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Abstract: Aberrant Janus kinase-signal transducer and activator of transcription (JAK-STAT) sig-
naling is implicated in the pathogenesis of acute myeloid leukemia (AML), a highly heterogeneous
hematopoietic malignancy. The management of AML is complex and despite impressive efforts into
better understanding its underlying molecular mechanisms, survival rates in the elderly have not
shown a substantial improvement over the past decades. This is particularly due to the heterogene-
ity of AML and the need for personalized approaches. Due to the crucial role of the deregulated
JAK-STAT signaling in AML, selective targeting of the JAK-STAT pathway, particularly constitutively
activated STAT3 and STAT5 and their associated upstream JAKs, is of great interest. This strategy
has shown promising results in vitro and in vivo with several compounds having reached clinical
trials. Here, we summarize recent FDA approvals and current potential clinically relevant inhibitors
for AML patients targeting JAK and STAT proteins. This review underlines the need for detailed
cytogenetic analysis and additional assessment of JAK-STAT pathway activation. It highlights the
ongoing development of new JAK-STAT inhibitors with better disease specificity, which opens up
new avenues for improved disease management.
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1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous malignant disorder characterized
by abnormal proliferation and differentiation of hematopoietic stem and progenitor cells
(HSPCs). This clonal expansion leads to an accumulation of immature myeloid precursors
in the hematopoietic tissue and peripheral blood, which occurs at the expense of normal
hematopoiesis and results in anemia, leukopenia or thrombocytopenia [1,2]. The global
AML burden increases with the ageing population, because the incidence of AML increases
with age and is predominantly diagnosed in older patients with a median age at diagnosis
of 68 years [3]. The American Cancer Society estimated that AML will be responsible for
11,400 deaths in the United States in 2021, accounting for the highest percentage (48%) of
leukemic deaths, with a rate of relative 5-year survival (2010–2016) of 68% (age < 20) and
8.2% in patients aged 65 years and over [4]. The development of intensive consolidation
chemotherapy programs and progress in supportive care have ameliorated the survival rate
of younger adults with AML (aged < 60 years); however, the survival rate in the elderly has
failed to show a substantial improvement over the past decades [5,6]. The characterization
of distinct AML subtypes by multiple cytogenetic and molecular abnormalities is used
to better predict the prognosis of patients and to make treatment decisions under refined
risk stratification. Recent advances in next-generation sequencing technology play a major
role and provide an in-depth insight into the mutational driver landscape of AML, which
will continue to become increasingly important in assessing the risk of AML progression.
Identification of new unique biomarkers associated with acute leukemias significantly
improves the prognosis and diagnosis of genetically unique AML patients and improves
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the diagnostic criteria [7–10]. The current World Health Organization (WHO) classification
considers morphologic, cytogenetic and molecular genetic analysis, clinical history, and
prognostic and immunophenotypic data. It defines specific disease entities by focusing
on genetic subgroups: AML with recurrent genetic abnormalities (AML-RGA), AML with
myelodysplasia-related changes (MDS-AML), therapy-related AML (tAML) and AML not
otherwise specified (AML-NOS) [11]. Analysis of the Surveillance, Epidemiology, and End
Results (SEER) database, containing 32,941 AML patients, showed that AML patients who
were not diagnosed according to WHO classification lived shorter than patients diagnosed
using WHO-type classification [12]. This clearly reflects that many AML patients may not
receive an optimal treatment and underpins the benefits of targeted AML therapy. Each
patient’s AML is genetically unique, since individual leukemias can result from distinct
mutations with even more diverse subclones. More than 86% of AML patients harbor two
or more driver mutations, while only 3% do not contain any known driver mutation [13].
Most frequent alterations appear in genes expressing signaling proteins (e.g., KIT, FLT3,
NPM1, CEBPA), epigenetic modulators (e.g., EXH2, TET2, DNMT3A) or as chromosomal
rearrangements that generate fusion transcripts of genes encoding for transcription factors.
These include, for example, RUNX1-RUNX1T1, PML-RARA or MLLT3-MLL [14–21].

The Janus kinase (JAK) family of nonreceptor tyrosine kinases comprises pivotal
mediators of growth factor and cytokine signaling, activating i.a. downstream signal
transducer and activator of transcription (STAT) factors [22–24]. STATs, particularly STAT3
and STAT5, are hyperactivated in various solid tumors and hematological malignancies
stimulating cellular proliferation and survival [25–31]. STAT3 and STAT5 are constitutively
activated in 44–76% of AML patients [32–34] and individuals show a shorter disease-
free survival with constitutive STAT3 activity than without [33]. Interestingly, our group
demonstrated that the alternatively spliced STAT3β isoform has a tumor-suppressive role
and that the STAT3β/α mRNA expression ratio positively correlates with overall survival,
representing a promising prognostic marker in AML patients [35]. Despite significant
advances, the exact contribution of JAKs and STATs to the development of AML remains to
be discovered. Current trends in ongoing research are reflected in the approaching progress
of drug development and their recent approvals. As a consequence, especially for STAT3
and STAT5, the upstream JAKs and co-factors have become attractive therapeutic targets
in AML. Here, we present a comprehensive overview of clinically relevant inhibitors for
AML patients, acting on JAK-STAT signaling.

