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Abstract: The efforts for therapeutic targeting of the aryl hydrocarbon receptor (AhR) have emerged
in recent years. We investigated the effects of available antimigraine triptan drugs, having an
indole core in their structure, on AhR signaling in human hepatic and intestinal cells. Activation
of AhR in reporter gene assays was observed for Avitriptan and to a lesser extent for Donitriptan,
while other triptans were very weak or no activators of AhR. Using competitive binding assay and by
homology docking, we identified Avitriptan as a low-affinity ligand of AhR. Avitriptan triggered
nuclear translocation of AhR and increased binding of AhR in CYP1A1 promotor DNA, as revealed
by immune-fluorescence microscopy and chromatin immune-precipitation assay, respectively. Strong
induction of CYP1A1 mRNA was achieved by Avitriptan in wild type but not in AhR-knockout,
immortalized human hepatocytes, implying that induction of CYP1A1 is AhR-dependent. Increased
levels of CYP1A1 mRNA by Avitriptan were observed in human colon carcinoma cells LS180 but not
in primary cultures of human hepatocytes. Collectively, we show that Avitriptan is a weak ligand
and activator of human AhR, which induces the expression of CYP1A1 in a cell-type specific manner.
Our data warrant the potential off-label therapeutic application of Avitriptan as an AhR-agonist drug.

Keywords: Aryl Hydrocarbon Receptor; Antimigraine drugs; Triptans; repurposing

1. Introduction

The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the family of basic
helix-loop-helix transcription factors. In its inactive form, the AhR resides in the cytosol in complex
with chaperone proteins. Ligand binding to the AhR induces dissociation of the protein complex and
triggers nuclear translocation of the ligand-receptor complex. Transcriptionally active heterodimer of
AhR with AhR nuclear translocator (ARNT) is formed in the nucleus and it binds to specific response
elements in the promotors of AhR-target genes. Ligands of AhR comprise a plethora of structurally
diverse compounds, including both xenobiotics (e.g., polyaromatic hydrocarbons, polyhalogenated
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biphenyls, natural phenolics, benzimidazole proton pump inhibitors) and endogenous substances
(e.g., intermediary and microbial metabolites of tryptophan, tetrapyrroles, eicosanoids) [1]. The AhR
transcriptionally controls a wide array of genes, including those involved in xenobiotic metabolism,
immune homeostasis, cell cycle, differentiation and energy metabolism. Hence, the AhR is a critical
player in human physiology (e.g., hematopoiesis) [2] and also in many pathophysiological processes
such as diabetes, carcinogenesis, inflammation, infection or cardiovascular diseases [3–5]. The attempts
for therapeutic and preventive targeting of AhR have emerged in recent years [6]. Both natural and
synthetic AhR agonists and antagonists are potential drug candidates. An intriguing and respected
strategy in current pharmacotherapy is repositioning (off-label use) of a clinically used drug. Indeed,
the AhR active drugs, such as tranilast, flutamide or omeprazole, might be effective chemotherapeutics
for the treatment of breast and pancreatic cancers [7]. An anti-leprosy Food and Drug Administration
(FDA)-approved drug and AhR antagonist clofazimine suppressed multiple myeloma in transgenic
mice [8]. Targeting of AhR with antagonists was suggested as a strategy for delaying the relapse
during the treatment of melanoma with vemurafenib [9] or for inhibiting constitutive AhR activity
in prostate cancer [10]. The use of AhR ligands is not limited to anti-cancer therapy but given the
roles of AhR in the intestines and skin, targeting the AhR is challenging also in the treatment of
inflammatory bowel disease (IBD) or skin pathologies. Indeed, tranilast is used in the treatment of
atopic dermatitis [11]. The drawback with long term use of these compounds is their side-effects and
off-target effects, as reported for omeprazole [12]. Thus, there is a perpetual need for the discovery of
safer AhR ligands for future therapeutic use. The suitable candidates for off-targeting AhR could be
the antimigraine drugs of triptan class, which have an indole core in their structure. The manifold
of indole-based compounds were demonstrated as ligands of AhR, including synthetic xenobiotic
indoles (e.g., methylindoles and methoxyindoles) [13], dietary indoles (e.g., indole-3-carbinol and
diindolylmethane) [14] and microbial catabolites of tryptophan, such as skatole [15], tryptamine,
indole-3-acetate [16] and indole [17].

