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A B S T R A C T

The prominent rise of social networks within the past decade have become a gold mine for data mining
operations seeking to model the real world through these virtual worlds. One of the most important applications
that has been proposed is utilizing information generated from social networks as a supplemental health
surveillance system to monitor disease epidemics. At the time this research was conducted in 2020, the COVID-
19 virus had evolved into a global pandemic, forcing many countries to implement preventative measures
to halt its expanse. Health surveillance has been a powerful tool in placing further preventative measures,
however it is not a perfect system, and slowly collected, misidentified information can prove detrimental
to these efforts. This research proposes a new potential surveillance avenue through unsupervised machine
learning using dynamic, evolutionary variants of clustering algorithms DBSCAN and the Louvain method to
allow for community detection in temporal networks. This technique is paired with geographical data collected
directly from the social media Twitter, to create an effective and accurate health surveillance system that grows
as time passes. The experimental results show that the proposed system is promising and has the potential to
be an advancement on current machine learning health surveillance techniques.
. Introduction

The rise of social media over the 21st century has been unprece-
ented in the way it has connected modern society together. Its use has
ecome so common throughout the world that it can be considered as a
orld in and of itself, with people from across the globe having the abil-

ty to interact with one another in ways never before experienced. Due
o the tremendous amount of information that can be discovered on
hese platforms, there have been many proposed applications for how
t can be most effectively utilized. One that is of highest precedence
ithin the current year is what it is capable of inferring in the way of
ealth around the world, through its utilization with health surveillance
echniques.

Health surveillance systems play a key role in putting forth defen-
ive measures to contain an outbreak of disease before it has a chance to
ropagate to neighbouring areas. Despite how important such a system
s, the traditional methods currently in place are often considered
o be slow and inconsistent in their collection and distribution of
nformation. Largely this can be attributed to the overall difficulty and
he wide range of variables that take place in the reporting scheme of
hese traditional surveillance systems. In many of these systems such as
he National Notifiable Disease Surveillance System (NNDSS) operated
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by the Centres for Disease Control (CDC), the accurate reporting of
cases of a disease are purely limited to a localized regions level of
participation in the system (Haston & Pickering, 2019). What this
means for the overall quality of the collected data is that some areas
may be omitted from the overall statistical information present in the
event of an epidemic, and before there is time or information available
to appropriately respond the disease has already been allowed to spread
(Haston & Pickering, 2019).

It is the intention of this research to explore different means of
health surveillance that may prove more effective, or at least aid in
creating a more robust system that is capable of deriving beneficial
information from a variety of sources. In the case of social media, it
is a simple task to request access to the APIs of some of the biggest
sites, the one of which considered in this research being Twitter.
The following sections will describe an application of collected data
from Twitter by considering it as a time-based, temporal network that
is capable of expanding without negatively impacting the clustering
of previous iterations of the network. This is especially beneficial in
the case of social medias, were a dynamic approach most naturally
captures the stream of information that enters these sites. Through
using modified versions of two novel community detection algorithms:
ttps://doi.org/10.1016/j.mlwa.2021.100084
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DBSCAN and the Louvain method, the efficacy of this approach will
be tested to determine if it has a positive return on the results of
clustering, and what this may mean for this application as an effective
health surveillance technique. Additionally, through the format of the
collected data this approach will focus on real-time disease mapping
through considering the geographical location of potentially infectious
individuals. The main contributions of this work are as follows:

• Design and implementation of a social media web scraping system
to collect temporal data of potential instances for an infectious
disease based upon some metrics. A pipeline has been detailed
that is capable of directly connecting unsupervised machine learn-
ing techniques to an instantly transmittable, dynamic source of
data.

• Design and implantation of evolutionary density-based cluster-
ing and evolutionary Louvain method for social media health
surveillance and showing how the evolutionary methods make
a noticeable difference in the quality that is inferable from one
generation of the network to the next. The proposed evolutionary
methods has the potential to be an advancement on current
machine learning health surveillance techniques.

• The prioritization of geographically identifiable data combined
with timestamps has allowed a seamless connection to applying
evolutionary methods on information that reflects the real-world.

2. Related work

2.1. Big data and health surveillance

Research conducted by Hay, George, Moyes, and Brownstein (2013)
examines the proposed benefits that big data has on disease mapping
utilizing a real-time simulation of disease presence within a geograph-
ical region. They first examine the difficulties of acquiring this infor-
mation by hand, listing such an example as the sheer processing time
required to accurately map this information manually by using varied
disease reports (Hay et al., 2013). Further cementing the idea that
the current disease reporting infrastructure has not advanced quickly
enough to be able to accurately report on disease, with maps becoming
quickly outdated before their spatial information can be put to proper
use (Hay et al., 2013) Through considering the elements that make big
data a valuable source of information: volume, velocity, and variety,
they argue that the temporal collection of such sources would have
a notable impact on the processing time of disease mapping (Hay
et al., 2013) In their research they examine the effectiveness of search
queries and blogging data as a source for measuring disease prevalence
within a population, with an additional idea of weighted reliability
applied to prevent reporting bias (Hay et al., 2013) With the combined
information available from these sources, it is proposed that the data
available through this public inquisition would be able to provide an
effective baseline for measuring disease spread and its history within
a region, allowing for further wide-scale efforts to be more effective
at accurately mapping the spread of disease in a timelier manner (Hay
et al., 2013). Challenges presented by this suggested framework largely
concern big data’s potentially novel approach in conveying meaningful
information, as well as the ability of machine learning to convert this
information into actable or interpretable analyses (Hay et al., 2013).
The level of explainability in these models would have to show their
equitability in these results as well to find parties willing to accept them
as potential health-surveillance avenues (Hay et al., 2013).