2. JAK-STAT Signaling
2.1. The JAK-STAT Signaling Pathway

In mammals, four JAK proteins (JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2))
and seven STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6)
have been identified. The binding of a ligand to its receptor is a critical step in precisely
determining the context-dependent effect of downstream signaling by distinct JAK-STAT
combinations with a high degree of specificity. The JAK-STAT signaling pathway links
the receptor binding of extracellular ligands like cytokines, hormones and growth factors
via a ubiquitous intracellular signaling cascade with the transcriptional machinery in the
nucleus. It is tightly regulated under physiological conditions coordinating a wide range of
fundamental biological mechanisms, including cell proliferation, differentiation, apoptosis
and inflammation. Dysregulation has been identified in severe pathological circumstances
and is commonly associated with constitutively active STATs promoting, among others,
intense inflammatory conditions or tumorigenesis [36].

The highly conserved JAKs, JAK1, JAK2 and TYK2, are ubiquitously expressed,
whereas JAK3 is predominantly expressed in hematopoietic cells, in particular lymphoid
and myeloid cells [37]. Among tyrosine kinases, JAKs are unique for their non-covalent
interaction via N-terminal 4.1, ezrin, radixin, moesin (FERM) and Src Homology 2 (SH2) do-
mains with class I and II cytokine receptors [38]. The C-terminal region contains the active
tyrosine kinase and the pseudokinase domain, which regulates both basal and cytokine-
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induced activation [39,40]. Mechanistically, the JAK-STAT signaling pathway (Figure 1) is
activated by ligand binding to their cognate multimeric transmembrane receptors (such
as interleukin (IL), interferon (IFN) and hormone receptors) leading to conformational
changes of the receptor. Receptor-associated JAKs are now in close proximity, inducing
their activation by autophosphorylation and/or transphosphorylation and subsequently
the phosphorylation of the receptor-associated tyrosine residues. This in turn provides a
docking site for the SH2 domain of STAT proteins and leads to their JAK-mediated phos-
phorylation of a conserved C-terminal tyrosine residue. Subsequently the phosphorylated
tyrosine of one receptor-associated STAT reciprocally binds the SH2 domain of another
receptor-associated STAT [36,41]. This anti-parallel to parallel homo- or heterodimerization
of phosphorylated STAT (pSTAT) proteins ensures the release from the receptor and the
translocation into the nucleus by importins. STAT2, STAT3, STAT5, and STAT6 translocate
constantly to the nucleus independent of tyrosine phosphorylation, which only transiently
increases their nuclear accumulation. In the nucleus, STAT proteins control the transcrip-
tional activation and repression of associated genes by directly targeting DNA regulatory
elements (DRE), which are usually found in the first introns of their target genes and in
enhancer and promoter regions. Through chromatin immunoprecipitation followed by
sequencing (ChIP-seq) and the integration of gain- or loss-of-function transcriptomics, it
is possible to identify various STAT binding sites and target genes; e.g., MYC, BCL-2, and
D-type cyclins, which are engaged by any STAT protein in various cell types [36,42].