In the current study, we examined the effects of clinically used triptans [18], including
Sumatriptan, Naratriptan, Rizatriptan, Eletriptan, Zolmitriptan, Almotriptan and Frovatriptan,
on transcriptional activity and functions of AhR. We also tested Avitriptan [19] and Donitriptan [20],
triptans that were developed but never marketed. Employing the methods of RT-PCR, western
blotting, reporter-gene assays, ChIP-assay, radio-ligand binding assay, protein immune-precipitation,
in situ immune-fluorescence and in silico docking, we demonstrate that Avitriptan is a weak ligand and
agonist of AhR that induces the expression of the AhR-target genes. Our data warrant the potential
therapeutic application of Avitriptan as AhR-agonist drug, which is further promoted by the fact that
Avitriptan already passed phase I and II of clinical tests.

2. Results

2.1. Triptans Are Activators of Human AhR

In the first series of experiments, we examined agonist and antagonist effects of triptans on AhR
using reporter gene assay. For this purpose, we incubated stably transfected human hepatoma AZ-AHR
cells for 24 h with triptans (maximal tested concentrations were selected based on limited solubility
of individual compounds) in the presence or the absence of diverse AhR agonists, including TCDD
(2,3,7,8-tetrachlorodibenzo-p-dioxin), BaP (Benzo[a]pyrene) and FICZ (6-Formylindolo[3,2-b]carbazole).
Avitriptan, Donitriptan and Naratriptan activated dose-dependently AhR, while other triptans
were inactive (Figure 1A). The activation was rather weak and the relative efficacy of triptans
in 100 µM concentration as compared to TCDD (luciferase induction approx. 1900-fold) decreased in
order—Avitriptan (~3%) > Donitriptan (~1.5%) > Naratriptan (~0.5%). Tested triptans did not display
antagonist effects against AhR (Figure 1B) and the decrease of agonists-induced luciferase activity of
AhR by several triptans were rather due to their intrinsic cytotoxicity in AZ-AHR cells (Figure 1C).
Time-course analyzes revealed the differential dynamics of AhR time-dependent activation by Avitriptan
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and Donitriptan, which were selected as two most active triptans for detailed investigation. In short
periods of incubation (<12 h), Donitriptan was a more robust activator than Avitriptan. In comparison,
we observed after prolonged incubation (>12 h) (Figure 1D), which is consistent with dose-response
inverse effects after 24 h (Figure 1A). The plausible explanation for such a behavior could be existing
substantial differences between the degrees of triptans interactions with drug transporters [21].
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percentage of maximal induction (antagonist) and they are the mean ± SD from measurements 
performed in quadruplicates. 
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significantly increased only by Avitriptan (Figure 2A). Importantly, unlike in hepatoma AZ-AHR 
cells, Avitriptan and Donitriptan were not cytotoxic in intestinal LS180 cells (Figure 2A). Induction 
of CYP1A1 mRNA in immortalized human hepatocytes MIHA, incubated for 24 h with TCDD, 
Avitriptan and Donitriptan was 150-fold, 215-fold and 16-fold, respectively. Triptans did not induce 
CYP1A1 mRNA in AhR knockout variant of MIHA cells, implying the AhR-dependent induction of 
CYP1A1 by triptans (Figure 2B). In contrast, in typical primary human hepatocytes cultures, prepared 
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Figure 1. Transcriptional activity of aryl hydrocarbon receptor (AhR). (i) Dose-response
analyses–AZ-AHR cells were incubated for 24 h with vehicle (DMSO—dimethyl sulfoxide;
0.1% v/v) and/or triptans in concentrations ranging from 1 nM to 200 µM, in the absence
(agonist mode) or in the presence (antagonist mode) of model AhR agonists comprising
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin; 13.5 nM), BaP (Benzo[a]pyrene; 15.8 µM) and FICZ
(6-Formylindolo[3,2-b]carbazole; 22.6 µM). (A) Agonist analyses. (B) Antagonist analyses. (C) MTT
cell viability assay. (ii) Time-course analyses—AZ AHR cells were incubated for 0–48 h with DMSO
(0.1% v/v), TCDD (10 nM), Avitriptan (100 µM) and Donitriptan (100 µM) (D). Following the treatments
cells were lysed and luciferase activity was measured. Experiments were performed in three consecutive
passages of AZ-AHR cells. Data are expressed as a fold induction of luciferase activity over control
cells (agonist) or as percentage of maximal induction (antagonist) and they are the mean ± SD from
measurements performed in quadruplicates.