Another work by Woolhouse, Rambaut, and Kellam (2015) also
examines the potential that supplemental data has in connection with
health surveillance, citing that past poor and inefficient reporting of
the Ebola virus disease (EVD) as being detrimental to the efforts of
reducing its spread (Woolhouse et al., 2015). They again propose that
data collected in real-time with geographical components would be the
most effective measurement in discovering the transmission network
2

of a disease (Woolhouse et al., 2015). Furthering this idea, they also
speak on the sequencing of the virus genome and attaching it to the
location in which it occurs to further analyse the dynamics of how
such a disease propagates (Woolhouse et al., 2015) By combining these
two elements they recognize several additional methods which could
be effective in considering this information, such as risk mapping and
statistical modelling through methods such as regression (Woolhouse
et al., 2015). Challenges to this proposed type of system come largely
from the quality and volume of data able to be collected, citing issues
related to countries with low-health infrastructure with many rural
areas, cultural differences, and a lack of a suitable global health surveil-
lance system for sharing complete measurements of disease instances
and impact (Woolhouse et al., 2015).

Considering heavily on the task of collecting spatially recognizable,
temporal data this research presents the application of evolutionary
clustering to perform the task of finding patterns within a set of location
mapped data. There are many other works besides the ones summarized
that additionally detail methods of utilizing search queries and social
media data to discover the trends associated with disease occurrences
(Chae, Kwon, & Lee, 2018; Dion, Abdelmalik, & Mawudeku, 2015; Shin,
2016). However, the intention of the approach in this work is to specif-
ically hone in on individuals that may be the most insinuated to be a
carrier for a virus, in order to offer an additional method of capturing
a diseases presence within a region of the world. Subsequently, these
methods aim at finding subset communities of these potential disease
instances using clustering in order to determine how one region may
influence the transmission in another.

2.2. Evolutionary clustering

Ordinary clustering itself stands as an incredibly beneficial tool in
machine learning for its ability to detect patterns within a set of data
that would not immediately be evident. The clustering problem can be
defined as follows: given a set of n instances for 𝑋 = {𝑋1, 𝑋2,…, 𝑋𝑛},
he goal is to assign these points to a number of k clusters for 𝐶 =
{𝐶1, 𝐶2,…, 𝐶𝑘}, where points within the same cluster are the most
similar to each other in the global scope of the network, and in some
way dissimilar to the points in neighbouring clusters determinable
based upon some metric of similarity between points (Cole, 1998; Xu
& Tian, 2015) This metric of similarity can be derived from many
elements of the network but can often be described and utilized with
several algorithms as the distance between points, most commonly
determined using the Euclidean distance measurement (Xu & Tian,
2015). This process is perfectly suitable for networks that contain a
nonchanging value of n, however capturing accurate clusters within a
dynamic network requires more complex methods to ensure its efficacy.

Evolutionary clustering is a relatively new technique first proposed
by Chakrabarti, Kumar, and Tomkins (2006) that allows for the cluster-
ing of temporal networks where the number of instances is not fixed,
but instead grows as time passes. The goal of evolutionary clustering is
to appropriately account for this growth in determining the clusters for
the next generation of the network, using information that is available
in the history of said network (Chakrabarti et al., 2006) Some of
the proposed benefits that this form of clustering has over its static
counterpart can be stated as the following (Chakrabarti et al., 2006):

(1) Future generations of the network will be similar in form to
previous generations, providing a consistency between them that
is recognizable from generation to generation.

(2) By allowing the clustering algorithm to learn from the structure
of past generations a noise reducing effect can be achieved by
adjusting cluster assignments in correspondence with previously
seen data points.

(3) Temporal smoothing allows even for shifted networks to re-
tain some semblance of their past generations through minor
adjustments based on a previous generation’s structure.
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To accomplish these benefits, there has been many frameworks pro-
posed for how to best implement the networks transition from one time
into the next. Chakrabarti et al. (2006) propose a variable 𝐶𝑡 referable
to as the snapshot quality of the network at a current time t. The history
cost of the clustering at a time t is then taken to be the distance that
𝐶𝑡 has to 𝐶𝑡−1, where each of these snapshot qualities are reflective
of the overall fitness of the clustering at each time step (Chakrabarti
et al., 2006). The summation of the history cost for 𝐶𝑡 and 𝐶𝑡−1 at
each time t is then considered to be the overall cost of the network
(Chakrabarti et al., 2006). Ideally through this method the snapshot of
each clustering should be of high quality by itself, and the history cost
between the snapshots should be very low, meaning that the network
did not significantly shift from the previous generation (Chakrabarti
et al., 2006). A user-defined parameter cp in the interval [0, 1] is
also utilized to modify to what degree the history cost determines the
overall cost between clustering times (Chakrabarti et al., 2006). The
inclusion of such a parameter is beneficial in that is further allows
this framework to be applied to many different situations, such as the
case within the authors’ work that history cost dramatically affected
the distances weighed when using an algorithm such as agglomerative
hierarchical clustering (Chakrabarti et al., 2006).

