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Background: Peritoneal fibrosis is one of the major causes of technical failure in
patients on peritoneal dialysis. Epithelial-to-mesenchymal transition (EMT) of the
peritoneum is an early and reversible mechanism of peritoneal fibrosis. Human
peritoneal mesothelial cells (HPMCs) have their own renin–angiotensin–aldoster-
one system (RAAS), however, it has not been investigated whether aldosterone, an
end-product of the RAAS, induces EMT in HPMCs, and which mechanisms are
responsible for aldosterone-induced EMT.
Methods: EMT of HPMCs was evaluated by comparing the expression of epithelial
cell marker, E-cadherin, and mesenchymal cell marker, α-smooth muscle actin after
stimulation with aldosterone (1–100nM) or spironolactone. Activation of extra-
cellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase
(MAPK) and generation of reactive oxygen species (ROS) were assessed by western
blotting and 20,70-dichlorofluororescein diacetate staining, respectively. The effects
of MAPK inhibitors or antioxidants (N-acetyl cysteine, apocynin, and rotenone) on
aldosterone-induced EMT were evaluated.
Results: Aldosterone induced EMT in cultured HPMCs, and spironolactone blocked
aldosterone-induced EMT. Aldosterone induced activation of both ERK1/2 and p38
MAPK from 1 hour. Either PD98059, an inhibitor of ERK1/2, or SB20358, an inhibitor of
p38 MAPK, attenuated aldosterone-induced EMT. Aldosterone induced ROS in HPMCs
from 5 minutes, and antioxidant treatment ameliorated aldosterone-induced EMT. N-
acetyl cysteine and apocynin alleviated activation of ERK and p38 MAPK.
Conclusion: Aldosterone induced EMT in HPMCs by acting through the mineralocorti-
coid receptor. Aldosterone-induced generation of ROS followed by activation of ERK, and
p38 MAPK served as one of the mechanisms of aldosterone-induced EMT of HPMCs.
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Introduction

Long-term peritoneal dialysis (PD) results in peritoneal
damage that is characterized by a decreased ultrafiltration
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capacity associated with submesothelial fibrosis, accumulation
of extracellular matrix, and neoangiogenesis [1–3].

Recent data have revealed that peritoneal mesothelial cells
play an important role in peritoneal fibrosis via phenotype
transition and production of extracellular matrix. Yáñez-Mó
et al [4] found that mesothelial cells isolated from dialysate
effluents showed phenotypic transition. This phenomenon of
epithelial-to-mesenchymal transition (EMT) denotes loss of
epithelial characteristics and acquisition of a fibroblast-like
phenotype, and is suggested as a key process in the onset and
progression of peritoneal fibrosis.

There are several lines of evidence that the renin–angio-
tensin–aldosterone system (RAAS) is involved in organ fibrosis
[5–8]. Activation of the RAAS is related to the development of
tubulointerstitial fibrosis in the kidney, and hepatic and lung
fibrosis [6,9,10]. Aldosterone, a final end-product of RAAS, is
reported to be an important mediator of cardiac fibrosis [11],
and spironolactone ameliorates peritoneal fibrosis in animal
models of peritoneal fibrosis and inflammation [12].

To determine the effect of aldosterone on peritoneal EMT, we
investigated whether aldosterone induced EMT of peritoneal
mesothelium and examined the mechanism of aldosterone-
induced phenotypic transition of the peritoneum.
MR
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Figure 1. Expression of mineralocorticoid receptor mRNA in HPMCs.
Mineralocorticoid receptor mRNA detected in cultured HPMCs. Repre-
sentative reverse transcriptase polymerase chain reaction bands from
three different patients are shown. NC (negative control) denotes the
sample containing all reactants except cDNA. HPMC, human peritoneal
mesothelial cell; MR, mineralocorticoid receptor.
Methods

Reagents

All chemicals and tissue culture plates were purchased
from Sigma–Aldrich (St. Louis, MO, USA) and Nunc Labware
(Waltham, MA, USA), unless otherwise stated.

