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ABSTRACT

Biological networks are rich representations of the
relationships between entities such as genes or pro-
teins and have become increasingly complete thanks
to various high-throughput network mapping exper-
imental approaches. Here, we propose a method to
use such networks to guide the search for functional
sequence motifs. Specifically, we introduce Local En-
richment of Sequence Motifs in biological Networks
(LESMoN), an enumerative motif discovery algorithm
that identifies 5′ untranslated region (UTR) sequence
motifs whose associated proteins form unexpect-
edly dense clusters in a given biological network.
When applied to the human protein–protein interac-
tion network from BioGRID, LESMoN identifies sev-
eral highly significant 5′ UTR sequence motifs, in-
cluding both previously known motifs and unchar-
acterized ones. The vast majority of these motifs
are evolutionary conserved and the genes containing
them are significantly enriched for various gene on-
tology terms suggesting new associations between
5′ UTR motifs and a number of biological processes.
We validate in vivo the role in protein expression reg-
ulation of three motifs identified by LESMoN.

INTRODUCTION

Gene set enrichment analyses, where one identifies prop-
erties that are found in a set of genes of interest more of-
ten than expected by chance, are some of the most pow-
erful and commonly used approaches for the analysis of
large biological datasets. Here, the set of genes of interest
may correspond to those that are differentially expressed
between experimental conditions, cell types or diseases, tar-
geted by a given transcription factor or miRNA or encoding

a set of interacting proteins. The properties or annotations,
considered may originate from the functional annotations
of the gene ontology (GO) project (1), pathway databases
such as KEGG (2), disease-associations provided in the On-
line Mendelian Inheritance in Man repository (3) or more
comprehensively from the Molecular Signature Database
(MSigDB) (4). However, more generally, any mathemati-
cal function that separates genes into two sets–those that
possess the property and those that do not–can be used for
gene set enrichment analysis (see Figure 1A and B for an
example). Irrespective of the nature of the property consid-
ered, an enrichment for a given property suggests a direct
or indirect relationship between that property and the set
of genes, provided appropriate controls and statistical ap-
proaches are used. A typical strategy to test for the enrich-
ment of a property (e.g. originating from GO or MSigDB)
in a given set of genes S taken from the whole set of genes �
of an organism is to perform a hypergeometric or Fisher’s
exact test (5–8).

The type of gene sets used as input for the above-
mentioned analyses can be characterized as ‘unstructured’,
since each gene they contain contributes equally to the
enrichment analysis (9). An extension of such a strat-
egy was explored by the Gene Set Enrichment Analysis
(GSEA) computational tool (10) and a number of related
approaches (11–15). Instead of separating genes into those
that are ‘of interest’ and those that are not and seeking prop-
erties that are enriched in the former, GSEA takes as in-
put a ranked list of genes based on their ‘level of interest’
with respect to a particular measure (e.g. over-expression in
a given condition) and identifies properties whose distribu-
tion in the ranked list is non-uniform (Figure 1C). In that
sense, we could say that GSEA takes advantage of a ‘weak
structure’ defined on � by the measure of interest, to iden-
tify annotations that are non-randomly distributed in this
structured space.
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In previous work, we developed GoNet, a GO enrich-
ment analysis that can be applied to much richer structures
such as those defined by biological networks, e.g. protein–
protein interaction (PPI) networks (9). In that case, proper-
ties (GO terms) of interest were those where the genes (or
proteins) with the property were non-randomly distributed
in the network, i.e. more clustered than expected by chance,
representing the so-called local enrichment of the property
(Figure 1D).

Although not typically presented this way, sequence mo-
tif discovery algorithms such as expectation-maximization
algorithms (MEME (16)), Gibbs sampling (AlignACE
(17)), word statistics approaches (YMF (18)) or ensemble
approaches (SeSiMCMC (19), Amadeus (20)) also fall un-
der the umbrella of enrichment analysis. Here, the proper-
ties of interest are the presence/absence of a particular se-
quence motif in a gene’s sequence, its regulatory regions or
the protein it encodes and one seeks motifs that are enriched
in a given set of genes compared to a control set. The idea
behind GSEA was also used to generalize motif discovery
approaches, where one now considers an ordered list of se-
quences (ranked by differential expression, binding affinity
to a given transcription factor or other relevant measures)
and identifies motifs that are unevenly distributed in the list
(21–24). Another group recently identified RNA regulatory
elements that are involved in the gene regulatory network
of Trypanosoma brucei using a graph-based approach (25).

In this paper, we introduce the Local Enrichment of
Sequence Motifs in biological Networks (LESMoN) ap-
proach, a sequence motif discovery approach that is guided
by a biological network. Given a biological network (here,
a PPI network) with sequences associated to each node,
LESMoN identifies short sequence motifs whose contain-
ing sequences are unexpectedly clustered in the network, i.e.
locally enriched motifs.

We use LESMoN to identify functional sequence mo-
tifs found in genes’ 5′ untranslated regions (UTRs), which
are sequences that play key roles in post-transcriptional
regulation. Specific 5′ UTR primary and secondary struc-
ture motifs regulate translation (26–30). For example, the 5′
UTRs of ribosomal genes and other genes involved in pro-
tein synthesis often contain a 5′ TOP motif (31,32) that reg-
ulates translation initiation of mRNAs (33). Furthermore,
5′ UTRs often contain intracellular localization elements,
which are required for the binding of their mRNAs to cer-
tain cell structures such as membranes (34) and synapses
(35). DNA that encodes 5′ UTRs can also harbor tran-
scriptional regulatory regions such as transcription factor-
binding sites. Consequently, computational approaches that
improve our understanding of motifs located in UTRs, such
as the comparative genomics approach proposed by Xie et
al. (36), are likely to be valuable to better understand both
transcriptional and post-transcriptional regulation.

As we show in this paper, LESMoN is capable of identify-
ing a large set of sequence motifs that associate with specific
functional subnetworks, including motifs involved in tran-
scription, translation, splicing, cell cycle processes and oth-
ers. LESMoN identified more 5′UTR motifs than GoNet
and a conventional motif discovery approach. Motifs iden-
tified by LESMoN include both previously known func-
tional motifs (e.g. 5′ TOP motifs), as well as currently un-

characterized ones. Additional evidence (inter-species con-
servation, position, strand biases, GO enrichment of corre-
sponding proteins, etc.) points to specific functions for most
motifs. We validate the functional role of some of the mo-
tifs identified by LESMoN in vivo. All motifs tested showed
a significant protein expression response upon their muta-
tion.