Another framework for determining subsequent graph generations
can be seen in Kim and Han’s (2009) research in the improvement
of temporal smoothing, sharing similarities to the framework of
Chakrabarti et al. (2006). Their method approaches the overall cost
function of the temporal network based upon the sum of a snapshot
cost and a temporal cost (Kim & Han, 2009). In this cost function,
the snapshot cost is determined from a variable 𝐶𝑅0 and 𝐶𝑅𝑡, which
compares the clustering result at a time t with an original clustering
𝐶𝑅0 from the original network that does not have temporal smoothing
applied (Kim & Han, 2009). In similar form the temporal cost compares
𝐶𝑅𝑡 against 𝐶𝑅𝑡−1, showing the difference between the clustering of
following generations (Kim & Han, 2009). For both costs, the lower
the value, the greater the overall quality of each sample (Kim &
Han, 2009). Again, a user-defined parameter 𝛼 in the interval [0,1]
manages the trade-off of snapshot cost against temporal cost, with the
temporal cost considered as the complement to the snapshot cost (Kim
& Han, 2009). The authors found that applying this cost embedding
technique to temporal smoothing for density-based networks resulted
in a more efficient return of high quality, smoothed clusters at each
snapshot of the network (Kim & Han, 2009). Following up to this
work, Folino and Pizzuti (2010) examined their genetic algorithm-
based approach DYN-MOGA against Kim and Han’s (2009) work to
find significant improvement when examining the normalized mutual
information (NMI) to detect differences between true and detected par-
titions. They consider again a very similar problem with snapshot cost
SC and temporal cost TC, however, provide separate multi-objective
optimization for each of these components (Folino & Pizzuti, 2010).

Work conducted by Rossetti and Cazabet (2018) additionally ex-
plore methods outside of and containing the initially proposed temporal
smoothing for community detection in dynamic networks. They pro-
pose three classes of frameworks involving a certain variation on the
amount of temporal smoothing applied to each successive iteration of
the graph, and the benefits and detriments of each method (Rossetti
& Cazabet, 2018). Most importantly for the methods of this research
is the second classification, ‘‘temporal trade-off community discovery’’
(Rossetti & Cazabet, 2018). This approach details an incremental model
to temporally smoothing the network for increasing values of t and can
be considered to encompass the methods mentioned prior (Chakrabarti
et al., 2006; Kim & Han, 2009; Rossetti & Cazabet, 2018) The dis-
covered benefits of such a method over ones that utilize complete
temporal smoothing from the future and past, and ones that include no
smoothing at all is that is more resistant to the instability of community
detection of the algorithm it is partnered with (Rossetti & Cazabet,
2018). In the cases where a clustering algorithm is capable of finding
several different clustering’s within a graph, temporal smoothing adds
3

an additional value of consistency even with faced with variations that
could variably alter the previous shape of the network (Rossetti &
Cazabet, 2018). The listed drawback of this method suggests that it may
fall victim to an ‘‘avalanche-effect’’, by which the smoothing becomes
too pronounced and fails to recognize the standard partitions a static
algorithm would detect (Rossetti & Cazabet, 2018).

2.3. Potential competitors

Now understanding the general framework proposed with evolu-
tionary clustering, as well as the task at hand with health surveil-
lance, there can be said to be competitors to this work in accom-
plishing both of these respective components. Both fields of supervised
and unsupervised machine learning have been commonly proposed
for applications of health surveillance. A framework for combining
Twitter-collected data with machine learning models was proposed by
(Rodríguez-Martínez & Garzón-Alfonso, 2018) in their work. They dub
this system the Twitter Health Surveillance (THS) system, and provide
a majority of focus on developing an application platform for health
officials to collect, interpret, and store large quantities of potential
health-related information from Twitter. They employ a similar data-
scraping system to what was used in this work, that collects tweets
from a live-stream and assesses them by way of sentiment analysis
(Rodríguez-Martínez & Garzón-Alfonso, 2018). Using recurrent neural
networks (RNN), they have also included a built-in labelling schema to
determine what potential medical conditions or disease a tweet could
possibly relate to (Rodríguez-Martínez & Garzón-Alfonso, 2018). They
do not provide any additional applications in way of analysing the data,
however this framework is relevant since the data collection ideology
is similar, however more generalized. This system may in fact provide
better long-term support for the proposed connection of evolutionary
clustering with health surveillance if the features collected by THS
contain maximal instance information like geography, connections, etc.

