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Summary - The effect of simplifying covariance structures for milk, fat and protein
yield in lactations 1-3 on accuracy of selection for lifetime yield was investigated using
selection index theory. Previously estimated (co)variances were assumed to be the true
population parameters. A modified repeatability model, ie assuming a genetic correlation
of unity between performances across lactations but allowing for different heritabilities
and variances in different lactations, was used to investigate the efficiency of selecting sire
on their progeny performance. For most combinations of heritabilities in first and later
lactations, selecting sires using the repeatability model was nearly 100% efficient in terms
of accuracy of selection compared to a general multivariate model. The predicted response
to selection using a modified repeatability model was approximately 10% too high. It was
found that applying a transformation to make new traits in lactation 1 uncorrelated at
the phenotypic and genetic level to milk, fat and protein yield in later lactations, and
assuming that 3 new uncorrelated variates were formed, was highly efficient in terms of
accuracy of selection when compared to the accuracy of a general multivariate model.
This transformation was recommended for a national BLUP evaluation, since it may take
account of selection to a larger extent than when performing separate analyses for milk,
fat and protein yield. 
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Résumé - Utilisation du modèle animal pour l’estimation des paramètres univariates
et multivariates concernant les caractères de production laitière. II. Efficacité de

la sélection après utilisation d’une structure simplifiée de covariance. L’efj&dquo;et d’une
simplification de la structure des covariances pour la production de lait, de matière grasse
et de matière protéique a été analysé en utilisant la théorie des index de sélection.

Les estimées antérieures de (co)variances ont été supposées être les vrais paramètres de
la population. Un modèle &dquo;répétabilité&dquo; modifié, c’est-à-dire supposant une corrélation

génétique de 1 entre les performances des différentes lactations mais permettant des
héritabilités et des variances différentes à chaque lactation, a été utilisé pour analyser
l’e,f,jîcacité de la sélection des taureaux à partir de la performance de leur descendance. Pour
la plupart des combinaisons d’héritabilité en première lactation ou lactations ultérieures,
la sélection des taureaux en utilisant le modèle répétabilité a permis à peu près la même
précision de la sélection que le modèle général multivariate. La réponse prédite à la

sélection selon le modèle répétabilité modifié a été surévaluée d’environ 10%. On a appliqué
aux lactations ultérieures une transformation rendant indépendants en première lactation,
tant au niveau phénotypique que génétique, les caractères de production laitière, de matière
grasse, de matière protéique et on a supposé que les 3 nouvelles variables étaient toujours
indépendantes. Une telle procédure a été hautement e,f!cace en termes de précision de la
sélection comparée à la précision d’un modèle général multivariate. Cette transformation
est recommandée pour une évaluation nationale selon le BLUP, puisqu’elle peut mieux
tenir compte de la sélection que des analyses séparées des productions de lait, matière
grasse et matière protéique.
bovin laitier / production laitière / index de sélection / paramètre génétique
répétabilité / transformation canonique

INTRODUCTION

In a previous paper (Visscher and Thompson, 1992), genetic and environmental
parameters were presented for milk yield (M), fat yield (F) and protein yield (P)
in lactations 1-3. If the breeding goal for dairy cattle breeding is some (linear)
combination of these production traits in all lactations, an optimal way to combine
all available information to predict breeding values is a multivariate (MV) BLUP
analysis. For a national animal model (AM) breeding value prediction, however,
a general MV BLUP analysis is computationally not yet feasible. In practice,
therefore, simplified assumptions are made when predicting breeding values for
large populations using an AM. In dairy cattle AM prediction, milk, fat and protein
yield are usually evaluated separately using a repeatability model with some scaling
for observations in later lactations to account for heterogeneity of variance across
lactations (Wiggans et al, 1988a, b; Ducrocq et al, 1990; Jones and Goddard, 1990).