MATERIALS AND METHODS

Method overview

The goal of our approach is to find 5′ UTR sequence motifs
for which the associated protein products exhibit a higher
degree of clustering in a given PPI network than what would
be expected by chance. We enumerate all possible motifs of
a given length and over a given alphabet (described below)
and test whether the sequences that contain the motif are
clustered in the network. To this end, we present a measure
of the degree of clustering of a subset of nodes in a network
and propose efficient algorithms to evaluate the statistical
significance of that clustering. Should the proteins associ-
ated with a given motif be significantly clustered, this would
suggest that the motif is linked directly or indirectly to the
biological mechanism causing the clustering of the associ-
ated proteins in the PPI network. We also present strategies
to evaluate the biological significance of the motifs identi-
fied by the above-mentioned approach.

Protein–protein interaction network

We tested our approach on the human PPI network
downloaded from the BioGRID database (version 3.2.97)
(37,38), one of the most comprehensive human PPI net-
work available. The network contains 14 113 proteins form-
ing 127 433 unique pairwise interactions. Even if this net-
work can be treated as directed because of the nature of
some of the experiments used to build it (e.g. affinity pu-
rification involving a bait and prey), we consider it as undi-
rected since edge directionality is only an artefact of exper-
imental methods and is generally irrelevant when consid-
ering the real biological data in this context. We extracted
the largest connected component of that network and re-
moved four proteins (CUL3, SUMO2, ELAVL1 and UBC)
with an exceedingly large number of interactions (>1000),
as those negatively affect LESMoN’s performances by con-
necting proteins that are for the most part unrelated. The
resulting network G = (V, E) contains |V| = 12133 pro-
teins and |E| = 94490 interactions.

5′ UTR motif enumeration

5′ UTR sequences of the mRNAs encoding proteins present
in the human BioGRID PPI network were obtained from
the RefSeq gene annotation database through the UCSC
Table Browser (28 Feburary 2013). When a protein was as-
sociated with multiple 5′ UTR variants, their union was
associated with that protein. To avoid issues related to
incomplete or inaccurate annotations of start codons of
some transcripts, we only considered for each 5′ UTR
the first 500 nts (at most) downstream of the transcrip-
tion start site (TSS). This includes the full length of
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Figure 1. Examples of various notions of enrichment. (A) Each marker is a gene, which can has two properties: squareness and/or shade. (B) A set S of
interest (e.g. differentially expressed under some experimental condition) is enriched for the squareness property but not the shade property. (C) In a ranked
list of genes L (e.g. based on the degree of differential expression), the shade property is enriched at the top of the list. (D) In a gene network G, the shade
property is locally enriched in the top-right portion of the graph.

>90% of 5′ UTRs in our dataset. We then enumerated
sequence motifs of length 8 over the nucleotide alphabet∑ = {A, C, G, U, R, Y, N}, where R = A|G, Y =
C|U and N = A|C|G|U. A protein was annotated as con-
taining a given motif if the corresponding 5′ UTR had at
least one match to that motif, considering only the forward
strand (i.e. matches to the reverse complement sequence
were not considered). Evaluating the statistical significance
of the clustering of motifs that are associated to >1500 pro-
teins would require a large amount of computational time.
LESMoN therefore ignores such motifs that are likely to
contain several degenerate characters and to be of limited
biological interest.

Clustering measure

We used the Floyd–Warshall’s algorithm (39,40) to calcu-
late the distance matrix dG defined by G, where dG(u, v) is
the length of the shortest path in G between nodes u and
v. Now let Vm ⊆ V be the set of all proteins annotated with
the motif m. We previously defined a distance measure for
the proteins in Vm called the total pairwise distance (TPD),
defined as the sum of all pairwise distances of the proteins
in Vm (9). This measure is however sensitive to outliers. For
instance, if Vm consists of a group of proteins that are tightly
clustered but also other proteins that are at a large dis-
tance of the clustered group, then the TPD of Vm will be
fairly large. In addition, not all occurrences of a given mo-
tif are expected to be functional (some may simply occur by
chance), therefore we also do not expect all occurrences of a
motif to be clustered in the network. Hence, we propose an

alternative measure, called the top percent pairwise distance
(TPPD), that accounts for this situation and focuses only on
the proteins in Vm that are the most clustered. Let Nl

m(u) ⊆
Vm \ {u} be the set of l closest nodes from u in Vm and de-
fine Dl

m(u) = ∑
v∈Nl

m(u) dG(u, v). In other words, Dl
m(u) is the

sum of the l smallest distances between u and other proteins
that are annotated with m. Define core(Vm) ⊆ Vm as the sub-
set of l nodes of Vm for which the Dl

m values are the small-
est and let Tl

m = ∑
u∈core(Vm) Dl

m(u). Then, if Vm contains a
tight cluster of size l, it will correspond to core(Vm) and Tl

m
will be small. Empirical investigations suggested that choos-
ing l = 0.1 · |Vm| (top 10%) yields the most high-confidence
results over l = 0.05 · |Vm| (top 5%) and l = 0.2 · |Vm| (top
20%). We thus used T PPD(Vm) = T0.1·|Vm|

m to identify 5′
UTR motifs in the BioGRID network.

Clustering statistical significance

We previously showed how to evaluate the statistical signif-
icance of T PD(Vm) for a given Vm and a given network (9).
However, that approach only works for small sets of pro-
teins (|Vm| < 100), uses a null model that is not appropri-
ate here and cannot be easily extended to the TPPD. The
approach presented here is therefore slightly different. This
strategy computes the distribution of the random variable
Sk = T PPD(R), where R = {r1, r2, . . . , rk} ⊆ {1, . . . , |V|}
is a randomly selected subset of k proteins. Contrary to our
previous work where every node in the network was chosen
to be part of R with equal probability, a more appropriate
null model is one where the probability that a given protein



10418 Nucleic Acids Research, 2017, Vol. 45, No. 18

is selected in Sk is proportional to the length of its 5′ UTR.
To evaluate the statistical significance of the clustering of
the proteins associated with a motif m, a P-value is then cal-
culated as follows: P-value (m) = Pr[S|Vm| ≤ TT PD(Vm)].
In order to compute clustering P-values, we introduce two
methods to approximate the distribution of Sk, one for pro-
tein sets with small cardinality (|Vm| ≤ 300) and another for
larger sets (|Vm| > 300).