Isolation and culture of human peritoneal mesothelial cells

Human peritoneal mesothelial cells (HPMCs) were isolated
from a piece of omentum, obtained from consenting patients
receiving elective abdominal surgery according to the method
described by Stylianou et al [13]. HPMCs were identified by
phase-contrast microscopy according to morphological criteria
and by immunofluorescence staining for the markers of
mesothelial cells [14]. All experiments were performed using
cells of the second to fifth cell passages. Tissue collection was
approved by the Institutional Review Boards and informed
consent was obtained from each patient.
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Figure 2. Effect of aldosterone on the proliferation of human
peritoneal mesothelial cells. There was no effect of aldosterone
(1–100nM) on MTS activity on Day 2 and 7. Data are presented as
means7standard deviation. Aldo, aldosterone; MTS, 3-(4,5-dimethylthia-
zol-2-yl)-5-(3-carboxy methoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-
zolium, inner salt.
Reverse transcriptase polymerase chain reaction of
mineralocorticoid receptor

Total RNA was extracted from HPMCs that were prepared by
using TRIzol reagent (Gibco Invitrogen, Carlsbad, CA, USA). The
RNA pellet was suspended in DNase/RNase-Free distilled water
and stored at �701C until subsequent analysis. Mineralocorti-
coid receptor oligonucleotide primers used for the polymerase
chain reaction (PCR) were as follows: forward primer: 50-
ACCAAGCATTCATGTTCAGGCACC-30 and reverse primer: 50-
AGCTCCCGTCATCTGGTTCTTGTT-30. PCR was performed in
10mM Tris–HCl (pH 9.0), 40mM KCl, 1.5mM MgCl2, and 0.1 U
Taq polymerase (Promega), in a final volume of 20 mL. Reactions
were carried out in a DNA thermal cycler (Perkin–Elmer, Boston,
MA, USA). Following initial denaturation at 941C for 5 minutes,
mixtures were subjected 35 cycles at 941C for 30 seconds,
annealing at 551C for 30 seconds, primer extension at 721C for
45 seconds, and a final extension at 721C for 10 minutes. PCR
products were fractionated on 1% agarose gel, followed by
staining with 0.5 μg/mL ethidium bromide (Gibco BRL, Grand
Island, NY, USA). The amount of PCR products was normalized
with a housekeeping gene, GAPDH (forward primer: 50-ACCA-
CAGTCCATGCCATCAC-30 and reverse primer: 50-TCCAC-
CACCCTGTTGCTGTA-30).

MTS assay for assessing cell proliferation

To measure cell proliferation, HPMCs (104 cells/well) were
incubated with aldosterone (1–100nM) in 96-well plates.
After incubation for 2–7 days at 371C, MTS reagent [3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxy methoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium, inner salt; Promega] was added,
and the amount of metabolized formazine was measured at
490 nm with an automated plate enzyme-linked immunosor-
bent assay reader (Molecular Devices, Sunnyvale, CA, USA)
according to the manufacturer’s instructions.

Cell morphology and immunocytochemistry

The morphology of HPMC cells was observed by an inverted
phase contrast microscope (Axiovert 200; Carl Zeiss, Oberko-
chen, Germany) and the images were obtained using a digital
camera (AxioCam HRC; Carl Zeiss). For staining, cells were
washed with phosphate-buffered saline (PBS) and fixed in 4%
paraformaldehyde in PBS (25 minutes at 201C) and permeabi-
lized with 1% Triton X-100 in PBS (15 minutes at 41C). After
washing with PBS, the cells were treated with 5% bovine
serum albumin in PBS for 1 hour before incubation with
primary antibodies specific for cytokeratin (1:50; DAKO Cyto-
mation, Carpinteria, CA, USA) or α-smooth muscle actin (SMA,