2.2. Avitriptan and Donitriptan induce CYP1A1 in Hepatic and Intestinal Cells via AhR

We studied the induction of prototypical AhR target gene CYP1A1 by triptans in hepatic
and intestinal cell models. Avitriptan and Donitriptan but not Naratriptan, dose-dependently
induced CYP1A1 mRNA in intestinal adenocarcinoma cells LS180 after 24 h of incubation (Figure 2A).
The induction was rather weak and the levels of CYP1A1 mRNA were increased approx. 38-fold and
8-fold by Avitriptan and Donitriptan in 100 µM concentrations, respectively. The relative efficacies of
Avitriptan (~4%) and Donitriptan (~1%) were consistent with those observed in reporter gene assays in
AZ-AHR cells. The level of CYP1A1 protein in LS180 cells after 48 h of incubation was significantly
increased only by Avitriptan (Figure 2A). Importantly, unlike in hepatoma AZ-AHR cells, Avitriptan
and Donitriptan were not cytotoxic in intestinal LS180 cells (Figure 2A). Induction of CYP1A1 mRNA
in immortalized human hepatocytes MIHA, incubated for 24 h with TCDD, Avitriptan and Donitriptan
was 150-fold, 215-fold and 16-fold, respectively. Triptans did not induce CYP1A1 mRNA in AhR
knockout variant of MIHA cells, implying the AhR-dependent induction of CYP1A1 by triptans
(Figure 2B). In contrast, in typical primary human hepatocytes cultures, prepared from healthy liver
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tissue donors, Avitriptan and Donitriptan caused an only weak and non-significant increase of CYP1A1
mRNA, by 2-fold and 4-fold respectively, while TCDD induced CYP1A1 mRNA between 400-fold and
1600-fold (Figure 2C). Cell type-specific induction of CYP1A1 could be due to the extensive oxidative
metabolism, which was described for Avitriptan [22,23].
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Figure 2. Induction of CYP1A1. Cells were incubated with triptans (100 µM), TCDD (10 nM) and/or
vehicle (0.1% DMSO) for 24 h (mRNA analyses, MTT test) and 48 h (protein analyses). The levels of
CYP1A1 mRNA and protein were determined by the means of RT-PCR and western blot, respectively.
(A) Experiments in three consecutive passages of human colon adenocarcinoma cells LS180. Upper bar
graph shows a fold induction of CYP1A1 mRNA over control cells. Data are expressed as mean ± SD.
RT-PCR was carried out in triplicates (technical replicates). * = significantly different from DMSO-treated
cells (p < 0.05); dashed horizontal insert shows borderline 2-fold induction. Representative western blot
of CYP1A1 protein is shown. Bottom plot shows MTT cell viability assay. (B) Human immortalized
hepatocytes MIHA-(AhR+/+) and MIHA-(AhR−/−). Bar graph shows a fold induction of CYP1A1 mRNA
over control cell. Data are expressed as mean ± SD from three consecutive cell passages. RT-PCR
was carried out in triplicates (technical replicates). *= significantly different from DMSO-treated cells
(p < 0.05); #= significantly different from wild-type cells (p < 0.05) (C) Experiments in primary human
hepatocytes cultures obtained from three different liver tissue donors. Bar graph shows a fold induction
of CYP1A1 mRNA over control cells. Data are expressed as mean ± SD. RT-PCR was carried out in
triplicates (technical replicates).
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2.3. Avitriptan Is a Low-Affinity Ligand of AhR

Avitriptan and Donitriptan activated AhR and induced the CYP1A1 gene by the AhR-dependent
mechanism in multiple cell models. Therefore, we carried out radio-ligand competitive binding assay
to determine whether these two triptans interact with AhR directly. Binding of 3H-TCDD at mouse
AhR was dose-dependently inhibited by Avitriptan, implying that it binds AhR directly. The effects of
Avitriptan were weak, suggesting that it is a low-affinity ligand of AhR (Figure 3). While Donitriptan
did not displace 3H-TCDD from AhR, it is probably very low-affinity ligand of AhR, not detectable
by our assay, given the structural and functional similarity with Avitriptan. Corroborating these
observations, docking studies also suggested the low-affinity binding of Avitriptan and Donitriptan
to human AhR. Both Avitriptan and Donitriptan showed a comparatively similar binding affinity of
−3.1 kcal/mol and −3.4 kcal/mol, respectively. Though hydrophobic interactions largely contribute
to the binding mode of the compound, both Avitriptan and Donitriptan also form hydrogen bond
interactions with the protein backbone N-H or C=O groups (Figure 4).
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Figure 3. Radio-ligand binding assay. Cytosolic protein from Hepa1c1c7 cells was incubated with
Avitriptan (1–1000 µM), Donitriptan (1–1000 µM), FICZ (10 nM; positive control), dexamethasone
(100 nM; negative control) or vehicle (DMSO; 0.1% v/v; corresponds to specific binding of
[3H]-TCDD = 100%) in the presence of 2 nM [3H]-TCDD. Specific binding of [3H]-TCDD was determined
as a difference between total and non-specific TCDF (200 nM; 2,3,7,8-tetrachlorodibenzofuran) reactions.
* = significantly different from negative control (p < 0.05). Three independent experiments were
performed, and the incubations and measurements were done in triplicates in each experiment
(technical replicates). The error bars represent the mean ± SD.
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Figure 4. Avitriptan and Donitripan binding at hAhR. Mode of interaction of Avitriptan (A) and
Donitriptan (B) with ligand binding domain of hAhR. Dotted lines denote the hydrogen bonding
interaction and the protein residues involved in hydrophobic interactions are shown by red spikes.
H-bond distance is shown alongside. (C) Top 10 protein templates used by I-TASSER for homology
modelling hAhR LBD. The sequence alignment of hAhR LBD versus the templates used in the model
building is presented.