Another study in the field of ML-aided health surveillance can be
seen with Mackey et al.’s work with an unsupervised biterm topic
model (BTM) for assessing self-reporting of COVID-19 instances
(Mackey et al., 2020). They again use the Twitter API for live-streaming
collection but apply two-level filtering on collected tweets (Mackey
et al., 2020). The first filtering collects tweets based on specific COVID-
19 keywords, much like will be discussed here in Section 3 (Mackey
et al., 2020). The second filtering then looks for specific text instances
that could imply self-reporting on COVID-19 symptoms (Mackey et al.,
2020). The BTM is then employed for analysing specific textual themes
present within these tweets and conversation threads that they exist
in to produce topic clusters (Mackey et al., 2020). One significant
delineation they provide in this work is the further differentiability
in dividing symptom-related tweets from those related to testing and
recovery (Mackey et al., 2020). They provide conclusions by way of
five categories that define these delineations in tweet content, some of
which being first and second-hand self-reporting, results after testing,
and recovery discussions (Mackey et al., 2020). There exists evidence
of geotagging feature collection in this work as well, however further
effort would likely have to be applied to discover accurate geographical
information, since it is not always consistent as learned in the collection
process for this work. It is worth mentioning that though this work is
certainly more thorough in tweet filtering, the application of a double-
filtering and category designation system for each collected tweet
would seemingly make dynamic processing more difficult for a task like
evolutionary clustering. Another potential issue could arise with the
cited manual annotation (Mackey et al., 2020). However, given greater
hardware capabilities this system seems to provide an incredibly rich
array of health-related information that could potentially be used for
this task.

Work conducted by Arpaci et al. (2020) also seeks a similar goal
as in this research by examining evolutionary clustering potential on
Twitter data for the COVID-19 pandemic. Like in the methods pro-
posed by Mackey et al. (2020), the focus on tweet analysis is placed
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on examining unigram, bigram, and trigram term associations with
pandemic-related buzzwords (Arpaci et al., 2020). The suggested goal
of which based on keywords considered is to assess the psychologi-
cal impact of government restrictions, and general fear regarding the
disease from the public-perspective (Arpaci et al., 2020). They utilize
evolutionary K-means proposed by Chakrabarti et al. (2006). Initially,
k clusters is determined by the typical elbow method, of which for the
tested dataset with 43 million total tweets, six clusters were found to be
optimal for a single day (Arpaci et al., 2020). As opposed to examining
instances based on content to make connections about potential self-
reporting instances like in Mackey et al.’s (2020) work, clusters in
this case represent the frequency by which terms are used across a
9-day period (Arpaci et al., 2020). Based upon this, they were able
to discover that terms like ‘‘death, test, spread, and lockdown’’ were
the most prevalent unigram terms over the period, thereby giving
some general insight into how the public was responding to the spread
of the disease (Arpaci et al., 2020). The proposed application from
this information is that it could be used to help government bodies
and health organizations better control panic in disease-crises such
as this (Arpaci et al., 2020). One potential negative to this is that
specific geographical information is not mentioned or considered when
clustering these tweets, which may in fact make it more difficult to
determine how specific populations are reacting to the disease.

Some recent advances in evolutionary clustering techniques propose
new algorithms for dynamic modularity-based community detection,
like one utilized for the Louvain method in Section 4. The C-Blondel
lgorithm recently introduced by Seifikar, Farzi, and Barati (2020) is
ne such method, being based on detecting communities in dynamic
etworks by building compressed graphs of the network and integrating
he Louvain method to discover communities. Rather than the typical
ssociation of a snapshot cost SC and a temporal cost TC, with varying
epresentation, as well as the trade-off parameter 𝛼, the evolutionary
spect is satisfied by building-in the communities at 𝑡 − 1: C(𝐺𝑡−1)
nd incorporating them into a compressed graph based on previous
ommunities as well as network changes between previous and current
napshots (Seifikar et al., 2020). The result of this compression includes
odes and edges of the history of the network incorporated into a
ew graph as super nodes and super edges (Seifikar et al., 2020).
hey additionally seek to solve the issue that temporal smoothing has
een considered for when subtle node changes between generations
nd up destroying the community structure of the network. This is
ccomplished by way of evaluating network changes that include ap-
earing and disappearing nodes and edges from the network (Seifikar
t al., 2020). Degree centrality is heuristically used to determine what
odes could potentially destabilize the network based upon the product
f a destruction parameter with average community degree (Seifikar
t al., 2020). Bringing this all together, the destruction parameter
ulfils the purpose of trading off modularity for execution time, and
as found reduce the time complexity of the algorithm while sustain-

ng comparable modularity to other methods S-Blondel and D-Blondel
cross three bench-marking datasets (Seifikar et al., 2020). Although
ot specifically proposed for instant detection from a streaming data
ource, this method could potentially offer substantial benefits due to
ompressing information and allowing for modulation for the rate of
isappearing nodes/edges.

. Data collection

The final dataset used for this research was collected over the course
f a day in October of 2020. Using the Tweepy library for Python,
collection of an arbitrary amount of 3000 users were mined from

witter to demonstrate the use of the algorithms within the context
f health surveillance (Roesslein, 2009). Every user within the testing
et falls within all of the following criteria: their follower to friend
atio suggests they are likely not a bot or media account; they have

een flagged by the collection algorithm by tweeting a symptomatic

4

eyword related to COVID-19; their geographical status is enabled
n their collected tweet; and they have tweeted within the United
tates. In addition to these preliminary measurements, five features
ere collected in total for each of the users. These features included:

D number, location, friend count, follower count, and the time stamp
t which their tweet was created. The collected location is originally
nly displayed as a string value, but by using a public U.S. cities
atabase, each location could be cross-referenced and expanded into 4
xtra features, these being: city, state, longitude, and latitude (‘‘United
tates Cities Database’’, 2020). The most important features for use in
he outlined methods are the coordinates that each tweet has occurred
t, as well as the timestamp of each tweet to allow for the use of
volutionary clustering. Outside of initial location-mapping, the only
ther pre-processing that was performed was removing edges between
odes more than 20 degrees away in the latitudinal direction, since
hese occurrences would be unlikely to have any correlation with one
nother, i.e., an individual in New York would not have any foreseeable
onnection to an individual in California based purely upon location.
ongitude was not considered greatly since it may be of interest to
xamine association between occurrences along the coasts. Addition-
lly, the time stamps were converted to seconds, encoded, and then
rganized. While this data considered hours and minutes as the means
or grouping individuals by timestamp, the following methods would
till apply for circumstances including even more diverse windows of
ime.