Selection index theory is used to investigate the loss in accuracy of selection
when simplified covariance structures are used to predict breeding values. A second
aim is to investigate how to reduce the dimensionality of the above MV prediction
problem to a manageable size without a great loss in accuracy.



MATERIAL

As reported previously (Visscher and Thompson, 1992), the 9 x 9 genetic covariance
matrix of M, F and P in lactations 1-3 was found to be not positive definite.
To create a (semi) positive definite matrix the single negative eigenvalue was set
to 10-’, and covariance matrices were recalculated. These matrices were then
used for subsequent (index) calculations. Without loss of generality, phenotypic
variances for M, F, and P in lactation one were set to 1.0. The parameters are
summarised in table I. An alternative way to summarise the covariance matrices is
to calculate eigenvalues and eigenvectors of the matrix P-1G. Eigenvectors then
represent linear combinations of the original traits which are independent of each
other at the genetic and phenotypic level (Hayes and Hill, 1980; Meyer, 1985).
The corresponding eigenvalues of the newly created traits, called canonical variates
(eg Anderson, 1958; ch 12), have been termed canonical heritabilities (Hayes and
Hill, 1980; Meyer, 1985). Table II shows the eigenvalues and eigenvectors of matrix
P - 1 G, where P and G are the 9 x 9 phenotypic and genetic covariance matrices for
milk, fat and protein yield in lactations 1-3 (M1F1P1M2F2P2M3F3P3), calculated
from parameters in table I. A number following M, F or P indicates the lactation
number. The smallest eigenvalue from the original P-’G was -0.03, and the
corresponding eigenvector was:

Therefore, one canonical trait, {-0.04M1 + 0.15Fi.’.. + 0.09P31, was found to
have a heritability of -0.03. The negative eigenvalue resulted mainly from the
contrast of individual yield traits in lactations 1, 2 and 3 ((M2-M3) + (F1+FZ-F3)
+ (P2-Pd). After setting the only negative eigenvalue of the original matrix G to
&dquo;zero&dquo; (10-6), the corresponding eigenvector for the newly formed matrix P-’G
represented mainly the contrast between yield traits in lactations 2 and 3 (see last



row of table II). This was expected, given the very high genetic correlations for
yield traits in lactations 2 and 3 (see table I).

ANALYSIS

Selection index theory

Let:
u = q x 1 vector of breeding values of q traits;
a = q x 1 vector of (marginal) economic values for q traits;
H = u’a = aggregate breeding value;
x = p x 1 vector of sources of information on an individual

(for example phenotypic observations, daughter averages, predicted
breeding values);

b = p x 1 vector of index weights;
I = b’x = index value used to predict H ;
P = v(x); G = cov(x’u) and the symbol A added to a scalar or matrix indicates

an estimate thereof.

For index calculations standard results were used (see, for example, Sales and
Hill, 1976).
Equations for the responses are using b = P-’Ga for the optimal index, and
b = P-1 Ga for an index using estimates of P and G :

Where R, R and R* are the optimal, predicted and achieved response to selection in
the aggregate breeding value (=H) respectively, expressed as a ratio of the selection
intensity.



If new traits are created which are linear combinations of the observations,
y = W’x, ie variables in vector y are a linear combination of the variables in
vector x, then

It was assumed that the marginal economic value for any of the production traits
in later lactations was the product of the relative expression of that trait and the
phenotypic standard deviation, thus reflecting survival to later lactations and the
economic importance of a larger standard deviation (and mean) in later lactations.
az = eZQi, where ai, si and aj are relative economic value, relative expression

and standard deviation for lactation i. Relative expression was assumed to follow
a geometric series, Ei = (0.8)?!! , assuming a relative survival of 80% from one
lactation to the next and setting the expression in lactation one to 1.0. Phenotypic
standard deviations were assumed to be 1.0, 1.20 and 1.25 for lactations 1-3,
and 1.25 for all subsequent lactations (from table I). If it is further assumed
that the covariance of any observation with the breeding value in lactation 3 is

equal to the covariance of that observation with breeding values in later lactations,
ie the corresponding rows of matrix G are identical, then the economic values
for lactations 1-3 are [1.0 1.0 4.0], since the sum of economic values for third
and subsequent lactations is 4.0(E(l.25)(0.8)’ = 4.0, for i = 2,3...). Similarly
for the case where only 2 lactations are considered and assuming second and
later lactations, breeding values have equal covariances with observed phenotypes,
a’ = [1.0 5.0!. Economic values for traits within a lactation were varied to reflect
different breeding goals.