2.2. JAK-STAT Activation

Based on the ligand, the receptor and their tissue specificity, distinct combinations
of STATs and JAKs are activated. This canonical signaling is based on JAK-mediated
STAT tyrosine-phosphorylation. Additionally, several non-canonical pathways have been
described, including cascades building on the kinase-independent action of JAKs and
unphosphorylated STATs, or the formation of higher-order or multifactorial STAT tran-
scriptional complexes, which can also affect cytokine signaling and immune cell func-
tion [36,43]. The most common non-canonical pathway activators include, among others,
the cytoplasmic non-receptor tyrosine kinases SRC and ABL (or BCR–ABL fusion proteins
in Philadelphia chromosome (Ph+) leukemias), the platelet-derived growth factor recep-
tor (PDGFR) and epidermal growth factor receptor (EGFR) [41,44,45]. Compared to the
genomic targets of the canonical STAT signaling pathway, which are predominantly com-
posed of genes implicated in the development of cellular immunity, target sites of STATs of
the non-canonical pathway were found to be rather associated with genes implicated in
epigenetic regulation [46].
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Figure 1. The JAK-STAT signaling pathway. The JAK-STAT pathway transmits signals from extracellular ligands (e.g., cy-
tokines: IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-20, IL-21, IL-22, IL-23, IL-24, IL27, IL-31,
IFNα, IFNβ, IFNγ, IFNλ, GM-CSF, G-CSF, leptin; hormones: EPO, PRL, GH, TPO; growth factors: EGF, insulin, FGF,
PDGF, VEGF) through an intracellular signaling cascade to the transcriptional machinery in the nucleus. Ligand-binding
leads to a conformational change of the receptor and the activation of receptor-associated JAKs by autophosphorylation
and/or transphosphorylation and subsequently the phosphorylation of the receptor tyrosine residues. This in turn provides
a docking site for the STAT proteins and leads to their JAK-mediated phosphorylation. Activated STATs translocate as
either homo- or heterodimers to the nucleus and regulate gene transcription. Then, expressed SOCS proteins act via
negative feedback circuits by interacting competitively with receptors. JAK (Janus kinase), P (phosphorylation), STAT
(signal transducer and activator of transcription, SOCS (suppressors of cytokine signaling), TYK2 (tyrosine kinase 2).
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During canonical STAT signaling, STATs act mostly as homodimers, but they are also
found as heterodimers or higher-order tetramers [36]. STAT1 and STAT2 are involved in
IFN signaling. While STAT1 is implicated in anti-viral and -bacterial defense, tumor-growth
inhibition and apoptosis, STAT2 participates in immunomodulatory and anti-apoptotic/-
proliferative signaling. JAK1 together with JAK2 is induced by IFN-γ and JAK1 together
with TYK2 by type I and type III IFNs, making JAK1 imperative for IFN signaling [43].
IFN-γ induces exclusively the phosphorylation of STAT1, leading to its homodimerization
and finally binding to gamma interferon-activated sites (GAS) of IFN-regulated genes.
Type I IFN target genes are induced by heterodimers of STAT1 and STAT2, which, together
with IRF9, form the interferon stimulated gene factor 3 (ISGF3) complex that regulates
transcription via binding to interferon-stimulated response elements (ISREs) [41,47–49].
STAT3 is activated by numerous cytokines, including IL-6, IL-10 or hormones like prolactin
and leptin, as well as growth factors like EGF, PDGF, fibroblast growth factor (FGF) and
insulin-like growth factors (IGFs) [50]. It is engaged in immunity and inflammation but
also in multiple other biological processes including immune response resolution, wound
healing [51] and restoration of tissue integrity [52]. For example, IL-6 binds the IL-6 recep-
tor and glycoprotein 130 (gp130) receptor β-subunit complex and activates JAK1, JAK2
and TYK2, leading to the formation of STAT3 homodimers [53–55]. Aberrant STAT3 signal-
ing drives mitogenesis and anti-apoptotic pathways and furthermore tumorigenesis and
metastasis [50]. STAT4 is inevitable for cellular-mediated immune response by regulating
differentiation of Th1 cells, lymphocyte effector function and IFN-γ production [56,57].
IL-23 and IL-12 signal through JAK2 and TYK2 while IL-23 induces STAT3/STAT4 het-
erodimers and IL-12 signaling results in STAT4 homodimers [58]. Signaling via the two
highly related STAT5 proteins, STAT5A and STAT5B, occurs primarily through JAK1 and
JAK3 upon binding of IL-15, IL-7 and IL-2 to their respective receptors and the γc family
of receptors [59]. Furthermore, STAT5 can be activated in a JAK2-dependent manner by
prolactin (PRL), growth hormone (GH), erythropoietin (EPO) and granulocyte-macrophage
colony-stimulating factor (GM-CSF) [60]. STAT5A is predominantly expressed in the mam-
mary gland where it is involved in PRL signaling, whereas STAT5B is mainly expressed
in the liver and muscle, regulating GH signaling [61]. STAT5 is a key transcription factor
contributing to the initiation and progression of various cancers, but under physiological
conditions STAT5 signaling is imperative for hematopoiesis [62], lipid metabolism [63]
and T lymphocyte [64] and natural killer (NK) cell development and function [65]. Sim-
ilar to STAT5, STAT6 is activated by JAK1 and JAK3, but activation occurs via binding
of IL-4 and IL-13 to their receptors [66]. It is involved in the development of allergic
inflammation, Th2-type responses [67], B and T cell proliferation and macrophage dif-
ferentiation [68,69]. Besides classical STAT6 homodimerization, type I IFN-stimulated
B cells induce the heterodimerization of STAT6 and STAT2 [70], whereas IL-4 promotes
STAT6/STAT2 heterodimers in T cells [71].

2.3. JAK-STAT Inactivation

The JAK–STAT signaling cascade is subject to constant multiple levels of activat-
ing and inactivating processes, which offer new possibilities for increased therapeutic
exploitation. Pathway inactivation can be accomplished by basic cellular mechanisms
including posttranslational modifications, microRNAs, RNA-binding proteins [36], the
ubiquitin-proteasome system [72] or receptor internalization through endocytosis [73].
Various protein tyrosine phosphatases (PTP) including Src (Sarcoma) Homology 2 Domain
Phosphatase 1 and 2 (SHP1, SHP2), CD45 and T-cell protein tyrosine phosphatase (TCPTP),
just to name a few, can hydrolyze phosphorylated JAKs, upstream receptors and STATs,
both in cytoplasm as well as in the nucleus [74]. Protein inhibitor of activated STAT (PIAS)
proteins are activation-suppressing proteins, which negatively regulate JAK-STAT signal-
ing by inhibiting STAT phosphorylation, translocation or DNA binding [75]. The protein
family of suppressors of cytokine signaling (SOCS) acts via negative feedback circuits. All
eight SOCS proteins (SOCS1-7 and CIS) contain SH2 domains to interact competitively
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with receptors [76,77]. Additionally, SOCS can recruit E3 ubiquitin ligases to induce Lysin
48-linked polyubiquitylation and subsequent proteasomal degradation of the receptor
or the JAKs [78]. SOCS can also target JAKs’ substrate binding groove with high speci-
ficity, via their N-terminal kinase inhibitory region, which functions as a pseudo-substrate
for JAKs [79].

2.4. Dysregulation of JAK-STAT Signaling in the Pathogenesis of AML

The complex network between genetic factors and extrinsically driven signaling path-
ways is crucial for tumorigenesis and other severe diseases. JAK-STAT signaling in the
hematopoietic system tightly orchestrates survival and self-renewal of hematopoietic stem
cells (HSC) and hematopoiesis, as well as proliferation. Thus, aberrant JAK-STAT signaling
has been associated with the pathogenesis of inflammatory diseases and immunodefi-
ciencies and also with hematopoietic malignancies [80,81]. Since the 1990s, mutations
of proteins inducing the constitutive activation of JAK-STAT have been associated with
AML [30,82–84]. Importantly, constitutive activation of STAT3 and STAT5, and also of
STAT6, can function as a predictive and prognostic biomarker and has been correlated with
severe disease outcomes in AML [26,84].

