (2) the high-power limit where the second
term is dominant. The cross-over between these two limits occurs at

2C0n
ð0Þ
A ¼ 1 ð35Þ

where C0= 4∣g0,00∣2/κA,0κB,0 is a cooperativity parameter and nð0ÞA ¼ 4κðeÞA;0jF0j2=κ2A;0
is the number of intracavity photons which would be excited in the absence of
nonlinearity. Solving the above equation in the two limits gives us

~A0

		 		2 ¼ nð0ÞA ; and ~A0

		 		2 ¼ nð0ÞA

4C2
0

 !1=3

for the low- and high-power limits, respectively. We define the second harmonic
generation power efficiency

ηSHG � Pout

Pin
¼ 2 Gout;0

		 		2
F0

		 		2 ; ð36Þ

which after some manipulation, can be written in terms of j~A0j2:

ηSHG ¼ 8ηAηBC0

nð0ÞA

~A0

		 		4

¼
8ηAηBC0n

ð0Þ
A low power

4ηAηB

2nð0ÞA C0ð Þ1=3 high power

8<
:

ð37Þ

It is apparent that at low power, the efficiency increases linearly, but is then
saturated at high power. This can be understood from an impedance matching
perspective. As the pump power is increased, the FH cavity resonance senses a two-
photon loss proportional to 8jg0;00~A0j2=κB;0 (see Eq. (33)). As this loss starts to
exceed the cavity linewidth, its effective coupling rate to the waveguide is reduced,
preventing input light from coupling efficiently into the cavity to be frequency-
doubled. Designing an overcoupled resonator can compensate for the nonlinear
loss rate and allow for higher maximum efficiencies compared to critically coupled
or undercoupled resonators, at the expense of increased OPO threshold power. At
very high power, the efficiency actually begins to go down as P−1/3. The model
assumes that only the ~B0 and ~A0 modes are excited. As we saw in the case of a
directly driven OPO, at sufficiently large ~B0, ~A±m start to oscillate, which causes

this model to break down and the system to go into cascaded optical parametric
oscillation.

Cascaded optical parametric oscillation. Consider the same driving as in the
previous section, where a laser drive at the fundamental with frequency ωL excites
~A0 and generates an intracavity population in the second harmonic mode ~B0. From
the section on the oscillation threshold, we know that at a sufficiently value of j~B0j,
the equations of motion for mode amplitudes ~A±m become unstable and set of
oscillations, with a threshold condition given by an equation very similar to
Eq. (11):

16jg0;�mmj2 ~B0

		 		2 ≥ 2δ þ μ� ζ2m
2

� �2 þ κA;mκA;�m:

We call this a cascaded OPO, since a cascade of two back-to-back χ(2)

processes lead to parametric oscillation. It is clear from the oscillation condition
that the threshold is highly detuning-dependent, and also depends on the
dispersion parameter ζ2. In our case, ζ2/2π ≈−100 kHz and so the oscillation
threshold is lower with the laser tuned to the red side (δ < 0) when the modal
detuning μ ≈ 0.

Nonlinear coupling rate. We derive the nonlinear coupling rate from the inter-
action energy density in the three-wave mixing process. Given the electric field
distribution E= (Ex, Ey, Ez) The interaction energy density is given by:

Uχð2Þ ¼
ε0
3
∑
αβγ

χð2ÞαβγE
αEβEγ; ð38Þ

each of the three waves can be expressed using spatial complex amplitudes Em, En,
Ek as follows:

E ¼ AmEme
�iωmt þ AnEne

�iωnt þ BkEke
�iΩk t þ h:c: ð39Þ

To calculate the nonlinear coupling rate we focus on three specific modes in the
sum and evaluate Eq. (38) by averaging away the rapidly rotating terms. It selects
only energy-conserving terms of the sum. Since the second-order nonlinear tensor
has a full permutation symmetry, for the non-degenerate we find that

Uk;nm
χð2Þ ¼ 2ε0 ∑

αβγ
χð2Þαβγ Eα�

k Eβ
mE

γ
nB

�
kAmAn þ h:c:

� � ¼ 2ε0ðEk
���χð2Þ : EmEnB

�
kAmAn þ h:c:Þ:

ð40Þ
Integrating over this energy density gives us the total energy of the system, which
we use to derive the equations of motion (6) and (7). We choose normalization of
the modal field Ek so that the total energy corresponding to an amplitude Ak is
ℏωk∣Ak∣2. More precisely, given unitless field profiles ei (with maxðeiÞ ¼ 1), we
introduce normalization factors Ni, defined by Ei=Niei. The energy condition then
fixes these normalization factors as

Ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_ωi

2
R
ei���εðrÞeidV

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_ωi

2ε0L
R
ei���εrðrÞeidA

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ωi

2ε0L�n
2
i

s
1ffiffiffiffiffiffiAi

p

ð41Þ

Here, we introduced the effective mode area for each mode as Ai ¼
R
Ajeij2dA, and

define the average index as �n2i ¼
R
ei
���εrðrÞeidA=Ai . To find the energy, we inte-

grate Eq. (40) over the mode volume. We account for a partially-poled racetrack
resonator by introducing the poled length fraction λ as a ratio of the poled region
to the total resonator length L. The final expression for the nonlinear coupling rate
is given by:

gk;nm ¼ λffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ωmωnΩk

ε0L�n
2
k�n

2
m�n

2
n

s
OffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiAmAnAk

p ; ð42Þ

where O represents the mode overlap integral over the waveguide cross-section area

O ¼
Z

A
ek

���χð2Þ : emendA: ð43Þ

For our numerical waveguide calculations we use a finite-element mode solver
(COMSOL).

Numerical simulations of dynamics. We numerically integrate the coupled-mode
differential Eqs. (6) and (7) to understand how the transmission spectra change when
the system starts to oscillate and how disorder affects the emission spectra of the
cascaded OPO. We integrate the coupled-mode equations with 181 Amodes and 31 B
modes for 600 ns which is sufficiently long for the system to stabilize. We use the
measured parameters from the SHG experiment for the ω0 and Ω0 modes, and assume
that the other modes are spaced by the measured FSR (which agrees with the theory
prediction) and have the same quality factors. The resulting spectra for are shown in
Fig. 6. We then perform the same simulation but with the quality factors and
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Fig. 7 Simulated effect of 1% disorder in the mode-to-mode loss rates on the cascaded OPO. a Cascaded OPO signal as a function of pump detuning,
simulated at 0.97mW of pump power. b Second Harmonic lineshape corresponding to the cascaded OPO in panel (a). c Lineshape evolution as a function
of power, asymmetry is developed below 780 μW, which agrees with the experiment.

0

1

Tr
an

sm
is

si
on

(n
or

m
.)

Detuning (250 MHz/division)

0

1

SH
 P

ow
er

(n
or

m
.)

Pa = 0.44 µW 78 µW 120 µW 200 µW 310 µW 490 µW 780 µW 0.97 mW 1.2 mW

-50

0

50

Fu
nd

am
en

ta
l

M
od

e 
N

um
be

r
-15 -10 -5 0  

Output Power (norm., dB)

-400 -200 0 200 400
Detuning (MHz)

0

0.5

1

SH
 R

es
po

ns
e

(n
or

m
.)

a

b

c

Fig. 6 Simulated effect of 0.1% disorder in the mode-to-mode loss rates on the cascaded OPO. a Cascaded OPO signal as a function of pump detuning,
simulated at 0.97mW of pump power. b Second Harmonic lineshape corresponding to the cascaded OPO in panel (a). c Lineshape evolution as a function
of power, asymmetry is developed below 780 μW, which agrees with the experiment.
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Fig. 8 Simulated effect of 10% disorder in the mode-to-mode loss rates on the cascaded OPO. a Cascaded OPO signal as a function of pump detuning,
simulated at 0.97mW of pump power. b Second Harmonic lineshape corresponding to the cascaded OPO in panel (a). c Lineshape evolution as a function
of power, asymmetry is developed around 490 μW, lower than in the experiment.
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detunings of the other modes now having disorder (normally distributed fluctuations
of total Q and mode frequency) on the order of 1% (Fig. 7) and 10% (Fig. 8) of the
cavity linewidth.

Data availability
The data sets generated during and/or analyzed during this study are available from the
corresponding authors on request.
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