For all subsequent calculations it is assumed that observations in later lactations
are included in the genetic evaluation only if observations on previous lactations
are available.

Single trait multiple lactations considerations

Meyer (1983) investigated the potential gain in response to selection from including
multiple lactation information on progeny of sires for sire evaluation. The accuracy
of selection was increased directly through more (genetic) information about the
trait(s) of interest, since the genetic correlation between performances across

lactations (r9) is less than one, and indirectly through a better data structure
(better &dquo;connectedness&dquo;). Assuming a’ = !1 14! for either milk, fat or protein yield
in lactations 1-3, and using the relevant parameters for any of these traits from
table I, it was found (using standard selection theory) that for sires the increase in
accuracy through including second (and third) lactation daughter information in
the selection index was approximately 6-10%. The number of progeny per sire for
first and second lactations was varied from 25 to 50 and 5 to 35 respectively. See
Meyer (1983) for more examples.

Perhaps a more interesting question regarding the use of multiple lactation
information on a single trait is how much accuracy is lost when a modified

repeatability model (eg assuming r9 = 1) is assumed for breeding value prediction
instead of the &dquo;true&dquo; MV covariance structure. This was investigated for 3 selection
indices:



11 = phenotypic index, ie sources of information are phenotypic observations on
individuals;

12 = sire index; sources of information are daughter averages of sires in different
lactations;

13 = cow index; sources of information are the predicted breeding value (index)
of the cow’s sire and dam and the cow’s own records.

The largest reduction in response to selection is expected when selection is
across age classes, eg across cohorts with different amounts of information, since
an improper weighting of later lactations then would have the largest impact. In
the following examples, only 2 lactations and 2 cohorts were considered, but the
results are thought to be similar for more lactations (given the very high genetic
correlation between second and later lactation yields) and more age groups. The
genetic means for the cohorts were assumed to be zero, hence the consequences of
the error in predicting genetic trend were ignored. (A thorough study of long-term
losses in response through incorrect estimation of genetic trend, thus creating an
suboptimal ranking of young vs old animals, was outside the scope of this study.)
For each index there were different amounts of information on the 2 cohorts,
I1:
Cohort 1: phenotypic observation in lactation 1
Cohort 2: phenotypic observations in lactations 1 and 2
I2:
Cohort 1: first lactation daughter average based on nl daughters
Cohort 2:n1 first lactation daughter records and n2 second lactation records

(n2 < nl )
I3: 1
Cohort 1: sire index based on n first lactation progeny, dam index based on sire

index of dam and dam’s first lactation record, cow’s first lactation record
Cohort 2: sire index based on nl + n2 progeny records, dam index based on sire

index of dam and dam’s records in first and second lactation, cow’s first and second
lactation records.

Parameters used for the example with 2 lactations and 2 cohorts were (from
table I): a’ = !15!; 7-g = 0.85; 7-p = 0.55; phenotypic variances were 1.0 and 1.45 and
heritabilities were 0.40 and 0.30 for first and second lactations respectively; nl =

50; n2 = 35. The &dquo;estimated&dquo; (assumed) parameters were: r9 = 1.0 (repeatability
model); the &dquo;true&dquo; phenotypic covariance matrix (from table I) was used and
heritabilities for lactation 1(!2 ) and for lactation 2 (h2) were varied. A proportion
of 10% of the total number of animals available was selected. The definition of
this repeatability model differs from that usually used because heritabilities and
phenotypic variances are not necessarily equal in different lactations.