Constitutive activation of STATs has often been found in cancer cells as a result of
deregulated signaling of the upstream JAK. A classic example is JAK2V617F, a somatic point
mutation within the autoinhibitory pseudokinase (JH2) domain, resulting in constitutive
activation of the JH1 domain and thus increased activation of JAK2 and downstream
STATs [85]. JAK2V617F appears in the majority of secondary AML cases resulting from
myeloproliferative neoplasm (MPN), where it acts as a main driver mutation. Mutated
JAK2 is only present in <5% of de novo AML patients [23,24].

In de novo AML, constitutive activation of STATs can be achieved by auto- and
paracrine factors such as IL-6, decreased expression of negative regulators such as SOCS1
or activating mutations in other (non-JAK) upstream kinases such as FMS-like tyrosine
kinase 3 (FLT3) [86]. FLT3 mutations, especially internal tandem duplication mutations
(ITDs) of the extracellular juxtamembrane (JM) domain, are the most frequent genetic
alterations in AML patients with a normal karyotype [13,87]. FLT3 regulates proliferation,
differentiation and survival in both myeloid and lymphoid lineage development through
STAT5 activation, as well as via PI3K and RAS signaling [88]. The FLT3-ITD induces
constitutive activation of STAT5 independently of upstream JAK2 or SRC and is resistant
to SOCS inhibition. While FLT3-WT activates STAT5 indirectly via the ERK pathway, the
mutated FLT3 directly phosphorylates STAT5 [89].

FLT3 mutations frequently co-occur with alterations in the NPM1 gene, leading to a
significantly worse prognosis [90]. Mutated NPM1 can translocate mutated FLT3 to the
endoplasmic reticulum and enhance STAT5 activation [91], as well as MYC and BCL2 ex-
pression in a bromodomain-containing protein 4 (BRD4)-dependent manner [92]. However,
phosphorylated STAT5 downregulates NPM1 expression via BRCA1-BARD1 ubiquitin
ligase signaling in human erythroleukemic cells. In addition to the crucial role of STAT5,
STAT3 also interacts with NPM1 and can transcriptionally enhance its expression [90]. FLT3-
ITDs also combine with mutations of DNMT3A, which seems to lead to the worst prognosis
for AML patients [13,93]. DNMT3A preserves DNA methylation patterns during replica-
tion [94] and mutated DNMT3A elevates the self-renewal capacity of HSC [95]. Increased
DNMT3 activity has been correlated with activation of STAT5 and hypermethylation of the
PTEN promoter in AML cells [96].

Another way in which the JAK-STAT pathway contributes to the pathogenesis of
AML is the reliance of leukemic cells on its signaling. AML cells carrying CEBPA or
CEBPA/CSF3R mutations are sensitive to the inhibition of the JAK-STAT pathway [97].
Similar sensitivity has been detected in AML cells expressing RUNX1–RUNX1T1 [98].
Furthermore, the gain of function mutation of the tyrosine kinase c-KIT (KITDD816V) is
frequently detected in AML patients [99,100] and is strongly associated with STAT3/STAT5
activation [26]. These data and several other studies highlight the role of STAT transcription
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factors, especially STAT3, STAT5A and STAT5B, in AML. Our STRING analysis illustrates
that among all STATs, STAT3 and STAT5 show the strongest connections to the most
frequent AML drivers, underlining their contribution to AML pathogenesis (Figure 2).
We therefore describe current approaches directly targeting STAT3 and STAT5 and their
upstream kinases (JAKs, FLT3) in pre-clinical and clinical studies for AML.

Figure 2. Protein–protein association analysis of STAT proteins and driver mutations in de novo
AML. Visualization of STRING protein–protein interaction network of STATs and frequently mutated
genes in de novo AML. Analysis includes physical as well as functional interactions of publicly
available data [101]. Orange lines show connections of STAT3 or STAT5. The fill color of the nodes
represents the mutation frequency of the genes [102]. The line width refers to the STRING interaction
score with a confidence cut-off score of 0.7. Connections/protein–protein associations between STATs
are illustrated in grey. STAT5A and STAT5B showed the same interactions and were therefore merged
to STAT5 for clarity of the figure.

3. JAK Inhibitors

Inhibition of JAK-STAT signaling via JAK1/2 inhibitor Ruxolitinib is a successful
approach in the treatment of MPNs. In rare cases MPNs evolve to secondary AML
(sAML), which provided the first rationale for investigating Ruxolitinib as a treatment
for sAML [103–107]. The understanding of the mutational landscape and its signaling
consequences led to the identification of hyperactivity of the JAK-STAT pathway in many
AML subtypes, independent of the JAK2V617F mutation [86]. Therefore, Ruxolitinib and
other JAK inhibitors are nowadays tested in AML preclinical settings with some having
reached clinical trials (Table 1, Figure 3).
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Table 1. Current clinical trials of JAK inhibitors in AML.