Monte Carlo sampling

We showed previously that the exact computation of the
distribution of Sk with the TPD distance measure is NP-
hard (9). Since the TPPD is a generalization of the TPD, the
same complexity result carries. We therefore cannot expect
to perform this calculation exactly in polynomial time. Nev-
ertheless, the statistical significance of the level of cluster-
ing of a set of proteins can be estimated using Monte Carlo
sampling, where k proteins are repeatedly sampled and the
TPPD evaluated in order to estimate the distribution of Sk.
Because the time required to compute TPPD(Sk) is O(k2) in
the worst case (once the full pairwise distance matrix dG is
computed) and this procedure needs to be repeated a large
number of times (e.g. 106 times to obtain a P-value accu-
racy of ∼10−6), it is only reasonably feasible for values of k
≤ 300. However, for most motifs m, |Vm| > 300, so a faster
approach is required.

Normal approximation

We previously demonstrated that the distribution of Sk for
TPD can be estimated using a normal distribution when k
and |V| are large (9). We therefore propose to estimate the
distribution of Sk when k > 300 with a normal distribution
N (μk, σ

2
k ) . For each value of k between 301 and 1500, we

estimate μk and σ 2
k using Monte Carlo sampling (sample

size 105). The estimated normal distributions are then used
to obtain the desired P-values. The significance of the clus-
tering of motifs present in >1500 5′ UTRs is not assessed
due to the excessive computational burden. This does not
represent a big loss, as these motifs are likely to be largely
composed of degenerate characters (R, Y and N) and to
have very little biological significance. We also use this nor-
mal approximation for cases where k ≤ 300 and where the
P-value estimated by the full Monte Carlo sampling from
the previous section is too small to be estimated accurately
(<10−6; i.e. none of the 1 000 000 random samples had a
TPPD ≤ T PPD(Vm)).

False discovery rate calculation

Since a large number of 5′ UTR motifs (at most 78 ≈ 5.8
millions) are tested for the clustering significance of their as-
sociated proteins, multiple hypothesis testing is a significant
issue. These statistical tests are far from being independent,
since many motifs tested are variants of each other, making
a P-value correction such as a Bonferroni correction (41)
overly stringent. To address this issue, we scrambled the 5′
UTR sequences in our dataset to estimate a false discov-
ery rate (FDR) for any given clustering P-value threshold.
More precisely, the order of the nucleotides of each 5′ UTR

sequence is permuted within non-overlapping windows of
10 nts, in order to preserve local sequence properties such
as GC content. Motif clustering P-values are then obtained
for this scrambled dataset, using the same procedure as de-
scribed above. Let M(p) be the number of motifs that ob-
tained a P-value at most p in the actual set of sequences
and N(p) be the number of such motifs in the scrambled
dataset. We then calculate the FDR for a given P-value p
as F DR (p) = N(p)/M(p).

Grouping 5′ UTR motifs into families

To facilitate the analysis and reduce the redundancy of the
motifs LESMoN detected, we used a hierarchical cluster-
ing approach to group similar motifs into families based on
the overlap of the sets of proteins they are associated with.
Specifically, let m1 and m2 be two motifs and Vm1 and Vm2

be their associated sets of proteins. We define the similarity
between m1 and m2 as

s (m1, m2) =
∣∣Vm1 ∩ Vm2

∣∣

min
(∣∣Vm1

∣∣ ,
∣∣Vm2

∣∣)

and turn this into a distance measure d (m1, m2) =
1/s( m1, m2) − 1.

A hierarchical clustering tree is then constructed using
the average linkage algorithm (42) (using the ‘cluster’ R
package (43)) with this distance measure. The resulting tree
is displayed using the A2R R package: (http://addictedtor.
free.fr/Download/A2R.zip). A cut in the tree is performed
to identify a reasonable number of motif families (200), each
of which can be represented using a Weblogo (44). The mo-
tif that obtained the best clustering P-value in a given family
is selected as the representative member of the family.

Benchmark with conventional motif discovery tool

Since there is no single computational method that per-
forms the same analysis that LESMoN executes, we bench-
marked our method against two state-of-the-art tools that,
when combined together, identify sequence motifs that are
clustered in PPI networks. The Markov Clustering algo-
rithm (MCL) (http://micans.org/mcl/) (45,46) was first used
to identify protein clusters, using the recommended infla-
tion parameter value of 2. The Multiple EM for Motif Elic-
itation (MEME) (47) software package was then run to
detect motifs of length 8 that would be over-represented
among the 5′ UTR of the genes in these clusters (E-value <
1). To the best of our knowledge, the coupling of these two
methods was the closest approach to LESMoN at the time
of writing this paper. Also, for each cluster, the locally ran-
domized 5′ UTR sequences of the same proteins were also
submitted to MEME to estimate the FDR of this approach
as the ratio of the number of motifs with an E-value < 1
in locally randomized sequences and the number of motifs
with an E-value < 1 in real 5′ UTR sequences.

5′ UTR motif conservation

To further explore the biological significance of the
motifs detected by LESMoN, we evaluate their level

http://addictedtor.free.fr/Download/A2R.zip
http://micans.org/mcl/
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of evolutionary conservation. For each motif m, we
compute the fraction Cons(m) of motif occurrences
in core(Vm) whose middle position is contained within
a highly conserved genomic region among placentals
(phastConsElements46wayPlacental (48) from the UCSC
Genome Browser). We then compute the conservation fold-
enrichment (m) = Cons(m)/Cons(∗), where Cons(∗) is the
fraction of all human 5′ UTR bases located in conserved re-
gions.

Gene ontology enrichment analysis

To investigate the mechanisms in which the significantly
clustered motifs identified by LESMoN may be involved,
we used Ontologizer (8) to determine, for each motif m,
whether the set of proteins in core(Vm) is enriched for par-
ticular Gene Ontology terms, i.e. molecular functions, bio-
logical processes or cellular components (with the complete
set of proteins V as background).