Responses to selection were calculated using equations (1), (2) and (3). Given
any set of parameters the optimal proportion of animals to be s from each cohort
was determined using an algorithm from Ducrocq and Quaas (1988), assuming the
parameters used were the true population parameters. Results are presented in
table III.
For the parameter set chosen the loss in efficiency was small; a 0-5% reduction in
genetic gain for a range of heritabilities for first and second lactation performance.



These results may be expected, since the &dquo;true&dquo; genetic correlation (= 0.85) between
performance in lactations 1 and 2 was high and an observation for lactation
performance is always conditional on the presence of a first lactation observation.
The ratio of achieved to predicted response was less robust to changes in parameters.
Even when the correct heritabilities (0.40 and 0.30) were used the achieved response
(accuracy) was approximately 10% below the maximum expected response. This
may be seen as a very simple illustration that one should be cautious when using
predicted values (whether from selection indices or BLUP) to estimate genetic trend
when the parameters used in the prediction are subject to large sampling errors or
when they are a priori incorrect (as in the case of a repeatability model when it is
known that r9 G 1). Since results were similar for the 3 indices used, subsequent
calculations were only performed for the case of mass selection.

Multiple trait multiple lactation considerations

Suppose the breeding goal is a linear combination of 9 traits (M1, F1, PI, M2,
F2, P2, M3, F3, P3), which is thought to be a good indicator of lifetime economic
production since third and later lactation performances are assumed to be highly
correlated. Then, choosing a set of economic values and using parameters from
table I, the relative accuracy of selection for different indices which use different
amounts of information can be investigated. For 3 different sets of economic values
these relative accuracies were calculated, and results are presented in table IV. The
economic values for M1, F, and PI in the second breeding goal (H2) are similar



to first lactation economic weightings used in practical selection indices in Europe
(eg Wilmink, 1988). H3 reflects a more &dquo;progressive&dquo; breeding goal with selection
only on protein production. Results from table IV show that approximately 20%
accuracy is lost when only one observation is used to predict the aggregate breeding
value. Results for H2 and H3 were similar since breeding values for these composite
traits were highly correlated. If only accuracy is considered, using milk and fat
yield in a selection index does not contribute substantially to increase response
to selection for lifetime protein yield (H3). For all 3 breeding goals, the expected
gain in accuracy for sire selection when adding progeny means on multiple traits is
expected to be smaller than for mass selection.

Although these calculations are an oversimplification of breeding value prediction
and selection in practice, they are useful when comparing the accuracies from table
IV with accuracies when simplified assumptions are made regarding the covariance
structure of the observations (in next section).



Proportionality considerations

One possible way to reduce the dimensionality of a MV prediction problem is
to investigate whether some traits may be approximately expressed as linear
combinations of other traits, or if some linear combination of the traits explains
most of the variation in the aggregate breeding value. To reduce computations
(further) it would be of interest to find a minimum number of independent traits
which would provide all the necessary information (see for example Lin and Smith,
1990). In particular, it would be convenient if one linear transformation could be
found that reduced the prediction problem of 9 highly correlated traits (milk, fat
and protein yield in lactations 1-3) to that of 3 independent new traits, since in that
case 3 separate analyses would contain all the information and would (therefore)
account for selection. One approach is to investigate if submatrices of the 9 x 9
covariance matrix are proportional to each other, since that would indicate that
a suitable transformation may exist to reduce the dimensionality of the prediction
problem. With observation on p traits in I lactations, this suggests testing if the
covariance matrix of lp traits, V, may be written as V = K Q9 Vh, where Vh is a
submatrix (or a transformation thereof) describing a (co)variance block of p traits
within or between lactations, K is a I x I symmetric matrix of proportionality or
scaling constants, and (9 is the direct product operator (Searle, 1966). For the case
of M, F and P in lactations 1-3, the hypothesis is that the complete covariance
matrix may be expressed as a proportionality (or scaling) matrix multiplied by a
transformation matrix. In the appendix a general framework is presented to test for
proportionality of covariance matrices using likelihood ratio tests and to estimate
constants of proportionality, using multivariate normal theory applied to observed
and expectations of moment matrices.