Drug Diseases Trials References

JAK1/JAK2 Ruxolitinib
(INCB18424)

AML, ALL, MDS, CML Phase II [108]

MPN, AML Phase II Combination with
Decitabine [109]

AML, ALL, MDS, CML Phase II [108]

AML in CR Phase II [110]

post MDS-AML Phase I/II Combination with
Cytarabine [111]

relapsed/refractory post-MPN
AML Phase I/II Combination with

Decitabine [112]

MPN, post-MPN AML Phase I/II Combination with
Decitabine [113]

post-MDS AML,
recurrent/refractory AML Phase I Combination with

Venetoclax [114]

Leukemia, MPD, solid tumor Phase I [115]

JAK2/FLT3

Fedratinib
(TG101348) MPN, AML Phase II Combination with

Decitabine [109]

Lestaurtinib
(CEP-701)

AML with FLT3 mutation Phase II Combination with
standard treatment [116]

AML with FLT3 mutation Phase II [117]

AML with FLT3 mutation Phase I/II Combination with
standard treatment [118]

Pacritinib (SB1518)
AML with FLT3 mutation Phase I Combination with

standard treatment [119]

AML, CML, MDS Phase I/II Monotherapy [120]

AML (acute myeloid leukemia), CML (chronic myeloid leukemia), CR (complete remission), MDS (myelodysplastic syndrome), MPD
(myeloproliferative disorder), MPN (myeloproliferative neoplasm). Clinical trials were searched on clinicaltrials.gov (June 2021) and
included based on the following criteria: JAK inhibitors in AML, exclusion criteria: terminated, withdrawn, suspended, or status unknown.

Ruxolitinib has been approved for the treatment of intermediate and high-risk MPNs
that are resistant or intolerant to hydroxyurea. In MPN, inhibition of JAK1/2 as a monother-
apy efficiently reduces symptoms [107]. Unfortunately, in the heterogeneous AML pa-
tient cohort, the anti-leukemic activity of Ruxolitinib as a single agent has been rather
poor [121,122]. However, preclinical models of pediatric acute megakaryoblastic leukemia
(AMKL) with enhanced activity but no known driver mutation in the JAK-STAT pathway
revealed Ruxolitinib as an effective drug [123]. This suggests that Ruxolitinib’s treatment
efficacy as single agent may be improved by a more personalized approach. Another strat-
egy to increase the therapeutic effect of Ruxolitinib in AML is the combination with other
agents. Decitabine, a DNA methylation inhibitor [124], was discovered to be very effective
in combination with Ruxolitinib in a mouse model of AML, driven by genetic knockout of
p53 and JAK2V617F mutation [125]. This combinatorial approach was further implemented
in clinical trials where it demonstrated a promising 29–42% of complete remission (CR) and
complete remission with incomplete hematologic recovery (CRi) during phase I/II trials
in patients with post-MPN AML. However, the overall survival remained poor [126–128].
Final results of the clinical trial are still awaited; however, the authors suggest that this
approach could be an alternative to aggressive chemotherapy for obtaining CR prior to
allogenic hematopoietic stem cell transplant [127]. A recent approval of a combination
of Decitabine with BCL2 inhibitor Venetoclax, which is also directed to AML patients
who are not eligible for intensive chemotherapy, diminishes the attractivity of this novel
combinatorial approach of Ruxolitinib and Decitabine [127,129]. In particular, preclinical
studies have shown promising results upon combining Venetoclax with Ruxolitinib. In

clinicaltrials.gov
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patient samples and xenograft mouse models Ruxolitinib can reverse the resistance to
Venetoclax induced by bone marrow (BM)-stromal cells [130].

Figure 3. Targeting the JAK-STAT signaling pathway in AML. Representation of multiple JAK (red) and STAT (blue)
inhibitors in clinical trials. Small interfering RNAs (siRNAs) and decoy oligodeoxynucleotide (dODN) are presented
in italics.

Among many combinatorial approaches being tested in preclinical settings, a combi-
nation of Ruxolitinib with Lysine Specific Demethylase 1 (LSD1) inhibitor recently demon-
strated a synergistic survival improvement in mouse models of CEBPA- and CSF3R-mutated
AML [97]. LSD1 demethylates histones H3K4 and H3K9, resulting in transcriptional regu-
lation, and its inhibition alone induces differentiation in a subset of AML cell lines [131].
The effect is profoundly enhanced by combination with Ruxolitinib [97].

Lestaurtinib is a multikinase inhibitor initially developed as a tropomyosin receptor
kinase A (TrkA) inhibitor, which also potently inhibits JAK2 and FLT3 [132]. FLT3-mutated
AML cells are sensitive to Lestaurtinib in vitro upon treatment with chemotherapeutic
agents [133,134]. The same approach was shown to be effective in vivo in a murine model
of FLT3-ITD AML [134]. On this basis, Lestaurtinib was assessed in clinical trials in
combination with classical chemotherapy in patients with relapsed FLT3-mutated AML.
Although a transient response appeared in treated patients, overall, no clinical efficacy was
observed in this therapeutic setting [135].

Pacritinib is a multikinase inhibitor with high specificity towards JAK2 over other
JAKs, but in addition it inhibits interleukin receptor-associated kinase (IRAK), Colony
stimulating factor 1 receptor (CSF1R) and FLT3 [136]. It is currently undergoing phase
II/III clinical trials for MPNs. Pacritinib not only effectively inhibits the growth of many
FLT3-ITD+ AML cell lines, but combined inhibition of JAK2 and FLT3 also overcomes
the resistance towards FLT3 inhibitors (e.g., Sunitinib), which is often associated with
overactivation of the JAK-STAT pathway [137]. Interestingly, a more recent report identified
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Pacritinib as being effective in AML mouse models and patient samples irrespective of
the mutational status of FLT3 and JAK2. The therapeutic effect was attributed to efficient
IRAK1 inhibition rendering this kinase a novel target in AML [138]. Indeed, a combined
treatment regimen of Pacritinib and chemotherapy was well tolerated and demonstrated
preliminary anti-leukemic activity in patients with FLT3 mutations [139].