2.4. Avitriptan and Donitriptan Trigger Nuclear Translocation of AhR

Following the binding of the ligand at AhR, the early cellular response is a translocation of AhR
from the cytosol to the nucleus. Therefore, we analyzed the nuclear translocation of AhR under the
influence of Avitriptan and Donitriptan. We incubated human intestinal LS174T cells for 90 min
with the vehicle, TCDD (10 nM), Avitriptan (100 µM) and Donitriptan (100 µM) and we evaluated
intracellular localization of AhR using immune-fluorescence. In vehicle-treated cells, AhR was localized
predominantly in cytosol (2–9% of positive nuclei), whereas TCDD triggered translocation of AhR into



Int. J. Mol. Sci. 2020, 21, 2799 7 of 15

the nucleus (48–63% of positive nuclei). Both Avitriptan and Donitriptan caused nuclear translocation of
AhR; however, AhR partially resided in cytosol, which compromised the quantification. Nevertheless,
these observations imply weak agonist effects of triptans at AhR (Figure 5).
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Figure 5. Nuclear translocation of AhR. Fluorescence images depict sub-cellular localization of AhR in
LS174T cells incubated for 90 min with vehicle (DMSO; 0.1% v/v), TCDD (10 nM), Avitriptan (100 µM)
and Donitriptan (100 µM). The staining procedure is described in detail in Materials and Methods
section. The whole staining protocol was performed in three consecutive cell passages with all tested
compounds in duplication. Representative micrographs LS174T cells are shown. Size bars inserted in
individual pictures are equal to 50 µM.

2.5. Formation of AhR-ARNT Heterodimer by Avitriptan and Donitriptan

Within the canonical AhR signaling pathway, the AhR forms a heterodimer with ARNT upon AhR
translocation in the cell nucleus. Thus, we studied the formation of the AhR-ARNT complex by means
of protein immune-precipitation in human intestinal LS180 cells incubated for 90 min and 18 h with the
vehicle, TCDD, Avitriptan (100 µM) and Donitriptan (100 µM). Robust formation of AhR-ARNT dimer
was induced by TCDD but not by Avitriptan and Donitriptan, in cells incubated for 90 min (Figure 6).
After 18 h of incubation with TCDD, heterodimerization of AhR with ARNT was very weak, due to the
drop in AhR protein levels caused by ligand-dependent AhR degradation, which is also evident by the
drastic decrease of AhR protein in total cell lysates. Similarly, faint levels of ARNT protein after co-IP
were observed with Avitriptan and Donitriptan (Figure 6). Taking in account the marginal effects of
triptans after 90 min of incubation with the degradation of AhR protein in prolonged incubation times,
the effects of triptans on AhR-ARNT heterodimerization could not be reliably assessed.
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2.6. Avitriptan and Donitriptan Enhance the Recruitment of AhR into CYP1A1 Promotor

The capability of Avitriptan and Donitriptan to enhance the binding of AhR in the promotor of
its target gene CYP1A1 was studied by ChIP. For this purpose, human intestinal LS174T cells were
incubated for 90 min and 18 h with the vehicle, TCDD, Avitriptan (100 µM) and Donitriptan (100 µM).
The enrichment of the CYP1A1 promotor with AhR in cells incubated with TCDD for 90 min and
18 h (two consecutive cell passages of LS174T cells) was approx. 4-fold and 16-fold, respectively.
Donitriptan increased the binding of AhR in the CYP1A1 promotor approx. 2.5-fold after 90 min of
incubation and unlike in the case of TCDD, the effect remained after 18 h of incubation with 1.7-fold
induction. On the contrary, Avitriptan caused a weak decrease (0.4-fold) of AhR binding in the CYP1A1
promotor after a short period of incubation (90 min), while prolonged incubation for 18 h yielded
approx. 3-fold increased binding (Figure 7). This time-dependent differential dynamics of Avitriptan
and Donitriptan at AhR binding to CYP1A1 promoter was consistent with the effects observed in
reporter gene assay (Figure 1D) and protein immune-precipitation (Figure 6).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 15 
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Figure 7. Chromatin immunoprecipitation ChIP–binding of AhR in CYP1A1 promotor. LS174T cells
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DMSO) for 90 min and 18 h. Bar graphs show enrichment of CYP1A1 promotor with AhR as compared
to vehicle-treated cells. A representative DNA fragments amplified by PCR analyzed on a 2% agarose
gel are shown. Experiments were performed in two consecutive cell passages.
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3. Discussion