5′ UTR motif strand specificity

In order to evaluate the possibility of a motif m to play a
functional role at the mRNA level rather than the DNA
level (i.e. post-transcriptionally rather than transcription-
ally), we measured its strand specificity ss, defined as the
ratio of the number of occurrences of m to the number
of occurrences of its reverse complement in all 5′ UTRs
represented in the network. The expectation is that post-
transcriptional regulatory motifs have a high strand speci-
ficity (>1), whereas most transcriptional regulatory ele-
ments, whose function is often independent of strand ori-
entation, may have a strand specificity close to 1. The sta-
tistical significance of a strand specificity ss of a motif m
is assessed by computing a P-value from the cumulative
distribution of the normal distribution N (np,

√
np(1 − p)),

which approximates the binomial distribution B(n, p),
where n is the sum of the number of occurrences of m in
the positive and reverse strands and p = 0.5. The P-values
are then adjusted for multiple hypothesis testing with the
Benjamini–Hochberg procedure (49). A motif with a strand
specificity adjusted P-value < 0.05 is considered to be likely
to have a post-transcriptional involvement. It is important
to note that the strand specificity is calculated from the en-
tire set of sequences in the biological network and not solely
from the motif occurrences in the core of a motif. It is there-
fore only used as a measure to hint at a post-transcriptional
role of the motif.

In vi vo validation of 5′ UTR motifs

Human cDNAs were obtained from the Mammalian
Gene Collection. Missing sequences at the 5′ ends of the
cDNAs were added by successive rounds of PCR ampli-
fication so that the 5′ UTR regions would correspond to
NCBI Reference Sequences for SFRS1 (NM 006924.4),
SFRS3 (NM 003017.4), RPS15A (NM 001030009.1),
RPL21 (NM 000982.3), RPL4 (NM 000968.3) and RPL27
(NM 000988.3). The resulting amplicons corresponding to
the full-length 5′ UTR and complete protein-coding region

were cloned into p3xFLAG-CMV-14 expression vector
(Sigma-Aldrich).

Site-directed mutagenesis was performed so that the
NCGCYAUU motifs located in the 5′ UTR of SFRS1
(Chromosome (Chr) 17, position 56 084 602–56 084 609
as annotated by UCSC Genome Browser on Human Feb.
2009 (GRCh37/hg19) Assembly) and SFRS3 (Chr 6: 36 562
139–36 562 146) were mutated correspondingly to the pat-
tern found in Figure 4 and Supplementary Figure S1. The
same procedure was done for the YCGYYAUY motifs of
RPS15A (Chr 16: 18 801 643–18 801 650) and RPL21 (Chr
13: 27 825 709–27 825 716) and the UUCCUUUY motifs
of RPL4 (Chr 15: 66 797 180–66 797 187) and RPL27 (Chr
17: 41 150 453–41 150 460). Positions in the motifs that were
found to be conserved across placental mammals (Phast-
Cons elements (48)) were chosen for mutagenesis.

The expression vectors were transfected into HEK 293
cells using Lipofectamine 2000 (Life Technologies) ac-
cording to the manufacturer’s specifications. The cell line
was obtained from ATCC (CRL-1573) and tested for my-
coplasma using MycoAlert detection kit (Lonza). The
DNA used in these experiments was reduced to 1/20th of
the recommended amount in an effort to prevent possible
artifactual effects that might stem from over expression of
these transcripts. The next day, cells were harvested and
lysed with Radioimmunoprecipitation assay (RIPA) buffer
(150 mM NaCl; 1% NP-40; 0.5% sodium deoxycholate;
0.1% sodium dodecyl sulphate (SDS); 50 mM Tris, pH 8.0;
cOmplete protease inhibitor cocktail (Roche)).

Twenty micrograms of proteins from the cell lysate were
separated by SDS-polyacrylamide gel electrophoresis. Fol-
lowing electrotransfer to a PVDF membrane, western blot-
ting was performed using primary anti-FLAG antibody
(M2; Sigma-Aldrich: F3165) and anti-� tubulin antibody
(TUB 2.1; Sigma; sc-58886) or anti-GAPDH antibody (FL-
335; Santa Cruz; sc-25778) as loading controls. Secondary
anti-mouse IgG antibody linked to horseradish peroxidase
(GE Healthcare; NA931V) was used for detection. The
membranes were then incubated with enhanced chemilumi-
nescence (ECL) prime western blotting detection reagent
(GE Healthcare) and scanned using an ImageQUANT
LAS-4000 biomolecular imager (GE Healthcare). Relative
fluorescence units corresponding to the amounts of ex-
pressed FLAG-tagged proteins were determined with Im-
ageQuant TL 1-D gel analysis tool (Version 8.1). The sta-
tistical significance assessment of the differential expression
between mutants and wild-type (WT) was performed using
a two-tailed unpaired Student’s t-test.

Implementation and availability

The proposed computational tools are implemented in
a platform independent Java program called LESMoN.
LESMoN along with the complete GO enrichment anal-
ysis results for the 1873 motifs with clustering P-values
< 10−6 and the nine motifs identified with the alternative
method are available as supporting material for download
at: http://www.cs.mcgill.ca/~blanchem/LESMoN.

http://cs.mcgill.ca/~blanchem/LESMoN/
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Figure 2. Number of motifs originating from both actual and locally ran-
domized 5′ UTR sequences (circular and triangular markers) and false dis-
covery rate (FDR) for a given clustering P-value threshold (square mark-
ers, on the secondary axis) for top percent pairwise distance (TPPD) of top
10%.

RESULTS

LESMoN is an approach that identifies short sequence
motifs that occur in a set of sequences that are clustered
with respect to a given biological network. Specifically,
LESMoN takes as input an undirected biological network
G = (V, E), where each node v ∈ V is associated with
a sequence. In this paper, LESMoN is applied to the Bi-
oGRID protein–protein interaction network (37,38) and
the sequences associated with proteins are the 5′ UTRs. The
network contains 12 133 proteins and 94 490 unique pair-
wise interactions identified using various technologies and
experimental protocols (see ‘Materials and Methods’ sec-
tion). A set of 3 558 817 mRNA motifs of length 8 were
evaluated for clustering in G. Figure 2 shows the number
of motifs identified at various clustering P-value thresh-
olds using the top 10% TPPD (l = 0.1 · |Vm|; see ‘Materials
and Methods’ section). 1873 motifs obtained a P-value <
10−6, which corresponds to a FDR <10% (estimated based
on locally permuted 5′ UTR sequences, see ‘Materials and
Methods’ section). We selected this set of motifs for fur-
ther analyses (See Supplementary Table S1 for a list of all
identified motifs). We also note that 269 motifs obtained a
P-value below 10−10, which corresponds to a lower FDR
(<0.02) (See Supplementary Methods and Supplementary
Figure S2 for more details on the clustering P-value distri-
bution). We also evaluated the performances of LESMON
using the top 5% (resp. 20%) TPPD and found inferior pre-
diction power, obtaining only 1211 (resp. 528) significant
motifs (FDR <10%; see ‘Materials and Methods’ section
and Supplementary Figures S3–5), 88% of which were also
identified using the top 10% TPPD. Indeed, top 5% TPPD
appears to not be as discriminative as top 10% for the dif-
ferentiation of the different levels of clustering in the net-
work. On the other hand, top 20% seems to capture too
much noise in the clustering measure for a given motif.