Fedratinib is another small molecule targeting JAK2 and FLT3, which has recently been
approved for the treatment of MPN. In addition, Fedratinib inhibits BRD4 [140]. Preclinical
studies identified Fedratinib to be effective in reducing the leukemic burden in xenograft
models as a single agent and resulting in a stronger anti-leukemia response in combination
with cytarabine [141]. Similarly to Ruxolitinib, Fedratinib is currently undergoing phase II
clinical trials in AML in combination with Decitabine, but no results are available yet.

Momelotinib is a JAK1/2 inhibitor that has reached phase III clinical trials for
MPNs [142,143]. Although limited data exist concerning the effectiveness of Momelo-
tinib in AML, it has been shown to effectively inhibit the growth of AML cell lines and
disease progression in a xenograft model. Interestingly, the anti-leukemic effect was at-
tributed to the inhibition of the kinase IKBKE, a noncanonical IkB kinase, which drives
MYC expression [144]. Momelotinib, similarly to other JAK2 inhibitors, also shows in-
hibitory activity against FLT3. A recent study using AML cell lines and mouse models
of FLT3 mutated AML suggests that Momelotinib-mediated combinatorial inhibition of
JAK1/2, FLT3 and downregulation of MYC will be more effective than currently used FLT3
tyrosine kinase inhibitors (TKIs) [145].

Inhibition of JAKs in combination with chemotherapy or epigenetic modulator in-
hibitors seems to be a promising approach in the treatment of different subtypes of AML.
In contrast to MPNs, where the specific JAK2 inhibitors sparing other kinases are discussed
as the best treatment option [146], AML patients seem to benefit more from multikinase
inhibitors, which, in addition to JAK-STAT, target another pathway(s). This approach is
especially successful in FLT3 mutated AML. Although occurring with significantly lower
incidences, many other mutations in AML drive constitutive activation of the JAK-STAT
pathway [86]. Therefore, further studies identifying new targets resulting in synergistic
effects and finding new combinatorial inhibitors are required.

4. STAT Inhibitors

A substantial proportion of AML patients harbor mutations that cause hyperactivation
of JAK-STAT signaling [147]; therefore, great effort has been put into the development of
inhibitors that block phosphorylation mediated by JAKs, which have already been shown
to efficiently achieve indirect STAT inhibition [86]. However, many TKIs showed off-targets
besides JAKs, potentially causing more side effects that could be prevented by targeting
downstream proteins relevant for leukemogenesis [148]. Furthermore, JAK-independent
mechanisms activating STATs were also identified [149–151]. Therefore, direct interference
with STATs remains an attractive therapeutic approach. Unlike other STAT family members,
STAT3 and STAT5 have been extensively studied in hematopoietic malignancies and were
shown to be key factors in AML. In most AML patient samples of peripheral blood or
bone marrow, constitutive activation of STAT3 and/or STAT5 was observed [30,32,33,152].
Therefore, we will focus on those STAT family members and summarize the current
strategies in the development of inhibitors in the context of AML (Table 2, Figures 2 and 3).
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Table 2. STAT inhibitors investigated in AML.

Drug Type Target Diseases Trials References

STAT3

OPB-51602 Small molecule SH2
domain

AML, MM, NHL,
ALL, CML Phase I

Combination with
Decitabine or

Venetoclax
[120]

BBI-608 Small molecule
MM, Lymphoma,

AML, MDS,
CML, CLL

Phase I
Monotherapy or in
combination with
standard therapy

[153]

C188-9 Small molecule SH2
domain AML Preclinical Cell lines,

primary cells [154]

SD-36 PROTAC SH2
domain AML, ALCL Preclinical Cell lines,

xenografts [155]

AZD9150 ASO mRNA
AML, MDS,
DLBCL, HL,

NHL
Preclinical Cell lines,

xenografts [156,157]

CpG-STAT3-
siRNA siRNA mRNA AML, MM Preclinical

Cell lines, primary
cells, mouse

model, xenografts
[158]

CpG-
STAT3dODN

Decoy
oligo-nucleotide DBD AML Preclinical Cell lines, mouse

model, xenografts [159]

STAT5
AC-4-130 Small molecule SH2

domain AML, CML Preclinical Cell lines, primary
cells, xenografts [27]

BP-1-107
BP-1-108 Small molecule SH2

domain AML, CML Preclinical Cell lines [160]

AML (acute myeloid leukemia), ALCL (anaplastic large cell lymphoma), ASO (antisense oligonucleotide), CML (chronic myeloid leukemia),
CLL (chronic lymphocytic leukemia), DLBCL (diffuse large B cell lymphoma), HL (Hodgkin’s lymphoma), MDS (myelodysplastic
syndrome), MM (multiple myeloma), NHL (non-Hodgkin’s lymphoma). Clinical trials were searched on clinicaltrials.gov (June 2021) and
included based on the following criteria: STAT inhibitors in AML, exclusion criteria: terminated, withdrawn, suspended or status unknown.