Figure 3. Effects of aldosterone on morphology and expression of cytokeratin and α-SMA in HPMCs. Compared with the cobblestone appearance
of unstimulated HPMCs on Day 2 (A) and Day 7 (B), aldosterone (10nM) induced phenotypic transformation of cells. Cells began to elongate and
acquire a fibroblast-like morphology after 2 days of aldosterone stimulation (C), which was further evident after 7 days (D). Immunofluorescence
staining for cytokeratin revealed abundant cytoplasmic expression in unstimulated cells (E), which was markedly decreased upon aldosterone
stimulation (G). Aldosterone upregulated α-smooth muscle actin organization (H) in contrast with almost negative staining in unstimulated cells (F).
Magnification, 100� . HPMC, human peritoneal mesothelial cell; SMA, smooth muscle actin.
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1:100; Abcam, Cambridge, UK) in 5% bovine serum albumin
overnight at 41C. After washing with 0.2% Tween 20 in PBS, the
cells were incubated with goat anti-mouse IgG–fluorescein-
isothiocyanate-conjugated secondary antibody (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) for 1 hour at room
temperature in the dark. The cell nuclei were counterstained
with 40,6-diamidino-2-phenylindole. Immunofluorescence was
visualized under an Axiovert 200 fluorescence microscope
(Carl Zeiss) with 10�0.3 numerical aperture and 20�0.4
numerical aperture objectives equipped with an AxioCam
HRC digital camera (Carl Zeiss). Digital photographs were
obtained with Axiovision release 4.3 (Carl Zeiss) and merged
images were produced using Photoshop version 10 (Adobe
Systems, Toronto, ON, Canada).

Western blot analysis

Protein samples were isolated from cell lysate (30 μg), and
boiled (951C, 5 minutes) after mixing in reducing buffer. Proteins
were resolved on 10% sodium dodecyl sulfate polyacrylamide
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Figure 4. Effects of aldosterone on the expression of E-cadherin and α-SMA in HPMCs. Aldosterone induced a dose-dependent decrease in
expression of E-cadherin and increase in α-SMA expression after 2 days stimulation (A). Aldosterone (10nM) also induced time-dependent changes in
expression of E-cadherin and α-SMA between 2 days and 7 days (B). Representative western blots with a quantitation bar graph are shown. nPo0.05
versus control (0nM) or 1nM aldosterone, †Po0.05 versus 10nM aldosterone, ‡Po0.05 versus control at each time point, §Po0.05 versus aldosterone
at 2 days, ||Po0.05 versus aldosterone at Day 2 and Day 4 (n¼5). HPMC, human peritoneal mesothelial cell; SMA, smooth muscle actin.
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gels, and transferred to polyvinylidene difluoride membranes.
Membranes were blocked by incubation in 5% w/v nonfat milk
powder in Tris-buffered saline for 30 minutes at room tempera-
ture, followed by incubation with primary antibodies directed
against the following antigens overnight at 41C: E-cadherin (BD
Pharmingen, San Diego, CA, USA), α-SMA (Abcam), S1004A
(DAKO), extracellular-signal-regulated kinase (ERK1/2, Santa
Cruz Biotechnology), phospho-ERK (Santa Cruz Biotechnology),
p38 mitogen-activated protein kinase (MAPK) (p38, Santa Cruz
Biotechnology) and phospho-p38 MAPK (Santa Cruz Biotechnol-
ogy). After washing the blot with PBS–Tween 20, blots were
incubated with horseradish-peroxidase-conjugated secondary
antibodies corresponding to each primary antibody, followed
by enhanced chemiluminescence detection (Santa Cruz Biotech-
nology). Positive immunoreactive bands were quantified by
densitometry and compared with the expression of human β-
actin (Santa Cruz Biotechnology).
Generation of reactive oxygen species

HPMCs were incubated with 10μM 20,70-dichlorofluorores-
cein diacetate (DCF-DA) (Invitrogen, Carlsbad, CA, USA) prior
to exposure to aldosterone (10nM) and/or spironolactone
(1μM). Serial fluorescence was measured using a fluorescent
plate reader at excitation 485 nm and emission 535 nm
(Molecular Devices).