When speaking about the characteristics of big data that are most
mportant, there is commonly said to be several ‘‘V’s’’ that describe the
alue of the data (McAfee & Brynjolfsson, 2012). The reason why Twit-
er was chosen as the platform of choice over another social network, is
ecause its data rather intuitively fulfils itself in the terms of these val-
es, being: volume, velocity, a variety (McAfee & Brynjolfsson, 2012).
ts API is easy to interface with and allows for virtually unlimited data
ollection that can be directly converted to a desired form and passed
o other algorithms for analysis. Even with various validifying checks
o make sure a user meets the beforementioned criteria; a simple data
ining programme is capable of collecting thousands of samples over
couple of hours on a personal computer with average hardware and
etwork specs. This type of data also excels at having various different
lements to examine, which has been especially taken advantage of
n this research when considering exact city coordinates. While the
serbase of this social network may not be as large as some others such
s Instagram and Facebook, it still offers a superb means of quickly
apturing rich information as it is created.

. Evolutionary clustering and community detection algorithms

After the collection and processing of the data is complete, then
omes the time to make use of the information it holds by applying
he proposed evolutionary clustering techniques to it. The process
sed can be simply implemented and performed any number of times
ithout significant alterations but to the parameters of the evolutionary
lgorithms themselves, as will be described in the following sections.
onsidering this, the flowchart contained within Fig. 1 represents a
implified version of the steps followed to arrive at the conclusion of
he overall experiment.

.1. Evolutionary DBSCAN clustering

Density-based methods of clustering group points based upon their
istance to other points neighbouring them (Xu & Tian, 2015). The
ost popular algorithm in this category is DBSCAN, and already has
history of being utilized effectively with evolutionary techniques ap-
lied to it (Elgazzar & Elmaghraby, 2017; Kim & Han, 2009). DBSCAN
stimates density level based upon two parameters: minimum points
MinPts), which denotes the minimum number of points required to
orm a cluster, and 𝜀, a distance measurement that determines the
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Fig. 1. Process of proposed methods.
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radius by which points can be considered part of a cluster (Schubert,
Sander, Ester, Kriegel, & Xu, 2017). Points containing more neighbour-
ing points than those required within the radius around it are to be
considered as a core point (Schubert et al., 2017). Points outside of
the radius of a core point are initially designated to noise, however
once a core point is discovered all neighbouring points within its radius
are added to its cluster (Schubert et al., 2017). Thus, considering these
two prerequisites to form a cluster, in detecting communities the most
similar individuals are the ones that exist the closest to each other in
the network (Schubert et al., 2017). This type of algorithm is naturally
very applicable to situations relating to geographical information, as
density is a real-world component of this information. This intrinsic
connection to the type of the data explored is one of the reasons
DBSCAN was used as a base model for this research. Additionally,
DBSCAN is an algorithm that does not require the number of clusters
to be specifically passed upon its inception, which further makes it
valuable in an evolutionary model when the number of clusters is
likely to change as the network expands over time. It has further value
through its generality in cluster creation by being able to handle convex
and non-convex shapes, again of importance when the shape of clusters
and or the network in general is unknown outside of snapshots. The
simplified pseudocode describing the regular DBSCAN algorithm can
be seen in Fig. 2, assuming the Euclidean distance measurement is used
(Elgazzar & Elmaghraby, 2017).

The DBSCAN algorithm starts by considering each point within the
network as noise. Iterating through each point, it checks for the neigh-
bours surrounding a point using the given measurement of distance 𝜀. If
number of neighbours surrounding the point is greater than or equal to
the specified minimum number of points, it is considered to be a core
point, and it must be expanded through its child connections. If the
number of neighbours is less than the minimum points, it is marked
as seen and passed over. When expanding upon the core point, the
neighbourhoods of the neighbours are added to the cluster of the core
point. Through this an initial core point can expand outwards based
upon the neighbourhoods of points within its radius. To prevent one
cluster from stealing points from another, a list of visited points must be
kept and a control structure utilized at each time a new point is visited.
When all points within the network have been visited, points that lay
outside of any clusters are considered outliers based on the given value
for 𝜀. Fortunately, the algorithm does not require a predetermined
value of k for the number of clusters, however multiple variations of
𝜀 and MinPts must be tested to determine the best fitting clustering
distribution.
5

To apply an evolutionary method to this algorithm, a variation of
a temporal radius measurement produced by an author of this work
for another study was utilized (Elgazzar & Elmaghraby, 2017). The
technique applied is a sort of smoothing of the radius parameter 𝜀, that
changes in correspondence with the unique distances present within
a snapshot of the network at a time t (Elgazzar & Elmaghraby, 2017).
Eq. (1) demonstrates the calculation of this parameter for a given value
of t (Elgazzar & Elmaghraby, 2017).