4.1. STAT3

STAT3 has been shown to play an important role during myeloid homeostasis and
differentiation as well as proliferation [161,162]. Due to its ability to block myeloid differ-
entiation, its crucial role during leukemogenesis is highlighted [154,163]. Target genes of
STAT3 driving survival and proliferation include MYC, cyclin D1, BIRC5 (Survivin) and
BCL2. In line, upregulation of STAT3 is associated with protection from apoptosis [164].
Furthermore, constitutive STAT3 activity is associated with adverse patient outcomes [165]
and significantly reduced disease-free survival in AML patients [33]. STAT3 signaling is
frequently altered due to activating mutations [166,167] or constitutive stimulation of up-
stream signaling [34]. Based on those findings, STAT3 has become an attractive therapeutic
target in AML.

A small molecule targeting the SH2 domain of STAT3, OPB-51602, has entered clinical
trials for the treatment of hematological malignancies. It was shown to efficiently repress
proliferation by blocking the phosphorylation sites tyrosine705 and serine727 of STAT3 in
various human cancer cell lines [168]. More recent studies revealed that the inhibitor in
particular interferes with the mitochondrial function of STAT3, which was demonstrated
in human cancer cell lines in vitro [169]. In this phase I study, 20 patients with relapsed
or refractory hematological malignancies were treated daily based on the “3 + 3” design.
Besides being safe and well tolerated, common adverse events such as nausea, peripheral
sensory neuropathy and diarrhea were reported. Nevertheless, no clear therapeutic re-
sponse was obtained in this patient cohort, except two AML patients and one myeloma
patient that were reported with durable stable disease. However, the authors claim that
the optimal dose and daily dosing schedule for long-term administration was difficult to

clinicaltrials.gov


Biomedicines 2021, 9, 1051 12 of 21

determine in this heterogeneous patient cohort, which thus suggests a need for further
investigation in a different patient group [170].

The small molecule STAT3 inhibitor, C188-9, was demonstrated to inhibit G-CSF-
induced STAT3 activation thereby efficiently inducing apoptosis in primary pediatric
AML samples and AML cell lines [154]. The compound targets the phosphotyrosine (pY)
peptide binding site within the SH2 domain, subsequently preventing the interaction
with tyrosine kinases and dimerization. However, further studies mainly focused on its
antitumor activity in solid cancer such as head and neck squamous cell carcinoma [171]
and pancreatic cancer [172] demonstrating its potential to impair tumor growth in vitro.

BBI608, also known as Napabucasin, is a small molecule inhibitor blocking STAT3-
mediated gene transcription, whose antitumorigenic properties have been demonstrated in
phase Ib/II and phase II trials in solid cancers as a monotherapy and in combination with
standard treatment [173,174]. Recently, BBI608 was also shown to exhibit anti-leukemic
effects in human AML cell lines in vitro as well as in primary AML samples obtained
from 21 patients. In this study, BBI608 treatment led to a promising decrease in tumor
burden in an in vivo AML xenograft model using the human AML cell line MOLM-13.
Furthermore, combination treatment of BBI608 together with Venetoclax demonstrated
enhanced cytotoxicity in BBI608-resistant Kasumi-1 cells [175]. Taken together, these data
suggest BBI608 as a potential candidate for treatment in AML; however, this requires
further evaluation.

An emerging strategy to target proteins with small-molecule degraders are proteolysis
targeting chimeras (PROTACs), which rely on hijacking the cellular degradation machinery,
the proteasome. By using a heterobifunctional degrader, the protein of interest is linked
to an E3 ligase, which subsequently leads to polyubiquitination and degradation of the
target [176]. Due to this interplay, PROTACs are considered to have high selectivity.
Recently, a PROTAC called SD-36 was shown to selectively induce degradation of STAT3
over all other STATs in vitro and in vivo [155]. SD-36 consists of lenalidomide, a CRBN
ligand analog, and the STAT3 inhibitor SI-109, which recognizes the SH2 domain of STAT3.
In this study, SD-36 efficiently degrades STAT3 in vitro in various leukemia and lymphoma
cell lines. Besides inducing tumor regression in a MOLM-16 dependent xenograft tumor
model, it was also well tolerated in the in vivo setting. SD-36 is the first PROTAC targeting
STAT3, which demonstrates that modestly selective inhibitors such as SI-109 can also be
improved by using advanced technologies.

An attractive strategy that emerged with the fast progress of next-generation sequenc-
ing techniques involves antisense oligonucleotide (ASO) inhibitors, which are designed
based on the genetic sequence of the target gene. One promising STAT3 ASO, AZD9150,
showed efficiency when systemically administered in preclinical trials for lymphoma and
lung cancer (NSCLC) patients [156]. In vitro, AZD9150 achieved a decrease in STAT3
expression without affecting STAT1 and STAT5 levels in various human cancer cell lines. A
further phase Ib trial with 30 relapsed or refractory non-Hodgkin’s lymphoma patients was
undertaken, which identified DLBL patients as the best responding group [157]. Recently,
AZD9150 was shown to promote hematopoietic differentiation in primary MDS and AML
samples, also supporting its rationale for AML [177].