Effect of MAPK inhibitors or antioxidants on aldosterone-
induced EMT and activation of MAPK

To investigate the signal transduction pathway responsible
for aldosterone-induced EMT, HPMCs were pretreated with
inhibitors of ERK (PD98059, 10μM) or p38 MAPK (SB203580,
10μM), and stimulated with aldosterone for 48 hours. We
also examined the role of reactive oxygen species (ROS) in



0 nM 1 nM 10 nM 100 nMAldosterone

%
 C

on
tr

ol
 (m

R
N

A)
  E-cadherin

α-SMA

*

*

*

*

Figure 5. Effects of aldosterone on mRNA expression of E-cadherin
and α-SMA in HPMCs. Aldosterone induced a significant decrease in the
mRNA expression of E-cadherin and an increase in α-SMA at concentra-
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phenotypic transition of HPMCs by examining the effect of
various antioxidants, N-acetyl cysteine (NAC, 5mM, ROS
scavenger), apocynin [10μM, an inhibitor of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase], and rote-
none (1μM, an inhibitor of mitochondrial electron transfer
chain subunit I) on aldosterone-induced EMT and activation
of MAPK.

Extraction of total RNA and real-time PCR

The ABI PRISM 7000 sequence detection system was used for
determining the level of transcripts with SYBR Green I as a
double-stranded DNA-specific dye (Applied Biosystems, Foster
City, CA, USA). The PCR was performed in 5mM cDNA,10mM SYBR
Green PCR Master Mix, and 5pM sense and antisense primers of
E-cadherin: (forward primer: 50-ACCCCTGTTGGTGTCTTT-30,
reverse primer: 50-TTCGGGCTTGTTGTCATTCT-30), α-SMA: (for-
ward primer: 50-GGGAATGGGACAAAAAGACA-30, reverse primer:
50-CTTCAGGGGCAACACGAA-30) for a final volume of 20mM per
reaction. Optimal primer concentrations were determined by
preliminary experiments. The comparative cycle threshold
method was used to assess the relative mRNA expression
levels of the target genes. For statistical analysis, all PCR
procedures were replicated at least three times. The amount
of PCR products was normalized with the housekeeping gene,
β-actin, to determine the relative expression ratios for each
mRNA in relation to the control group.

Statistical analysis

Data are shown as mean7standard deviation. All statistical
analyses were carried out using SPSS for Windows version 11.0
(SPSS, Inc., Chicago, IL, USA). Results were analyzed using a
Kruskal–Wallis nonparametric test, Student’s t test or one-way
analysis of variance for multiple comparisons. Statistical sig-
nificance was determined when P was o0.05.
tions 410nM after 2 days. Po0.05 versus 0 and 1nM aldosterone
(n¼4). HPMC, human peritoneal mesothelial cell; SMA, smooth
muscle actin.
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Results

Expression of mineralocorticoid receptor in HPMCs

There was a constitutive expression of mineralocorticoid
receptor (MR) in HPMCs. Fig. 1 shows the mRNA expression of
MR in HPMCs isolated from three different patients.

Effect of aldosterone on proliferation of HPMCs

Stimulation of HPMCs with aldosterone (1–100nM) for 2–7
days did not induce an alteration of cell proliferation assessed
by MTS assay (Fig. 2).