Unfortunately, the data from table I were found unsuitable for a likelihood ratio
test. Obviously the additive genetic covariance matrix (A) and the environmental
covariance matrix (E) from table I are not independent moment matrices; A and
E are highly correlated and the determinant of A is zero. An alternative is to
transform A and E into a between and within sire covariance matrix (B and W),
assuming these matrices are from a balanced half-sib design based on s sires and
n progeny per sire. However, there was insufficient information about the sampling
variances of the estimated E and A matrices to determine the appropriate degrees
of freedom. Furthermore, the exact distribution of the likelihood ratio test statistic
based on empirically derived degrees of freedom and using animal model estimates
may differe substantially from a Chi-square distribution. Therefore, significance
testing for proportionality was not pursued.

Using parameter estimates from table I, however, some inference with respect to
proportionality may be drawn. One (obvious) choice for the transformation matrix
Vh is a canonical transformation on M1, F1, and Pl. This transformation was
calculated (see Hayes and Hill, 1980 ; and lMeycr, 1985, for computations) and the
matrix was used to transform the traits within second and third lactations. Let:



the 3 x 3 genetic (Vgll) and phenotypic (VPll) covariance matrices of milk, fat
and protein yield in lactation 1. Then the transformation matrix of milk, fat and
protein yield in lactation one, Ql, was chosen such that:

with elements of diagonal matrix D equal to eigenvalues of the matrix (V-l vgil).
Using Q1, the vector of observations,

was transformed using:

The eigenvectors for the 3 canonical variates in lactation 1 were (2.96 - 0.72 -
2.09], (-0.85 -1.85 2.61! and [-0.08 0.42 0.69] respectively, which form the rows of
matrix Q1. The 9 x 9 correlation matrices and the heritabilities of the 9 new traits
(yc) are shown in table V. Off-diagonals in all 3 x 3 blocks were small, indicating that
one transformation matrix created 3 nearly independent variates with for each new
variate highly correlated &dquo;observations &dquo; in later lactations. Using the covariance
matrix of milk, fat and protein yield in lactation 1 as Vh, proportionality matrices
for additive genetic and environmental effects were calculated from equation (A7].
This assumed the observed covariance matrices E and A were moment matrices,
but degrees of freedom did not need to be specified. For A and E, the estimates of
proportionality matrix K, Ka and Ke respectively, were:

For example, the estimate of the average scaling factor for genetic variances for
M, F and P on the transformed scale (transformation such that new variates are
uncorrelated) in lactation 3 was 1.74, and the estimate of the average scaling factor
for environmental covariances between the transformed variates in lactations 1 and
3 was 0.58. If proportionality is assumed, the 9 x 9 MV prediction problem may
be reduced to 3 independent 3 x 3 multivariate predictions or to 3 independent
evaluations with a repeatability model. Using the breeding goals defined previously
the efficiency of the reduction in dimensionality was calculated for mass selection,
conditional on the parameters in table I being the true population parameters. Thus
the parameters from table V were used for index calculations with all off-diagonals
of all 3 x 3 covariance blocks set to zero. In the case of a repeatability model on the
canonical variates, genetic correlations between canonical variates across lactations
were set to unity. Results of selection index calculations for phenotypic selection are
presented in table VI. The relative accuracy when using the first 3 canonical variates



is slightly lower than the corresponding accuracy using the original first 3 variates
(M1, F1 and P1) from table III because the genetic covariance structure between
the canonical traits in lactation one and transformed variates in later lactations
was simplified (off-diagonals of 3 x 3 blocks in matrix G were set to zero). Clearly
little accuracy is lost assuming proportionality of the covariance structure for milk,
fat and protein yield across lactations. Simplification to a repeatability model on
3 canonical variates was approximately 97% as efficient compared to a multivariate
analysis on 9 traits. When using the canonical variates there was no advantage of
a MV analysis over an analysis with a repeatability model.