As a driver of immune evasion in cancer it is conceivable that inhibition of STAT3
enhances anti-tumor immune responses. Thus, Hossain et al. investigated small interfering
RNAs (siRNAs) conjugated to cytosine guanine dinucleotides (CpG) that target STAT3 gene
silencing. To deliver the inhibitor to Toll-like Receptor (TLR)-9 positive antigen-presenting
immune cells, the inhibitor molecule was linked to a TLR9 ligand and a CpG [158]. Ad-
ministration of CpG-STAT3 siRNA in a mouse model mimicking human inv(16) AML
resulted in disease regression in a CD8+ T-cell-dependent manner. Furthermore, STAT3
silencing/TLR9 triggering led to enhanced immunogenicity of primary AML cells. Based
on this immunostimulatory strategy, the decoy oligodeoxynucleotide (dODN) inhibitor
CpG-STAT3dODN was shown to block transcriptional activity of STAT3 by acting as a DNA
decoy molecule sequestering STAT3 in the cytoplasm. Xenografts using 14 AML patient-
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derived samples showed efficient immune-mediated eradication by CD8/CD4+ T cells in
mice. However, it could not be excluded that CpG-STAT3dODN can also partially block
STAT1 [159]. Nevertheless, this strategy based on the enhancement of T cell response might
not only be of clinical relevance for AML but also for other hematological malignancies.

4.2. STAT5

STAT5 plays a pivotal role especially in AML patients who harbor fusion-oncogenes
such as BCR-ABL and FLT3-ITD, which contribute to its constitutive activation [32]. For
AML patients harboring FLT3-ITD, which is one of the most commonly detected cytoge-
netic abnormalities, several upstream inhibitors targeting FLT3 kinase achieved promising
clinical outcomes [178]. Thus, the majority of pharmacological interventions targeting
STATs have focused on STAT3 and not STAT5. Two of those TKIs, namely Midostau-
rin and Gilteritinib, were also approved by the FDA for the treatment of FLT3 mutated
AML [179,180]. Although FLT3 inhibitors are nowadays part of standard therapy in FLT3
mutated AML patients, the occurrence of therapy resistance is an ongoing challenge. Thus,
using several approaches to target a disrupted signaling pathway might be an efficient
strategy to eradicate leukemic cells and prevent therapy resistance.

In 2012, Page et al. performed an in vitro screen focusing on salicylic- acid-containing
inhibitors potentially serving as phosphotyrosine mimicry to the SH2 domain of STATs [160].
Two of the lead compounds, BP-107 and BP-108, showed high binding affinity to STAT5
and efficiently suppressed its phosphorylation. Evaluation on the BCR-ABL positive K562
(CML) and FLT3-ITD positive MV-4-11 (AML) human cell lines revealed effective suppres-
sion of STAT5 phosphorylation and downregulation of target genes such as Cyclin D1,
Cyclin D2, C-MYC and MCL-1. Further compounds, SF-1-087 and SF-1-088, were identified,
which also showed high selectivity for STAT5 over STAT3 and STAT1.

As a novel SH2 inhibitor of STAT5, AC-4-130 was demonstrated to efficiently diminish
STAT5 activity in human AML cells lines and primary FLT3-ITD-driven AML cells. In
this preclinical setting, AC-4-130 exhibited anti-leukemic activity in vitro and in vivo in a
xenograft model based on MV-4-11 cells by selectively targeting STAT5 over STAT1 and
STAT3. Furthermore, it showed enhanced efficiency in combination with Ruxolitinib [27].

5. Conclusions and Outlook

To summarize, various strategies for the inhibition of deregulated JAK-STAT signaling
have demonstrated promising results in vitro and in mouse models with some compounds
reaching clinical trials for AML. However, the heterogenicity behind AML development
and progression might be an explanation for the diverse treatment outcomes. To address
this, a better understanding of the complex biology and the underlying mechanisms
involved in JAKs and STATs modulating AML progression is needed. For example, a recent
preclinical study identified strong dependency of rarely occurring MLL-AF10-driven AML
on JAK1 [86]. Thus, personalized approaches and identification of predictive biomarkers
might improve the therapeutic benefit from JAK inhibition. Due to their multifunctionality
as transcription factors, STAT proteins also have divergent functions depending not only
on the AML subtype. In the case of STAT3, it was shown that the two alternatively spliced
isoforms can have opposite roles in leukemogenesis [35], making it even more challenging
to predict the effects of STAT3 targeting. Further, as emerging chemoresistance in leukemic
cells is an ongoing challenge, which is reflected in the high relapse rate, it is important
to interfere with cancer drivers on different levels. As illustrated by the example of JAK
inhibitors, the most successful compounds are those that in addition to JAKs target another
pathway (e.g., FLT3). Such kinase inhibitors, as well as combinational treatment of JAK or
STAT inhibitors with other compounds, would be the best strategy to eliminate leukemic
cells efficiently before they develop resistance. Ruxolitinib-based combinatorial therapies
are continuously increasing according to clinical needs. This is the best-studied JAK1/2
inhibitor, but it did not fulfill expectations as a single agent due to modest antileukemic
activity in patients [121,122]. However, in combination with Decitabine [109,112,113,124]
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and also with Cytarabine [111], Venetoclax [114] or the STAT5 inhibitor AC-4-130 [27], it
showed promising results and increased AML treatment efficacy. Overall, clinical trial
efforts and financial incentives in the last decade have intensified the research on potential
therapies and have led to a surge in potential clinical applications and approvals. Ongoing
development of new JAK-STAT inhibitors with higher compound selectivity and better
disease-specificity is central to the management of AML.
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