In the current study, we examined the effects of antimigraine drugs of triptan class on AhR-CYP1A1
signaling in human in vitro cell models. Of nine tested triptans, we identified Avitriptan as a lead
AhR-active compound. We demonstrate that Avitriptan is a weak agonist and low affinity ligand of
AhR, which triggers AhR signaling pathway and induces the expression of AhR target gene CYP1A1
in hepatic and intestinal cells.

The AhR is a Janus-faced actor in human physiology and pathophysiology. In the context of
intestinal health and disease, the proper activation of the AhR by endogenous, microbial or dietary
ligands has beneficial and protective roles in the onset and progression of IBD and other intestinal
pathologies. Consistently, insufficient endogenous activation of the AhR, due to the microbiome
dysregulation or for dietary reasons, is the risk factor for onset and progression of IBD [4,5,24,25].
Excessive activation of the AhR by xenobiotic ligands such as environmental pollutants or drugs is
also detrimental for intestinal health. The key for dual roles of the AhR in intestinal health and disease
is not entirely elucidated. Ligand-dependent activation of the AhR can result in an extremely diverse
spectrum of biological and toxic effects that occur in a ligand-, species- and tissue-specific manner [26].
On the basis of a novel computational approach for molecular docking to the homology model of the
AhR LBD, specific residues within the AhR binding cavity that play a critical role in binding of three
distinct groups of chemicals were recently predicted and experimentally confirmed by Giani Tagliabue
et al. [27]. A ligand-selective structural hierarchy controlling dimerization of the AhR with ARNT and
the recognition of target DNA was described by Seok et al. [28]. Due to its broad roles, not limited to
the intestinal health, the AhR is an emerging therapeutic target for the pharmacotherapy of several
diseases, including atopic dermatitis, intestinal inflammation or cancer [7,11,29].

Avitriptan was developed by Bristol-Myers Squibb [30] and reached phase III clinical trials.
However, it was suspended because, in high doses (150 mg), transiently elevated liver enzymes were
reported [31]. Avitriptan is rapidly absorbed from the small intestine and the speed of absorption of
cMAX but not AUC, differs between fed and fasted subjects [32]. Plasma maximum concentrations
of Avitriptan (cMAX) following oral administration reached up to ~ two (2) µM [19,22]. Intravenous
application of Avitriptan (10 mg) resulted in cMAX of ~ 1 µM [22,33]. The overall bioavailability
of orally administered Avitriptan is 17% [19,22,34]. Taken together, the low oral bioavailability of
Avitriptan and consequently, its low plasma levels are desirable features if considering Avitriptan
orally as an off-label drug for the local therapy of IBD. Also, a recent estimate based on recommended
dose and published a fecal excreted fraction of 200 marketed drugs, reports globally >100-times
higher drug concentrations in the gut as compared to blood [35]. It implies that oral administration
of Avitriptan would result in intra-intestinal local concentrations sufficiently high to activate AhR
(≈100 µM), while systemic blood levels will be kept bellow two (2) µM.

We observed cell-specific induction of AhR target gene CYP1A1 in hepatic and intestinal cells.
We may only speculate about the mechanisms underlying cell-specific induction, which may comprise
differential cellular uptake/intake, metabolism of Avitriptan or distinct interactions with the AhR
signaling pathway in cancer (LS180), immortalized (MIHA) and normal cells (primary human
hepatocytes). Nevertheless, the lack of CYP1A1 induction in primary cultures of normal human
hepatocytes may be considered favorable, in terms of no AhR systemic effects of orally Avitriptan
intended for local intestinal treatments.