Analysing linear combinations of the observations

A final reduction in dimensionality is achieved by analysing a reduced set of traits
which are linear combinations of the available observations. One suggestion is to
create new traits for each lactation which are the sum of the phenotypic observations
weighted by the corresponding economic values in the aggregate breeding value.
Using the notation from equation (4!, ! y = a’x, where variables in x are, for example,
observations for M1, F, and P1. Relative accuracies were calculated using equation
(4!, fitting first lactation yield traits, first and second lactation yield traits, and all
yield traits in vector x, respectively. Results are presented in table VII.

Another suggestion is to use linear combinations of the yield traits within a
lactation as new traits and to perform an analysis on those new traits. For example,
if yl = w’xl, for x’ = (M1F1P1!, and !2 = W’X2, for x’ = [M2 F2 PZ), then in the
selection index framework this would be fitting y = W’x as used for equation (4).
Using Xl and x2 as above, and x3 = [M3 F3 P3!, 3 new traits were created using
the economic values for each trait in the aggregate breeding value as elements for
matrix W. Accuracies for fitting combinations of these new traits are presented in
table VII.

Finally, 3 separate selection indices could be calculated from using (Ml M2 M3),
(Fl F2 F3), and (Pl P2 P3) respectively, and these 3 indices could be combined
into one predicted aggregate breeding value. This approach is analogous to the



way selection indices for dairy cattle are usually calculated: breeding values are
calculated for milk, fat and protein yield separately, and the 3 estimated breeding
values are subsequently combined in a selection index ( eg Dommerholt and Wilmink,
1986; Wilmink, 1988). Separate selection indices for milk yield, fat yield and
protein yield were calculated using either the &dquo;true&dquo; (multivariate) covariance
structure or the modified repeatability model (r. across lactations set to unity),
and the accuracy of using the 3 indices to predict the aggregate breeding value was
calculated. For the construction of each of the 3 indices it was assumed that the
traits in the index were identical to the traits in the aggregate breeding values. For
example, the index using MI, M2 and M3 was calculated as Pn; G&dquo;,a!&dquo; where Pm
and GI&dquo; are the 3 x 3 phenotypic and genetic covariance matrices for milk yield in
lactations 1-3, and am is a vector of economic values for these traits. The relative
accuracies for this approach are shown in table VII.

Comparing results from tables IV, VI and VII shows that little efficiency was
lost when analysing linear combinations of the observations using economic values
as weights. For the case of just using observations for Mi, F1 and PI this is not

surprising, since these traits were so highly correlated and had similar heritabilities,
hence their index values resembled the economic values. For breeding goals H2 and

H3 approximately 8% accuracy was lost when using all observations weighted by
their economic values as a single trait, and approximately 4% accuracy was lost
when analysing 3 new traits, each trait being a linear combination of observations
and economic values within a lactation (table VII).

The last 2 rows of table VII indicate what accuracy was lost by ignoring
within lactation information between milk, fat and protein yield for each lactation



separately. In effect only average correlations between the traits within lactations
are taken into account when combining separate indices for milk yield, fat yield and
protein yield. The loss in accuracy was small and very similar to losses when using
a repeatability model on the canonical variates (see table VI).

DISCUSSION

Only one aspect of efficiency of selection, namely accuracy of predicting some
aggregate breeding value assuming fixed effects were known, was considered in this
study. Meyer (1983) found that for BLUP prediction of breeding values increase
in accuracy from including later lactation observations was largely through an
improved data structure. Results from including information from relatives in the
calculations, and including comparisons between young and old animals should have
more direct relevance to practical breeding programmes.