If a sequence motif m is deemed significantly clustered in
the network by LESMoN, a more specific version of m or a
motif similar to m is likely to also be found significant. To
reduce the redundancy in the set of 1873 motifs identified
by LESMoN, we used a hierarchical clustering algorithm

based on the similarity of the sets of proteins for which the
5′ UTR sequences contain the motifs (See ‘Materials and
Methods’ section). This resulted in the identification of 200
motif families, ranging in size from 1 to 149 motifs (Figure
3A). For each family, the motif with the lowest clustering
P-value was retained as the representative motif (Supple-
mentary Table S2). Finally, for each of these motifs we de-
fined the core of a motif as the subset of proteins associated
to the motif that are the most clustered within the network
(see ‘Materials and Methods’ section).

LESMoN identifies evolutionarily conserved 5′ UTR motifs

Interspecies sequence conservation is generally evidence
of function (50–52) and functional portions of 5′ UTRs
have been mapped based on this principle (53–55). To as-
sess the biological relevance of each of the motifs identi-
fied by LESMoN, we determined the fraction of matching
sequences that overlaps regions that are highly conserved
within placental mammals (PhastCons elements (48)) and
computed a conservation fold-enrichment by comparing
it to the overall fraction of 5′ UTR nucleotides that are
highly conserved (27%; see ‘Materials and Methods’ sec-
tion). The motif occurrences in the cores of >54% of the
200 motif family representatives had a high conservation
fold-enrichment (>1.5) (Figure 3A). This suggests that oc-
currences of motifs that are clustered in the network are of-
ten evolutionary conserved and therefore likely to be bio-
logically functional. Figure 3B presents the 17 motifs for
which the conservation fold-enrichment was ≥2.25. This
high fold-enrichment threshold was selected for presenta-
tion purposes to narrow down the list of motifs to those
with strongest evidence of selection. These motifs will be an-
alyzed in greater depth below. The remaining significantly
clustered motifs are reported in Supplementary Table S2.

Positional enrichment and strand specificity of 5′ UTR motifs

Even though motifs found by LESMoN are present in 5′
UTRs, their primary function may still be as transcriptional
regulators at the DNA level. We posit that motifs whose
density is higher in 5′ UTRs than in flanking promoters
(See Figure 3C) are more likely to be involved in post-
transcriptional regulation. Figure 3C provides the occur-
rence profiles of the 17 selected motifs, as well as that of their
reverse complement, in promoters, 5′ UTRs, coding exon se-
quences and locally randomized sequences. Upon visual in-
spection of these occurrence profiles, we notice that the mo-
tifs are sometimes enriched toward the beginning or toward
the end of the 5′ UTRs. For some motifs, such as GURG
CGGN (motif 8, Figure 3B) and NCGCYAUU (motif 13,
Figure 3B), the occurrences suddenly increase immediately
downstream of the TSS, suggesting a post-transcriptional
role, while other motifs, such as CGYRRCGG (motif 7,
Figure 3B) and UNRCGNGA (motif 10, Figure 3B) are
more symmetrically distributed around the TSS, suggest-
ing a role in transcriptional regulation. Table 1 lists these
17 motifs along with supplementary information such as
the strand specificity (See ‘Materials and Methods’ section)
and curated GO term enrichments of their associated core
proteins.
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Figure 3. Significantly clustered 5′ UTR motifs in the BioGRID human protein–protein interaction network. (A) LESMoN identified 200 motif family
representatives with clustering P-values < 10−6 that are displayed in a hierarchical clustering tree. Conservation fold enrichment, clustering and GO
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Proteins associated with evolutionary conserved motifs iden-
tified by LESMoN are significantly enriched with multiple
GO terms

To further investigate the biological significance of each mo-
tif m identified by LESMoN, we asked if GO terms were
enriched in the set of proteins of the core associated with
m. Figure 3A shows a subset of the GO terms that were
found to be enriched in the set of proteins associated with
the 200 family representative motifs (See ‘Implementation
and Availability’ section). A total of 72% of the motif fam-
ily representatives, including all of the 17 selected motifs,
are associated with proteins enriched for at least one GO
term (Corrected enrichment P-value < 0.001; Figure 3A).
Table 1 reports curated GO terms for these 17 conserved
motifs. As mentioned previously, 5′ TOP motifs, which are
CU-rich motifs located at the 5′ end of 5′ UTRs, are known
to regulate mRNAs of proteins involved in translation and
elongation. Motifs matching or highly resembling 5′ TOP
motifs were found to be significantly clustered by LESMoN,
since the proteins they are associated with, mostly riboso-
mal proteins, are tightly interacting in the protein–protein
interaction network (32). Four of the highly conserved fam-
ily representative motifs, namely UUCCUUUY (motif 1,
Figure 3B), CUCUUUYC (motif 2, Figure 3B), YYUU-
UCCG (motif 3, Figure 3B) and YYYUUYCG (motif 4,
Figure 3B) are associated with proteins that are statisti-
cally significantly enriched for GO terms related to the ribo-
some and translation. Of note, all of these motifs are asso-
ciated with a strand specificity close to 1, with the exception
of YYUUUCCG (motif 3, Figure 3B; strand specificity =
1.31, adjusted P-value = 0.008) hinting that they might be
involved in transcriptional regulation, a behavior that is not
typically associated to 5′ TOP motifs. The YYUUUCCG
motif does however contain the 5′ TOP element of RPS27
(5′-CUUUCCG). Interestingly, it was previously reported
that the mutation from a C to a U at Chr1: 153963239,
the TSS of RPS27, causes the 5′ TOP motif to expand (5′-
CUUUUCCG) and is associated with a higher frequency of
melanomas (56).