Based on the data reported in the current study, we propose the possibility to repurpose (off-target
use) formerly anti-migraine Avitriptan for local intestinal use as anti-IBD treatment through the AhR.
This is supported by the facts that—(i) The AhR is emerging and suitable therapeutic target in IBD;
(ii) Avitriptan is a ligand and agonist of the AhR; (iii) Avitriptan passed phase I and phase II of
clinical studies, which may accelerate its introduction in clinical use; (iv) Orally Avitriptan has low
bioavailability and it is not toxic to intestinal cells, which favors its local use in IBD treatment without
having undesirable systemic effects.
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In conclusion, our data reporting activation of AhR by Avitriptan warrant potential off-label
therapeutic application of Avitriptan as a AhR-agonist drug in the treatment of intestinal inflammatory
pathologies. Ongoing studies should focus on in vitro and in vivo anti-inflammatory capability
of Avitriptan.

4. Materials and Methods

4.1. Chemicals

Almotriptan malate (purity ≥ 98%; cat# SML1210), Avitriptan fumarate (purity ≥ 98%;
cat# BM0009), Donitriptan monohydrochloride (purity ≥ 98%; cat# D9071), Eletriptan hydrobromide
(purity ≥ 98%; cat# PZ0011), Frovatriptan succinate monohydrate (purity ≥ 97%; cat# SML1291),
Zolmitriptan (purity ≥ 98%; cat# SML0248), Benzo[a]pyrene (BaP; B1760, Lot SLBS0038V, purity
99%), 5,11-Dihydro-indolo[3,2-b]carbazole-6-carboxaldehyde, 6-Formylindolo[3,2-b]carbazole (FICZ;
SML1489, Lot 0000026018, purity 99.5%), dimethylsulfoxide (DMSO), Triton X-100, bovine serum
albumin and hygromycin B were purchased from Sigma-Aldrich (Prague, Czech Republic). Naratriptan
hydrochloride (purity 95%; cat# SC-212362), Rizatriptan benzoate (purity 99%; cat# SC-219983),
Sumatriptan (purity 98%; cat# SC-473020) were from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was from Ultra Scientific (Rhode Island,
USA). 2,3,7,8-tetrachlorodibenzofuran (TCDF) was from Ambinter (Orleáns, France). Luciferase lysis
buffer was from Promega (Madison, California, USA). DAPI (4′,6-diamino-2-phenylindole) was from
Serva (Heidelberg, Germany). [3H]-TCDD (purity 98.6%; ART 1642, Lot 181018) was purchased
from American Radiolabeled Chemicals. Bio-Gel® HTP Hydroxyapatite (1300420, Lot 64079675) was
obtained from Bio-Rad Laboratories. All other chemicals were of the highest quality commercially
available. Chemical structures of tested triptans are depicted in Figure S1.

4.2. Cell Cultures

Human Caucasian colon adenocarcinoma cells LS180 (#87021202) and LS174T (#87060401) and
mouse hepatoma Hepa1c1c7 cells (#95090613) were purchased from the European Collection of Cell
Cultures (ECACC) and used in passage number 5C12. Stably transfected gene reporter cell line
AZ-AHR was described elsewhere [36]. Cells were maintained at 37 ◦C and 5% CO2 in a humidified
incubator. Primary human hepatocytes cultures HEP2201014 (male, 76 years) and HEP2201015
(male, 72 years) were purchased from Biopredic International (Rennes, France). Human hepatocytes
culture LH79 (male, 60 years) was prepared at the Faculty of Medicine, Palacky University Olomouc.
Liver tissue was obtained from Faculty Hospital Olomouc, Czech Republic and the tissue acquisition
protocol followed the requirements issued by “Ethical Committee of the Faculty Hospital Olomouc,
Czech Republic” and Transplantation law #285/2002 Coll. Primary human hepatocyte cultures were
maintained in serum-free cultivation medium.

Immortalized non-tumorigenic human hepatocyte cell line MIHA was a generous gift from
Dr. Xia Wang and Dr. Jayanta Roy-Chowdhury (Albert Einstein College of Medicine, Yeshiva
University, NY, USA). AhR knock-out (AhR−/−) and control clones (AhR+/+) were constructed as
follows—Parental line was transiently transfected with a mix of pSpCas9(BB)-2A-GFP (PX458) plasmids
encoding two gRNAs (AAGTCGGTCTCTATGCCGCT and AGACCGACTTAATACAGAGT) targeting
second exon of the AhR gene. Single cell clones were sub-cultured and successful knock-out was
confirmed by western blot.

4.3. Cytotoxicity Assay

Cells were incubated for 24 h with tested compounds, vehicle (DMSO; 0.1% v/v) and Triton
X-100 (1%, v/v), using multi-well culture plates of 96 wells. MTT test was performed and absorbance
was measured spectrophotometrically at 540 nm on Infinite M200 (Schoeller Instruments, Prague,
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Czech Republic). The data were expressed as the percentage of cell viability, where 100% and 0%
represent the treatments with vehicle and Triton X-100, respectively.