𝜀𝑡 =

⎧

⎪

⎨

⎪

⎩

median(unique
(

𝑊𝑡
)

)∕𝛽, t = 1
((1 − 𝛼) ∗ 𝑚𝑒𝑑𝑖𝑎𝑛

(

𝑢𝑛𝑖𝑞𝑢𝑒
(

𝑊𝑡
))

∕𝛽
+ (𝛼) ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑢𝑛𝑖𝑞𝑢𝑒

(

𝑊𝑡−1
)

)∕𝛽, t > 1
(1)

This time-dependent version of 𝜀t can be considered similar in form
o the calculation for smoothing of the entire network proposed by
im and Han (2009) for density-based clustering methods. There must
e a special case when the graph is first instantiated at 𝑡 = 1 since
here is no prior snapshot of the network to base a new distance on. At
his timestamp, the median distance out of all unique distances in the
etwork is selected and taken as the initial value for 𝜀1. After a new
napshot of the graph has been taken, the snapshot of the network at
ts current time t is then considered as well as the history of the median

unique distances of the network at the time 𝑡 − 1. Two user-defined
parameters, 𝛼 and 𝛽, are used to further modulate the value for epsilon
independent of the state of the network. The parameter 𝛼 determines
what ratio of the snapshot cost and history cost is to be considered
in determining the new value for 𝜀t . The constant 𝛽 is an arbitrary
parameter that is included to normalize the radius to some degree
against a starting high distance value. It accomplishes the similar feat
as being able to tweak the value for epsilon manually, however, while
still allowing for it to be modulated based upon the included history
cost.

While parameter 𝛽 is not mandatory or can be subjective, there
exists some contention on how to determine the value for 𝛼, since this

ay have a significant impact on how the network transforms as t
rows. For temporal smoothing applications, some works examine the
ormalized mutual information (NMI) of clustering results for different
-levels to find the best solution (Folino & Pizzuti, 2010; Kim & Han,
009). In Folino and Pizzuti’s 2010 work, this is treated as a traditional
enetic algorithm optimization problem, with solution fitness defined
s a community score of the current snapshot cost. A work by Xu,
liger, and Hero (2013) proposed a framework AFFECT for determining

he optimal 𝛼 at each snapshot by letting 𝛼 vary with respect to time
. In this work 𝛼 is static, and assessment is performed by examining
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Fig. 2. DBSCAN algorithm.
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representative generations for several 𝛼-levels. Selection of the most
iable parameter could be installed later for on-line purposes given
urrent snapshot characteristics, or assessed ante-hoc for toy-datasets.

Since only the value for the radius measurement changes between
ach snapshot, the ordinary DBSCAN algorithm can still be utilized
hen determining the cluster assignments at each timestamp. Fig. 3

ontains the pseudo code of the evolutionary DBSCAN algorithm used
n this research. In the case of applying this directly onto data that has
ome straight from the stream of tweets on social media, only minor
lternations are needed to convert the dynamic network into a form
hat can then be processed by the previous DBSCAN algorithm.

.2. Evolutionary Louvain method

The Louvain method is a partitional, agglomerative community
etection algorithm created by Blondel et al. that discovers clusters
ithin a network based upon the optimization of a measurement known
s modularity (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; Dugué
Perez, 2015). Modularity is an optimization function that is used to

urther weight the value of edges within a network based upon the
robability that an edge may appear in a similarly constructed network
ith the same vertex degrees (Dugué & Perez, 2015). Through this,
dges that seem the most unlikely to appear from vertices of small
egree are valued higher for their rarity than the edges that exist
etween vertices with high degrees, and thus are expected to be the
ost ordinary (Dugué & Perez, 2015). This sense of value can be seen

n Eq. (2), which depicts the definition of modularity Q for a partition
in an undirected graph 𝐺 = (𝑉 ,𝐸) (Blondel et al., 2008):

= 1
2𝑚

∑

𝑖,𝑗

[

𝐴𝑖𝑗 −
𝑑𝑖𝑑𝑗
2𝑚

]

𝛿(𝑐𝑖, 𝑐𝑗 ) (2)

Where 𝑚 = |𝐸|, 𝐴𝑖𝑗 is the weight of the edge between vertices i and
, 𝑑𝑖 is the degree of vertex i, c𝑖 is the community of vertex i, and the
function 𝛿(u, v) is defined as 1 if u = v, and 0 if otherwise (Blondel et al.,
2008). It can then be seen then that the weight of a connection 𝐴𝑖𝑗 is
diminished as 𝑑𝑖𝑑𝑗 approaches infinity, representing the prioritization
f rare low degree vertex connections over high degree connections.