Use of a repeatability model for milk production traits across lactations seemed
to have little effect on accuracy of selection, although the predicted gain/accuracy
may be approximately 10% too high. More research is needed to investigate long-
term losses in response to selection when incorrect models are used to predict
breeding values.

More information on the sampling variance of the parameter estimates are needed
for testing the proportionality hypothesis. Ideally, one MV REML analysis on the
9 traits should be carried out, with an algorithm that would produce (second)
derivatives. Still, calculations would then involve a 90 x 90 (45 genetic and 45
environmental) sampling variance matrix which would probably be subject to large
sampling errors itself.

As pointed out by Meyer (1985), the canonical variates from creating indepen-
dent variates in lactation 1 may have a biological explanation. The eigenvectors
show that canonical variate 1 corresponds approximately to percentage protein
(and fat content to a lesser extent) and canonical variate 2 to the difference be-
tween fat and protein content. Canonical variate 3 seems just to be the sum of fat
and protein yield. Heritabilities for canonical variates were consistent with heri-
tabilities found for fat and protein content previously reported. Canonical variates
from diagonalising the complete 9 x 9 P-1G matrix have similar biological expla-
nations to the canonical variates from lactation 1, but now including comparisons
between lactations (see table II).

Given that parameter estimates from table I are subject to sampling error, ma-
trices describing covariances between M, F, and P within and between lactations
were remarkably proportional to each other. Calculations for mass selection con-
firmed that little information is lost if proportionality is assumed. A repeatability
model on canonical variates from lactation one should account for selection bias
and only loses approximately 3% in accuracy compared to a general multivariate
prediction of breeding values of milk, fat and protein yield in lactations 1-3. The
loss in accuracy is very similar to the loss when information between traits within
each lactation separately is ignored, as is common practice in dairy cattle selection
indices. For practical (national) animal model BLUP evaluations, the proposed
transformation is easy to implement.

Reducing the dimensionality of the prediction problem by analysing linear
combinations of observations and economic values of corresponding breeding values
was found to be very efficient. However, no information from relatives was included
in the calculations, and for the traits considered heritabilities and phenotypic
and genetic correlations were similar between pairs of traits. When using traits
with genetic and environmental correlations with opposite signs, and including
observations over time, this method of creating new traits from the available
observations may be less efficient.



Testing for proportionality of covariance matrices

Notation:

M = Moment matrix; a symmetric positive definite (PD) matrix of order lp, with
mean squares and mean cross-products based on df degrees of freedom

I = number of lactations, p = number of traits per lactation
V = E(M) ; unknown PD covariance matrix of lp traits
K = symmetric matrix of proportionality constants of order 1
Q9 = direct product operator (see eg Searle, 1966), tr = trace operator
L = natural logarithm of likelihood.
Using standard multivariate theory (eg Anderson, 1958; ch 10),

with Aj = eigenvalue of V, yZ = eigenvalue of MV-’.
The maximum likelihood (ML) is obtained for V = M,

Suppose a moment matrix Mo is observed, and the null hypothesis is,
Ho : Vo = E(Mo) = kV with V specified and k a constant.
Then,

and the ML estimate of k, k = (’2:,Îi)/lp. Hence

For the trivial case of Mo = kM where M is the ML estimate of V, all

eigenvalues of MoV-1 = MOM-’ are constant and equal to the proportionality
constant (= k). The likelihood ratio (LR) test statistic, t = 2(ML &mdash; MLo),
asymptotically has a X2 distribution with degrees of freedom [1/21p(lp + 1) - 1].
With observations on p traits in I lactations, one suggestion is to test Vo = K I8i V h,
where Vh is a (transformation of a) submatrix describing a (co)variance block of p
traits within or between lactations. Vo may be written as,

with TT’ = Vh. Subscripts refer to the order of the matrices. Then,



the trace in [A5] may be written as:

for P a permutation matrix and M!! a I x I diagonal block of M*. Thus [A5]
becomes:

Using (A6!, the ML estimate of K is:
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