4.4. Reporter Gene Assay

The stably transfected human hepatoma gene reporter cells AZ-AHR [36] were seeded at 96-well
culture plates and incubated with test compounds as indicated in detail in figure legends. Thereafter,
the cells were lysed, and luciferase activity was measured on a Tecan Infinite M200 Pro plate
reader (Schoeller Instruments, Czech Republic). Measurements were carried out in quadruplicates
(technical replicates).

4.5. Isolation of RNA and qRT-PCR

The total RNA was isolated by TRI Reagent® (Sigma-Aldrich, St. Louis, MO, USA) and cDNA
was synthesized using M-MuLV Reverse Transcriptase (New England Biolabs, Ipswich, MA, USA)
in the presence of random hexamers (New England Biolabs, USA). The levels of CYP1A1 and
glyceraldehyde-3-phosphate dehydrogenase [GAPDH] mRNAs were determined using the Light Cycler®

480 II apparatus (Roche Diagnostic Corporation, Prague, Czech Republic), as described elsewhere [37].
Measurements were carried out in triplicates. Gene expression was normalized to GAPDH as a
housekeeping gene. The data were processed by the delta-delta method.

4.6. Western Blotting

Total protein extracts were prepared by using ice-cold lysis buffer (150 mM NaCl; 50 mM
HEPES; 5 mM EDTA; 1% (v/v) Triton X-100; anti-protease cocktail, anti-phosphatase cocktail). Protein
concentration was determined using Bradford reagent. The amount of protein was adjusted to 25 µg per
sample. Samples were separated at standard SDS-PAGE followed by western blotting. The following
primary antibodies were used for the detection of target proteins—CYP1A1 (mouse-monoclonal,
sc-393979, A-9, dilution 1:500, Santa Cruz Biotechnology) and β-actin (mouse-monoclonal, sc-47778,
C4, dilution 1:2000, Cell Signaling Technology). Chemiluminescent detection was performed
using horseradish peroxidase-conjugated secondary antibodies (anti-mouse, 7076S, dilution 1:2000,
Cell Signaling Technology) and WesternSure® PREMIUM Chemiluminescent Substrate (LI-COR
Biotechnology) by C-DiGit® Blot Scanner (LI-COR Biotechnology). Experiments were performed in
three consecutive cell passages.

4.7. Nuclear Translocation of AhR–Immune Histochemistry

LS174T cells were seeded on chamber slides (ibidi GmbH, Grafelfing, Germany) and cultured
for two days. Then, cells were incubated for 90 min with vehicle (DMSO; 0.1% v/v), TCDD (10 nM),
Avitriptan (100 µM) and Donitriptan (100 µM). After the treatment, cells were washed by PBS, fixed
with 4% formaldehyde, permeabilized using 0.1% Triton X-100, blocked with 3% bovine serum albumin
and incubated with Alexa Fluor 488 labelled primary antibody against AhR (sc-133088, Santa Cruz
Biotechnology, USA), as described previously [13]. Nuclei were stained by 4′,6-diamino-2-phenylindole
(DAPI) and cells were enclosed by VectaShield® Antifade Mounting Medium (Vector Laboratories
Inc., Burlingame, CA, USA). AhR translocation into the nucleus was visualized and evaluated using
fluorescence microscope IX73 (Olympus, Japan). The whole staining protocol was performed in
three independent experiments with all tested compounds in duplication. The AhR translocation
was evaluated visually depending on the distinct signal intensity of AhR antibody in the nucleus
and cytosol.

4.8. Chromatin Immunoprecipitation (ChIP)

The assay was performed as per the manufacturer recommendations for SimpleChIP Plus
Enzymatic Chromatin IP kit (Magnetic Beads) (Cell Signaling Technology; #9005), with minor
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modifications, as recently described [13]. Briefly, LS174T cells were seeded in a 60-mm dish and the
following day they were incubated with Donitriptan (100 µM), Avitriptan (100 µM), TCDD (10 nM)
and/or vehicle (0.1% DMSO) 90 min and 18 h at 37 ◦C. Anti-AhR rabbit monoclonal antibody was
from Cell Signaling Technology (D5S6H; #83200). Experiments were performed in two consecutive
cell passages.

4.9. Radio-Ligand Binding Assay

Cytosolic protein from murine hepatoma Hepa1c1c7 cells (2 mg/mL) was incubated for 2 h at
room temperature in the presence of 2 nM [3H]-TCDD with Avitriptan (1–1000 µM), Donitriptan
(1–1000 µM), FICZ (10 nM; positive control), dexamethasone (100 nM; negative control) or vehicle
(DMSO; 0.1% v/v; corresponds to specific binding of [3H]-TCDD = 100%). Ligand binding to the cytosolic
proteins was determined by the hydroxyapatite binding protocol and scintillation counting. Specific
binding of [3H]-TCDD was determined as a difference between total and non-specific (TCDF; 200 nM)
reactions. Three independent experiments were performed, and the incubations and measurements
were done in triplicates in each experiment (technical replicates).