Five of the seventeen highly conserved motifs (NCGCYA
UU (motif 13, Figure 3B), CCRUUUYG (motif 11), CG
NCRUUY (motif 12), CCGYYAYY (motif 14) and YCGY
CRUY (motif 16) were found to be significantly enriched
with GO terms related to mRNA processing and splicing,
suggesting that such motifs may be involved in the regula-
tion of the spliceosomal machinery. NCGCYAUU (motif
13, strand specificity = 1.68, adjusted P-value = 6.96·10–6),
CCRUUUYG (motif 11, strand specificity = 2.29, adjusted
P-value = 6.95·10–9) and CGNCRUUY (motif 12, strand
specificity = 1.44, adjusted P-value = 2.83·10–6) are all
associated with high strand specificity, suggesting a post-
transcriptional role for these motifs.

In addition, proteins associated with the closely related
YCGYYAUY (motif 17, strand specificity = 1.25, adjusted
P-value = 0.004), YYCGCYAU (motif 15, strand speci-
ficity = 1.76, adjusted P-value = 1.37·10–6), UYYCGCNA
(motif 6, strand specificity = 0.86, adjusted P-value � 1)
and UYUCGCNR (motif 5, strand specificity = 1.09, ad-
justed P-value = 0.15) motifs were found to be enriched
with ribosomal proteins and translation related GO terms.
While these motifs are CU-rich, they do not share the pro-
file of typical 5′ TOP motifs. This finding suggests an alter-
native regulatory motif for some ribosomal proteins. Both
YCGYYAUY (motif 17, Figure 3B) and YYCGCYAU
(motif 15, Figure 3B) presented high strand specificities (Ta-
ble 1). Other motifs such as GURGCGGN (motif 8, Fig-
ure 3B) and UNRCGNGA (motif 10, Figure 3B) showed a
significant enrichment for proteins localized in the nucleus.
In addition, GURGCGGN (motif 8, Figure 3B) is associ-
ated with a high strand specificity (1.38, adjusted P-value =
7.05·10–11). These results could hint at a potential mRNA
localization role of such a motif in 5′UTRs, even though the
majority of known perinuclear localization motifs are situ-
ated in 3′UTRs (57). Defining the precise role of this mo-
tif would require additional experiments and is beyond the
scope of this study.

Benchmark against GoNet and conventional motif discovery
method

We attempted to identify clustered 5′UTR motifs in the hu-
man BioGRID PPI network using our previously published
approach GoNet. To this end, GO terms were replaced by
the set of 5′ UTR motifs of length 8. As discussed in the
‘Materials and Methods’ section, GoNet methodological
limitations prevented the detection of 5′ UTR motifs that
are clustered in the network. We also benchmarked our
approach on the human BioGRID PPI network by submit-
ting it to the MCL and using the MEME software package
(see ‘Materials and Methods’ section) to identify enriched
motifs in each of the clusters identified. MCL identified
1810 clusters containing at least 2 proteins, from which
MEME identified nine 5′ UTR motifs with a FDR = 22%
(Supplementary Table S3 and Figure S6). LESMoN clearly
displays a greater sensitivity and identified more 5′ UTR
motifs than this conventional motif discovery strategy. This
is likely due to the fact that LESMoN has the ability to
analyze in their entirety large overlapping clusters that are
broken into smaller clusters by the MCL analysis. Inter-
estingly, the two motifs that obtained the lowest E-values
with the MEME analysis ([UC]UC[UC]UU[UC][CU]
and UUU[UAG][CUG][UA]UU) correspond to motifs
that were also detected by LESMoN: CUCUUUYC and
UUCCUUUY (Table 1) for the first MEME motif and
YUUYCUUU (Supplementary Table S1) for the second.
Of all nine motifs identified with the alternative approach

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
enrichment P-values for each motif are color-coded. GO enrichment P-values were computed with Ontologizer (8) using a Fisher’s exact test. The 36 GO
terms shown here are those that are significantly (P-value < 10−7) associated with the most motifs, considering only terms that include ≤ 500 human genes.
(B) The family representative motifs with a conservation fold enrichment ≥ 2.25 are shown as sequence logos (generated by Weblogo (44)), where nucleotide
heights are proportional to their frequencies in 5′ UTRs. Each represented motif is given an identification number (from 1 to 17). (C) For these 17 motifs,
the motif and its reverse complement occurrences in promoters, 5′ UTRs and coding exons in actual and locally randomized sequences are shown.
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Table 1. Family representative motifs identified by LESMoN with a conservation fold enrichment ≥ 2.25

Motif
Number of
proteins

Clustering
P-value

Conservation
fold en-
richment

Strand
specificity

Strand
specificity
adjusted P-value Curated GO enrichments

CCRUUUYG 172 1.15 × 10−12 3.27 2.29 6.95 × 10−9 RNA processing: 5.0 × 10−8

Prp19 complex: 6.3 × 10−6

CGAGAUCY 73 8.40 × 10−17 3.24 1.03 0.690 Transcription factor binding: 9.4 × 10−5

NCGCYAUU 227 7.31 × 10−17 3.22 1.68 6.96 E × 10−6 Ribonucleoprotein complex: 1.9 × 10−9

Spliceosomal
complex: 1.5 × 10−7

YCGYYAUY 424 1.35 × 10−30 2.72 1.25 0.004 Translational
initiation: 7.3 × 10−17

Translational
Elongation: 2.8 × 10−14

Ribosome: 1.7 × 10−12

YYCGCYAU 220 2.23 × 10−16 2.70 1.76 1.37 × 10−6 Translational
initiation: 3.1 × 10−9