Aldosterone-induced EMT of HPMCs

Aldosterone induced morphological changes in cultured
HPMCs from Day 2 (Fig. 3). The typical cobblestone-shape of
the HPMC monolayer disappeared on Day 2 of aldosterone
stimulation with a change into an elongated morphology. After
7 days of aldosterone exposure, there was a loss of cell contact
with a fibroblast-like phenotype. Immunofluorescent staining
demonstrated a gradual decrease and redistrubution in cyto-
keratin and epithelial cell marker, and acquisition of α-SMA as
early as 2 days after aldosterone stimulation (Fig. 3).
Exposure of HPMCs to aldosterone (1, 10 and 100nM) for 2–7
days resulted in a dose- and time-dependent decrease in mRNA
and protein expression of epithelial cell marker and E-cadherin,
associated with an increase in expression of mesenchymal
marker α-SMA (Figs. 4 and 5). The expression of S1004A,
another specific marker of myofibroblasts, was increased by
stimulation with aldosterone (Fig. 6). Aldosterone-induced
changes in the expression of E-cadherin and α-SMA were
almost completely inhibited by treatment with an MR antago-
nist, spironolactone (1μM) (Fig. 7).
Effect of aldosterone on ERK and p38 MAPK activation

Aldosterone at a concentration of 10nM significantly
increased phosphorylation of ERK1/2 from 1 hour of stimula-
tion, which was blocked by spironolactone (Fig. 8). p38 MAPK
was also activated by aldosterone at 1 hour, and showed a
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secondary peak of phosphorylation at 24 hours and 48 hours.
Aldosterone-induced phosphorylation of p38 MAPK was inhib-
ited by treatment with spironolactone.

Effect of MAPK inhibitors on aldosterone-induced EMT

Both PD98059, an inhibitor of ERK pathway, and SB20358,
an inhibitor of p38 MAPK, alleviated aldosterone-induced EMT
of HPMCs (Fig. 9).
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Effect of antioxidants on aldosterone-induced EMT and MAPK
activation

Aldosterone significantly increased the generation of intra-
cellular ROS in HPMCs from 5 minutes (Fig. 10), which was
blocked by spironolactone. NAC, apocynin and rotenone ame-
liorated E-cadherin downregulation and upregulation of α-
SMA induced by aldosterone both at the protein and mRNA
levels (Fig. 11). Aldosterone-induced ERK1/2 and p38 MAPK
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activation was ameliorated by NAC and apocynin, but not by
rotenone (Fig. 12).
Discussion

This study shows that aldosterone per se induces the
phenotypic transition of HPMCs. The effect of aldosterone is
MR dependent and involves intracellular ROS generation and
activation of ERK1/2 and p38 MAPK. Antioxidants or MAPK
inhibitors ameliorate aldosterone-induced EMT, suggesting
these two mechanisms are responsible for aldosterone-
induced changes in cell phenotype.

Long-term PD is frequently associated with functional and
structural alterations in the peritoneal membrane [15,16].
Complex interactions of host and local factors, hypertonic
glucose-based dialysate, acidity of lactate-buffered solution,
and the presence of glucose degradation products with activa-
tion of inflammatory cytokines and various growth factors are
known to be responsible for the changes in the peritoneal
membrane [17,18]. Recent data suggest that EMT is an early
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and reversible step of peritoneal fibrosis [19]. EMT is a process
by which epithelial cells lose their polarity and intercellular
adhesion, and undergo remodeling of the intracellular cytos-
keleton [20]. Concurrent with a loss of epithelial phenotype,
cells undergoing EMT acquire the expression of mesenchymal
components and manifest migratory and invasive properties
[17,21,22]. Although EMT is a physiologically important pro-
cess in embryogenesis and wound healing, it can impose
unfavorable effect by promoting tissue fibrosis in nonphysio-
logical conditions.