4.10. Protein Immune-Precipitation

Formation of AhR-ARNT heterodimer was studied in cell lysates from LS180 cells, which were
incubated with TCDD (10 nM), Avitriptan (100 µM), Donitriptan (100 µM) and vehicle (DMSO; 0.1% v/v)
for 90 min and 18 h at 37 ◦C. Pierce™ Co-Immunoprecipitation Kit (Thermo Fisher Scientific), applying
covalently coupled AhR antibody (mouse monoclonal, sc-133088, A-3, Santa Cruz Biotechnology)
was used. Eluted protein complexes, in parallel with parental total lysates, were resolved on
SDS-PAGE gels followed by Western blot and immuno-detection with ARNT 1 antibody (mouse
monoclonal, sc-17812, G-3, Santa Cruz Biotechnology). Chemiluminescent detection was performed
using horseradish peroxidase-conjugated anti-mouse secondary antibody (7076S, Cell Signaling
Technology) and WesternSure® PREMIUM Chemiluminescent Substrate (LI-COR Biotechnology) by
C-DiGit® Blot Scanner (LI-COR Biotechnology).

4.11. Molecular Docking Studies

Homology model of the ligand binding domain (LBD) of hAhR was generated using the I-TASSER
server [38] based on multiple template structures. Amino acid sequence of hAhR LBD residues 270
C400 was obtained from the UniProt database (UniProt ID: P35869). I-TASSER (Iterative Threading
ASSEmbly Refinement), which ranked as one of the best server for protein structure prediction in the
recent community-wide Critical Assessment of Techniques for Protein Structure Prediction (CASP),
uses a hierarchical approach for protein structure prediction that combines multiple threading, ab initio
folding and structure refinement for constructing reliable homology based models. The sequence
alignment of top 10 templates used by I-TASSER to homology model of the hAhR LBD is illustrated in
Figure 4C. In accordance with previous modelling approaches [13,27], I-TASSER also identified PAS
structures as the best template for hAhR modelling, with about 50% of sequence similarity. Out of
the five models generated by I-TASSER, the model with the highest C-Score (−0.05) was selected for
further study. The chosen hAhR LBD structure was further refined by molecular dynamics simulations
using GROMACS v2018.1 simulation package (www.gromacs.org). The model was energy minimized
and subjected to 10 ns of molecular dynamics simulation at 298 K and the resultant final structure was
subsequently used for docking studies.

Molecular docking of Avitriptan and Donitriptan to the hAhR LBD was performed with Autodock
Vina [39]. The structures of the ligands were downloaded from PubChem and then prepared with the
AutoDockTools. Site-directed mutagenesis studies in the past have identified that residues Thr283,
His285, Phe289, Phe318, Met342, Phe345, Leu347, Ser359 and Gln377 of mouse AhR were involved in
binding interactions with ligands [40,41]. In the present study, we used this binding information to
derive the docking site in human counterpart of AhR. Accordingly, a docking space of 20 × 17 × 22 Å
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size centered on the pocket lined by residues Thr289, His291, Phe295, Phe324, Met348, Phe351, Leu353,
Ser364 and Gln383 of hAhR was generated using AutoDockTool. Docking was performed with setting
the exhaustiveness parameter to 100, in order to improve the sampling effort. The docked pose of the
compound with highest binding affinity was selected for further investigation. Ligand interaction
diagrams were generated using LigPlot+ software [42]. The visual analysis of dock poses were carried
out using PyMOL (The PyMOL Molecular Graphics System, v. 1.7.4, Schrodinger, LLC).

4.12. Statistical Analyses

Student t-test, one-way analysis of variance (ANOVA) and Dunnett test, were calculated using
GraphPad Prism v. 6.0 for Windows (GraphPad Software, La Jolla, CA, USA).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/8/2799/s1.
Figures S1: Chemical structures of triptans.
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Abbreviations

CYP1A1 Cytochrome P450 1A1
AhR Aryl hydrocarbon receptor
ARNT Aryl hydrocarbon receptor nuclear translocator
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TCDF 2,3,7,8-tetrachlorodibenzofuran
BaP Benzo[a]pyrene
FICZ 6-Formylindolo[3,2-b]carbazole
IBD Inflammatory bowel disease
LBD Ligand-binding domain
DMSO dimethylsulfoxide
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