Now considering this modularity, the Louvain method first starts
rom a single partition of the graph in which all nodes are divided into
heir own communities (Blondel et al., 2008). Then for each vertex i
6

in the network, each of its neighbouring vertices j are examined to
compute the change in modularity that would occur should vertex i
be moved to the community of vertex j (Blondel et al., 2008). This
change in modularity 𝛥Q of moving a vertex i to a new community

is described in Eq. (3) in its reduced form, and is defined as follows
Dugué & Perez, 2015):

𝑄 =
𝑑𝐶𝑖
2𝑚

−

(

𝛴𝑡𝑜𝑡𝑎𝑙
)

𝑑𝑖
2𝑚2

(3)

With the differences from Eq. (2) being that 𝑑𝐶𝑖 is the degree of vertex
within community C, and 𝛴𝑡𝑜𝑡𝑎𝑙 is the total number of incident edges
f the community C (Dugué & Perez, 2015). After computing this

change in modularity for each pair of vertices i and j, the vertex i is
hen placed in the community of j in which the largest positive gain

in modularity is acquired (Blondel et al., 2008). In the case where
the modularity gained is not positive, then vertex i will remain in its
current community (Blondel et al., 2008). This process is repeated until
there exists no additional community changes that would increase the
modularity further (Blondel et al., 2008). The algorithm then repeats
this process on a copy of the network with the vertices now represented
by the communities of the previous partition (Blondel et al., 2008; Meo,
Ferrara, Fiumara, & Provetti, 2011). The computation of modularity
change by moving vertices to new communities and subsequently
transforming communities into the new vertices is then repeated until
a maximum modularity is obtained for the network (Blondel et al.,
2008; Meo et al., 2011). Fig. 4 contains the pseudocode for the Louvain
method algorithm utilized (Aynaud, 2020; Blondel et al., 2008).

There is a number of community detection algorithms besides the
Louvain method that are based on optimizing modularity. Especially
in the case of recent methods in dynamic networks beforementioned
C-Blondel by Seifikar et al. (2020) or CSLM by Chaudhary and Singh
(2019). Louvain however is still a popular approach within this sub-
type of community detection algorithms, despite being a greedy op-
timizer. Some principal benefits proposed when using this algorithm
come from its intention as a faster way to approximate the modularity
through heuristics, which is considered a computationally difficult task
when trying to discover completely (Blondel et al., 2008). Blondel et al.
(2008) was able to accomplish this within logarithmic time, which
proposes exceptional capability for live-streaming analysis purposes.
Another benefit is that no prior information regarding number of

clusters or required neighbourhood size be considered when using
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Fig. 3. Evolutionary DBSCAN algorithm.
this algorithm. For this particular type of application in being able
to incorporate potentially thousands of new samples into the network
at each time t, time complexity for the algorithm should be of the
most concern to avoid lagging behind the flow of data. In addition,
temporal smoothing, as it name implies, has been considered a means
to ‘‘smooth’’ out evolving communities over time for greedy algorithms
like Louvain method, where single point differences could produce
significantly different results otherwise (Rossetti & Cazabet, 2018).

Based on several smoothing archetypes described by (Rossetti &
Cazabet, 2018) in their survey work, the goal for applying these meth-
ods onto a temporal network seeks to keep the partitions the same while
seeking to further maximize modularity through the addition of new
vertices. For this application, a version of explicit temporal smoothing
has been considered, of which is not too unlike the method utilized for
density-based approaches on creating a history-based radius (Elgazzar
& Elmaghraby, 2017; Kim & Han, 2009). In this case there are no
parameters that may need to be adjusted as time progresses, so the
option that was considered was to more greatly incentivize certain links
to persist throughout the history of the network as it is gradually scaled
to completion. Eq. (4) depicts the equation for temporal smoothing
applied to the network.

𝑊𝑡 =

{

𝑊𝑡, 𝑡 = 1
(1 − 𝛼) ∗ 𝑊𝑡 + (𝛼) ∗ 𝑊𝑡−1, 𝑡 > 1

(4)

Through the usage of this, communities will not be greatly affected by
an influx of new points over time since the points of past partitions are
being prioritized over them. This method provides a means of slowly
tweaking the modularity as new information becomes available. In a
similar fashion to the evolutionary radius measurement, again a user-
defined parameter 𝛼 is utilized for tweaking the ratio between the
snapshot of the network at time t and the history of the network at
a previous time 𝑡− 1. While this community detection algorithm is not
as especially relevant as a density-based approach when considering
geographical locations, it still provides functionality as dividing up
collected areas into larger, but less defined sections of connected points.
The pseudocode for the described implementation of the evolutionary
Louvain method can be seen in Fig. 5.

5. Experimental results

In applying these methods, several libraries available for Python
have been utilized for various purposes. For extra clustering function-

ality the sci-kit: learn clustering library was used with modifications to

7

implement the algorithms (Pedregosa et al., 2011). For visualization of
network snapshots, the Matplotlib library was used to provide graphing
and colour mapping to the resulting clusters (Hunter, 2007). The
NetworkX library was also used for its visualization and when using
the evolutionary Louvain method algorithm (Aynaud, 2020; Hagberg,
Swart, & Chult, 2008). Lastly, the Pandas library was used for data
frame functionality to store the dataset and to convert timestamps to
an ordinal format (McKinney, 2010).