HPMCs possess their own renin–angiotensin system (RAS)
with expression of angiotensinogen, angiotensin-converting
enzyme, or angiotensin II type I receptor [23,24]. High glucose
concentration results in RAS activation in HPMCs, and RAS
blockers ameliorate the production of transforming growth
factor-β and fibronectin, preserve ultrafiltration, and decrease
peritoneal fibrosis [23]. As a continuum of previous studies, we
found that HPMCs also constitutively express MR, indicating
the presence of almost all components of the RAAS in
peritoneal mesothelial cells. Profibrotic and proinflammatory
effects of angiotensin II have been shown, along with demon-
stration of beneficial effects of angiotensin-converting enzyme
inhibitor and angiotensin II type I receptor blocker on tubu-
lointerstitial fibrosis or peritoneal fibrosis [25–27]. Another
end-product of the RAAS is aldosterone, a mineralocorticoid
hormone, which is produced in the adrenal cortex, endothelial
and vascular smooth muscle cells in the heart, blood vessels,
and brain. Besides the classical effect on sodium and potas-
sium transport, aldosterone is known to play a role in the
development of cardiac and renal fibrosis. Chronic aldosterone
infusion causes myocardial fibrosis in rats with high salt intake
[28]. Similarly, aldosterone causes glomerular injury and
tubulointerstitial fibrosis [29]. Previous studies also demon-
strated that spironolactone decreases peritoneal thickening
and inflammation in animal models of bacterial peritonitis and
peritoneal fibrosis induced by mechanical scraping [30,31].
One study has investigated the effect of spironolactone
(25 mg) in a small number of PD patients (8 in placebo group
vs. 8 in spironolactone group). Spironolactone administration
for 6 months resulted in less inflammation and collagen
deposition in peritoneal biopsy specimens [32]. However,
these studies in animal models and PD patients neither
address the mechanism of protective effect of spironolactone
on peritoneal fibrosis nor focus on EMT as a potential
Spironolactone Aldo+SpironolactoneAldo

duction. Aldosterone (10nM) significantly increased generation of
the effect was blocked by co-treatment with spironolactone (1μM).
hown (n¼5). nPo0.05 versus others. Aldo, aldosterone; DCF-DA, 20,70-



Figure 11. Effects of antioxidants on aldosterone-induced EMT. Aldosterone-induced changes in expression of E-cadherin and α-SMA were
blocked by NAC (5mM), apocynin (10μM), and rotenone (5μM) (n¼5). Representative western blotting with its quantitation graph (A) and relative
mRNA expression (B) are shown. nPo0.05 versus others. Aldo, aldosterone; EMT, epithelial-to-mesenchymal transition; NAC, N-acetyl cysteine; SMA,
smooth muscle actin.
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Figure 12. Effect of antioxidants on aldosterone-induced MAPK activation. Aldosterone (10nM) significantly increased phosphorylation of ERK1/2
(A) and p38 MAPK (B) in human peritoneal mesothelial cells. Aldosterone-induced activation of ERK1/2 and p38 MAPK was significantly ameliorated
by antioxidants, NAC (5mM) or apocynin (10μM). However, rotenone (5μM) did not alter the aldosterone-induced activation of ERK1/2 and p38 MAPK.
Representative western blotting and its quantitation graphs are shown (n¼4). nPo0.05 versus others. Aldo, aldosterone; ERK, extracellular signal-
regulated kinase; MAPK, mitogen-activated protein kinase; NAC, N-acetyl cysteine.
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mechanism of aldosterone-induced EMT. Our data suggest that
blocking ROS generation with amelioration of ERK1/2 and p38
MAPK activation is the mechanism for the beneficial effect of
spironolactone on aldosterone-induced EMT and fibrosis.