Ribosomal
subunit: 8.1 × 10−8

UUCCUUUY 270 3.42 × 10−35 2.68 0.94 >0.999 Ribosomal
subunit: 8.8 × 10−31

Viral
transcription: 2.6 × 10−24

RNA catabolic
process: 3.8 × 10−23

Protein targeting to ER: 2.8 × 10−18

CUCUUUYC 269 2.01 × 10−17 2.61 1.07 0.430 Translational
initiation: 3.0 × 10−23

Ribosomal
subunit: 5.7 × 10−20

YYUUUCCG 252 3.71 × 10−19 2.47 1.31 0.008 Translational
initiation: 4.1 × 10−23

Ribosomal
subunit: 3.1 × 10−17

YYYUUYCG 785 5.85 × 10−15 2.46 1.09 0.113 Translational
initiation: 6.3 × 10−30

Ribosomal
subunit: 1.1 × 10−27

Viral
transcription: 2.3 × 10−24

YCGYCRUY 794 6.35 × 10−12 2.41 1.13 0.029 mRNA metabolic
process 6.4 × 10−13

UNRCGNGA 868 2.13 × 10−9 2.41 1.13 0.016 Nucleus: 2.6 × 10−10

Cell cycle: 1.0 × 10−8

UYYCGCNA 491 1.38 × 10−7 2.41 0.86 >0.999 Translational
initiation: 5.3 × 10−11

Ribosomal
subunit: 4.0 × 10−10

GURGCGGN 980 3.09 × 10−13 2.33 1.38 7.05 × 10−11 Nucleus: 2.4 × 10−10

Chromosome
organization: 4.1 × 10−6

Transcription from RNA polymerase II
promoter: 4.1 × 10−6

UYUCGCNR 610 7.74 × 10−10 2.30 1.09 0.150 Translation
initiation: 3.6 × 10−10

Reproduction: 1.8 × 10−7

CGNCRUUY 458 2.68 × 10−7 2.29 1.44 2.83 × 10−6 mRNA
processing: 4.9 × 10−13

Spliceosomal
complex: 6.9 × 10−10

CRD-mediated mRNA stability complex: 1.8 × 10−6

CGYRRCGG 1196 9.12 × 10−7 2.27 1.12 0.009 Transcription factor binding: 5.4 × 10−11

Chromatin
binding: 5.6 × 10−11

Death: 2.7 × 10−9

CCGYYAYY 963 1.43 × 10−11 2.25 0.88 >0.999 mRNA metabolic
process: 2.7 × 10−15

(MEME E-value < 1), only UUCC[GU]G[UC][GC] had
a conservation fold-enrichment >1.5. However, all motifs
showed an enrichment (Corrected enrichment P-value <
0.001) for at least one GO term (Supplementary Figure
S6A and see ‘Implementation and Availability’ section
for complete results). The motif with the lowest E-value
was very significantly enriched for a large number of GO

terms involved in translation and protein localization.
Finally, those motifs are generally somewhat uniformly dis-
tributed across the 5′ UTR sequences, with the exception of
UUCC[UG]G[CU][CG] that appears to be enriched toward
the 5′ end of 5′ UTRs (Supplementary Figure S6C). Five
of those 5′ UTR motifs, UUU[UAG][CUG][UA]UU,
[AG]A[AG]GAA[AG]A, UUCC[GU]G[UC][GC],
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AGAGA[AU]GA and U[CU]AU[CU]UUU have a
high strand specificity (strand specificity of 1.26, 1.23, 1.24,
1.39, 1.35 and a P-value of 1.39·10–9, 3.6·10–8, 9.52·10–6,
3.75·10–4, 7.46·10–4, respectively), hinting at their potential
role at the transcript level.

In vivo validation of the biological role of 5′UTR motifs dis-
covered by LESMoN

We experimentally assessed the biological function of 3 of
the 17 conserved family representative motifs identified by
LESMoN (NCGCYAUU (motif 13), YCGYYAUY (motif
17) and UUCCUUUY (motif 1). These motifs were selected
based on their highly significant clustering and GO en-
richment P-values, on their great conservation fold enrich-
ments and on the availability of constructs for their associ-
ated genes. For each motif, we mutated two of their occur-
rences (three biological replicates of different cell cultures
for each condition: mutated and WT). The NCGCYAUU
motif (motif 13, Figure 3B) appears in the 5′ UTRs of two
serine/arginine-rich splicing factor, SFRS1 (motif: GCGC-
CAUU) and SRFS3 (motif: CCGCCAUU), which encode
proteins that are part of the splicing machinery. Upon muta-
tion of these motif occurrences, the expression of both splic-
ing factors was significantly increased (two-tailed unpaired
Student’s t-test P-values of 0.0046 and 0.0075, respectively),
suggesting a repression role of the NCGCYAUU motif
(Figure 4A and Supplementary Figure S1A). Of note, this
change in protein expression might not be directly linked to
translation regulation, but can also be caused by a change
in localization or stability of the mRNAs. These findings
are particularly interesting as it provides insights about the
regulation mechanisms of the mammalian splicing machin-
ery. We mutated the YCGYYAUY motif (motif 17, Figure
3B) in Ribosomal Protein S15a (RPS15A; motif: CCGC-
CAUC) and in Ribosomal Protein L21 (RPL21; motif:
CCGCCAUC) and observed a significant decrease in ex-
pression for both ribosomal proteins (P-value = 0.0001 and
0.0002, respectively) (Figure 4B and Supplementary Figure
S1B). The YCGYYAUY motif may therefore be involved
in the positive regulation of ribosomal proteins and of the
translation machinery. Finally, we mutated the UUCCU-
UUY motif (motif 1, Figure 3B), which closely resembles
5′ TOP motifs. We mutated UUCCUUUU in Ribosomal
Protein L4 (RPL4), where the motif starts 7 bases away
from the 5′ end of the UTR. This location is close to but
not the typical location of a 5′ TOP motif, which occurs
exactly at the 5′ end of UTRs. The RPL4 mutant showed
a statistically significant increase of expression (P-value =
0.0002) (Figure 4C and Supplementary Figure S1C). This
result is in agreement with the translation inhibition role
of 5′TOP motifs that was previously described in the lit-
erature (58–60). We also mutated the motif in Ribosomal
Protein L27 (RPL27). The motif occurs close to the 5′ end
of the UTR and appears to be part of a large 5′ TOP motif
(5′-UCCUUCUUUCCUUUUU). However, no significant
changes were observed for the mutant of RPL27 (Figure 4C
and Supplementary Figure S1C). This may be caused by the
larger length of the motif, such that the first half of the mo-
tif (which was not mutated) may compensate for the loss of
the second half.

DISCUSSION

In this paper, we propose an approach to identify 5′ UTR
sequence motifs for which the associated proteins are signif-
icantly clustered in a given PPI network. We also presented
a set of computational tools to evaluate the biological rele-
vance of the 5′ UTR motifs identified and validated a num-
ber of them in vivo. Our approach discovered several previ-
ously uncharacterized 5′ UTR motifs and associated them
with biological processes taking place in PPI networks. This
paper explores one of the many applications of LESMoN.
Besides 5′ UTRs, 3′ UTRs could also be analyzed in the
same fashion to potentially identify novel mRNA localiza-
tion signals. In addition, LESMoN could analyze different
types of sequences, such as introns, coding exons or pro-
moter sequences. The latter could be interesting especially
for the discovery of transcription factor binding sites reg-
ulating the transcription of proteins interacting in the cell.
Amino acid sequences could also be considered for the dis-
covery of peptide sequences mediating protein localization
or protein–protein interactions (See Supplementary Discus-
sion for more alternative methodological approaches that
could be used for LESMoN).