5.1. DBSCAN results

For testing the evolutionary DBSCAN algorithm on the data, three
values of 𝛼 were considered; the parameter used to modulate the ratio
of current information and past information influence. These values
were 𝛼 = 0; for the static algorithm, 𝛼 = 0.50; for a balance between
present and past; and 𝛼 = 0.80, where the history is significantly relied
upon to determine the new value for 𝜀t . The scaling constant 𝛽 = 6
was utilized for all cases of 𝛼 and is used as a source of normalization
for the radius. This value for 𝛽 for testing purposes was taken to be
the standard deviation of the latitudinal positions for the collected in-
stances. This coefficient may as well be 𝛽 = 1 for most implementations,
however the median radius of the first few generations should be taken
into consideration if it is sufficiently high enough to include all possible
points, which would likely not result in an understandable graph for
this application. The additional parameter ofMinPts = 2 was utilized for
each test of the algorithm, and is considered the default value. It must
also be considered in the context of this work that this test sequence
is only an offline representation of these methods, since it is necessary
to show the influence of different parameters on the effectiveness the
method has on the same data. Figs. 6, 7, and 8 show the outputs of using
this algorithm at three snapshots with 𝛼 = 0, 𝛼 = 0.50, and 𝛼 = 0.80,
respectively.

In comparing these graphs, it can be seen that the inclusion of
the network’s history does make a difference however small it may
be in the scope of this network. While the snapshot at the middle
set of timestamps at 414 seems to be largely unchanged based on
the inclusion of the history, the noise reduction present in the first
100 timestamps as well as in 829 show that the history does make
a difference in better encompassing noise to a respective cluster. As
discussed in the prior paragraph regarding evolutionary clustering, it
can also be seen that the graph does not change significantly between
the passage of time. Instead, it is noticeably consistent and evident as
to how the snapshot at 𝑡 = 100 has been built into 𝑡 = 829.
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.2. Louvain method results

In a similar practice to the beforementioned DBSCAN experiment,
hree different values for 𝛼; the ratio between snapshot cost and history
ost, were tested with 𝛼 = 0, 𝛼 = 0.50, and 𝛼 = 0.80. Additionally,
t is worth mentioning that this is again an offline approach to the
tilization of this method, as for testing purposes it would not have
een practical to stream new information into the algorithm and try to
ompare between completely different sets. The following Fig. 9 shows
he results of the static Louvain method with 𝛼 = 0 and representative
ime slots 100, 414, and 829. Fig. 10 then shows the evolutionary
ouvain method at work with 𝛼 = 0.80 and the same time slots. The
napshots at 𝛼 = 0.50 were not included simply for the preservation
f space, however their modularity for each time mark either ranked
ower than the static method, or slightly less than the modularity of the
= 0.80 execution.

For the utilized dataset there did not appear to be any exceptional
mprovements to modularity as the ratio of history cost was increased,
owever it is evident that through considering this history the al-
orithm utilized partitions it would have not considered previously.
 s

8

he snapshots at the 100 and 414 marks are the most interesting
ccurrence of this since the evolutionary method returned markedly
ifferent results with a noteworthy increase in modularity. It is worth
oting that for a network of sample size 3000 this method also boasted
fast computation for each of the snapshots as well, with the algo-

ithm consuming the vertices of multiple new time slots in under a
econd. While this speed would no doubt suffer with sufficiently larger
uantities of data, at this size it would be suitable to consider streamed
nformation the second it is inputted from a social network.

. Conclusion

In this work a pipeline has been detailed that is capable of directly
onnecting unsupervised machine learning techniques to an instantly
ransmittable, dynamic source of data. In data collection the prioriti-
ation of geographically identifiable data combined with timestamps
as allowed a seamless connection to applying evolutionary methods
n information that reflects the real-world. This approach to data
roduction could even be further expanded upon by utilizing additional
ources of information. Such as through connecting a cross-validation
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Fig. 5. Evolutionary Louvain method.
Fig. 6. Static DBSCAN.
Fig. 7. Evolutionary DBSCAN with 𝛼 = 0.50.
Fig. 8. Evolutionary DBSCAN with 𝛼 = 0.80.
scheme to properly assess the quality of clusters at a given snapshot of

the network, as well as tweet sentiment analysis to further evaluate the

adequacy of samples.
9

The results have shown in this case for the size of data used that

evolutionary clustering does make a slight, but noticeable difference

in the quality that is inferable from one generation of the network to
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Fig. 9. Static Louvain method.
Fig. 10. Evolutionary Louvain method with 𝛼 = 0.80.
the next. This is especially evident when considering smaller sizes of
data that have more room for adjustment, which can be seen in both
methods at the middle time slot of each network. Despite detailing this
method as a beneficial online approach, this testing was still conducted
offline as to assess each methods effectiveness. The application of this
work would be much better applied to an online system model, in
which pre-processed data would be allowed to flow into the cluster-
ing algorithms without considering a middle transition. However, this
transition could be easily applied from collection, to transformation, to
clustering method.

A model of this system would be further benefited still by being
applied to a more reliable source of information, like connecting the
methods used here to actual indicative cases of disease to directly
model disease occurrences the moment they are discovered. An exam-
ple of this would be of the type mentioned in the work conducted
by Woolhouse et al. (2015) mentioned in the opening paragraphs.
Applying this method in such a way would of course require a much
more thorough approach when trying to accurately depict real world
circumstances, but as a framework these methods provide an applicable
means of reaching that point. As the use of temporal and spatial
data related to disease occurrences coalescence into combination with
machine learning practices, it is undeniable that current health surveil-
lance infrastructure will become even more valuable as a means of
preventing the future spread of disease.
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