Aldosterone activated both ERK1/2 and p38 MAPK in
HPMCs. Interestingly, aldosterone induced an activation of
both MAPKs at 1–3 hours, followed by secondary phosphor-
ylation at 24–48 hours. The significance of each peak of ERK
and p38 activation needs to be further investigated. The initial
activation of MAPK seems not to be related to the genomic
effect of aldosterone, whereas the secondary peak may be the
consequence of activation of genomic pathways by aldoster-
one. ERK1/2 and p38 MAPK are known to be important
mediators of the intracellular signal transduction pathway
responsible for collagen synthesis and tissue fibrosis [33].
ERK is implicated in cell proliferation and differentiation,
whereas p38 mediates cellular stresses such as inflammation
and death. A previous study demonstrated that angiotensin II-
mediated EMT of renal tubular cells was ameliorated by MAPK
inhibitors [34]. In our study, both ERK1/2 and p38 MAPK
inhibitors alleviated aldosterone-induced EMT of HPMCs, indi-
cating the role of MAPK in the development of EMT and
peritoneal fibrosis.

In this study, intracellular ROS generation was one of the
earliest findings of aldosterone-induced changes in HPMCs,
which was observed after 5 minutes of aldosterone stimula-
tion. There have been several studies demonstrating the role of
ROS in the development of peritoneal fibrosis [35,36]. High
glucose and glucose-based PD solutions induced generation of
ROS in cultured HPMCs [37–39]. Furthermore, treatment with
antioxidants, NAC or catalase, effectively reversed high-
glucose-induced change in E-cadherin and α-SMA [35]. The
role of ROS in aldosterone-induced EMT was also examined in
renal tubular cells [40]. In human proximal tubular cells,
aldosterone increases intracellular ROS production and
induced EMT. Aldosterone-induced EMT in renal tubular cells
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is completely blocked by mitochondrial respiratory chain
complex I inhibitor [40]. In this study, we also found antiox-
idants including ROS scavenger, NADPH oxidase inhibitor, and
mitochondria-targeted antioxidant ameliorated aldosterone-
induced EMT of HPMCs, which was consistent with the
previous study performed in renal tubular cells.

Importantly, ERK1/2 and p38 MAPK activation in
aldosterone-stimulated HPMC was blocked by NAC and apoc-
ynin, but not by rotenone. This finding suggests ROS genera-
tion by NADPH oxidase precedes MAPK activation, which is
followed by mitochondrial ROS generation. Mitochondrial ROS
generation in HPMCs was observed after 6 hours of aldoster-
one stimulation (data not shown), in contrast to positive DCF-
DA staining as early as after 5 minutes, which may have been
due to activation of NADPH oxidase.

Aldosterone concentration used in this study was 0.1–
100nM. The normal plasma level of aldosterone is 0.14–
0.80nM in sitting and standing positions, and 0.08–0.30nM in
the lying position, which is lower than the levels that induced
EMT in this study. However, in patients with kidney disease,
liver cirrhosis, heart failure and a condition of increased intra-
abdominal pressure, aldosterone level is increased [41]. Plasma
level of aldosterone is reported to be higher in continuous
ambulatory PD (CAPD) patients compared with other patients
with chronic kidney disease. According to the previous study,
mean plasma and dialysate level of aldosterone in 27 stable
CAPD patients were 1.570.6nM and 0.770.3nM, respectively
[42]. Higher plasma level of aldosterone in CAPD patients was
considered to be due either to increased secretion or decreased
clearance. The instillation of 2 L dialysate into the peritoneal
cavity during CAPD may reduce hepatic blood flow and reduce
the endogenous metabolic clearance rates of aldosterone, which
results in a high level of aldosterone in peritoneal dialysate
[43,44]. Although aldosterone concentrations inducing EMT in
our in vitro study are higher than the aldosterone level in
peritoneal dialysate, continuous exposure of peritoneal
mesothelium to certain concentrations of aldosterone in PD
patients may trigger phenotypic transition of mesothelial cells.

In conclusion, our study demonstrated that aldosterone
induced EMT in HPMCs for the first time. Aldosterone-
induced ROS generation plays a key role in aldosterone-
induced EMT via activation of intracellular ERK1/2 and p38
MAPK. Our data suggest a potential therapeutic use of MR
antagonist as well as MAPK inhibitor or specific antioxidants in
peritoneal fibrosis.
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