The connectivity of the biological network used as in-
put by LESMoN impacts its ability to identify clustered
5′ UTR motifs. In densely connected networks, LESMoN
is less likely to identify clustered motifs because all pro-
teins are heavily connected. In the contexts of PPIs, it is
important to note that network connectivity does not nec-
essarily correlates with quality. The varying level of con-
nectivity in PPI networks can be explained by the type
of experimental methods used to obtain the PPIs. Meth-
ods such as yeast-two-hybrid screening (61,62) and tandem
affinity purification (TAP) coupled to mass spectrometry
(63–65) tend to produce more direct interactions than the
BioID (66,67) technique and the FLAG affinity purifica-
tion coupled to mass spectrometry (68). A large fraction of
the BioGRID database is composed of PPIs obtained from
yeast-two-hybrid and TAP. On the opposite, STRING in-
cludes many indirect and computationally predicted PPIs.
This explains in part the contrast between the very dense
STRING network (69) versus the sparser BioGRID net-
work. Whereas LESMoN identified a large number of sta-
tistically significant and biologically relevant motifs based
on the BioGRID network, it did not detect many signif-
icantly motifs based on the STRING network (data not
shown). This suggests that in order to take advantage of
very dense networks, the TPPD percentage may need to be
determined based on the distribution of the protein degrees
in the network, but more likely, alternative measures of clus-
tering should be considered, e.g. those based on Markov
random walks (9) or those taking advantage of confidence
values assigned to edges of the network.

RNA molecules are known to form various secondary
structures in order to perform their functions, which of-
ten consist in binding proteins or other RNAs. In this ar-
ticle, we opted to only consider the primary structure of 5′
UTRs, but our approach could be extended to study RNA
secondary structure motifs, such as a 6 nt hairpin loop or a
bulge of 2 nt. This approach could be beneficial since RNA
sequences may differ but still form similar RNA secondary
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Figure 4. Western blot analysis in HEK 293 cells of the expression of proteins with their associated wild-type (WT) 5′ UTRs and mutated 5′ UTRs at
positions discovered by LESMoN. The P-values were calculated using an unpaired two-tailed Student’s t-test. (A) SFRS1 and SFRS3. (B) RPS15A and
RPL21. (C) RPL4 and RPL27.

structures, such as the 3′ UTR teloplasm localization motif,
which is necessary for the proper localization of Hro-twist
mRNA in leech (70).

Our method could also be extended to perform protein
function prediction. Often, several proteins among those
found by LESMoN to be clustered and associated with the
same 5′ UTR motif are uncharacterized. LESMoN pro-
vides crucial pieces of information to infer the function
of these uncharacterized proteins and brings an additional
dimension to the ‘guilt by association’ approach for pro-
tein function prediction (71–74). A strategy could be im-
plemented to compute likelihoods for such uncharacter-
ized proteins to perform a certain function based on their
co-clusterings with already functionally annotated proteins
and the shared occurrence of a given 5′ UTR motif.

This paper is a first step in the general direction of using
networks to identify functional sequence features through
local enrichment. Networks can capture a variety of biolog-

ical relationships in a much richer manner than gene sets or
ranked gene lists can. As such, using them to identify func-
tional motifs should prove particularly fruitful, as our re-
sults on 5′ UTR motifs suggest. While we focused in this
paper on the analysis of PPI networks, metabolic or regu-
latory networks could provide equally interesting insights.
In addition, computationally created correlation networks
(co-expression, co-methylation, etc.) may also be mined for
regulatory motifs, which may yield deeper insights into their
complex structure and the molecular mechanisms driving
them.

DATA AVAILABILITY

The proposed computational tools are implemented in
a platform-independent Java program called LESMoN.
LESMoN along with the complete GO enrichment anal-
ysis results for the 1873 motifs with clustering P-values
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< 10–6 and the nine motifs identified with the alternative
method are available as supporting material for download
at: http://www.cs.mcgill.ca/~blanchem/LESMoN.
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affinity purification (TAP) method: a general procedure of protein
complex purification. Methods, 24, 218–229.

65. Babu,M., Krogan,N.J., Awrey,D.E., Emili,A. and Greenblatt,J.F.
(2009) Systematic characterization of the protein interaction network
and protein complexes in saccharomyces cerevisiae using tandem
affinity purification and mass spectrometry. Methods Mol. Biol., 548,
187–207.

66. Roux,K.J., Kim,D.I., Raida,M. and Burke,B. (2012) A promiscuous
biotin ligase fusion protein identifies proximal and interacting
proteins in mammalian cells. J. Cell Biol., 196, 801–810.

67. Fallis,A. (2013) An improved smaller biotin ligase for BioID
proximity labeling Dae. J. Chem. Inf. Model., 53, 1689–1699.

68. Chen,G.I. and Gingras,A.C. (2007) Affinity-purification mass
spectrometry (AP-MS) of serine/threonine phosphatases. Methods,
42, 298–305.

69. Szklarczyk,D., Franceschini,A., Wyder,S., Forslund,K., Heller,D.,
Huerta-Cepas,J., Simonovic,M., Roth,A., Santos,A., Tsafou,K.P.
et al. (2015) STRING v10: protein-protein interaction networks,
integrated over the tree of life. Nucleic Acids Res., 43, D447–D452.

70. Farooq,M., Choi,J., Seoane,A.I., Lleras,R.A., Tran,H.V.,
Mandal,S.A., Nelson,C.L. and Soto,J.G. (2012) Identification of 3′
UTR sequence elements and a teloplasm localization motif sufficient
for the localization of Hro-twist mRNA to the zygotic animal and
vegetal poles. Dev. Growth Differ., 54, 519–534.

71. Oliver,S. (2000) Proteomics: guilt-by-association goes global. Nature,
403, 601–603.

72. Deng,M., Zhang,K., Mehta,S., Chen,T. and Sun,F. (2003) Prediction
of protein function using protein-protein interaction data. J. Comput.
Biol., 10, 947–960.

73. Sharan,R., Ulitsky,I. and Shamir,R. (2007) Network-based
prediction of protein function. Mol. Syst. Biol., 3, 1–13.

74. Vazquez,A., Flammini,A., Maritan,A. and Vespignani,A. (2003)
Global protein function prediction from protein-protein interaction
networks. Nat. Biotechnol., 21, 697–700.


