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Abstract

A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1
resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and
Acquired Immune Deficiency Syndrome (AIDS) therapies. In this study, we analyzed the gene expression profiles of CD4+ T
cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1
resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR) and Incremental Feature
Selection (IFS) methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the
HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information
exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection
information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the
coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these
pathways could disrupt communication with virus-targeted proteins and HIV-1 infection.
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Introduction

Acquired immunodeficiency syndrome (AIDS) is caused by

human immunodeficiency virus (HIV), which is a member of the

retrovirus family [1]. According to UNAIDS Outlook 2010 [2],

there were 33.4 million people infected with HIV in July 2010, 2

million deaths per year, and 2.7 million new infections per year.

HIV destroys the human immune system through infection of

helper T cells (CD4+ T cells), macrophages, and dendritic cells [3].

Infection with HIV-1 does not always lead to AIDS [4] because

different people have different responses to HIV-1 infection. Very

small proportions of individuals are resistant to HIV-1 infection

and remain negative after repeated HIV-1 viral exposure [5,6,7].

The mechanism of HIV-1 resistance in these individuals could be

used to design an HIV-1 vaccine, which is crucial for containing

the spread of HIV. Microarray technology makes it possible to

measure the expression of thousands of genes. Information on

protein interactions can help us understand the mechanisms of

biological problems [8,9,10]. The combination of these technol-

ogies may allow us to elucidate the mechanisms of HIV-1 infection

and resistance.

In this study, we analyzed a published dataset that included 85

samples from HIV-1-resistant individuals and 50 samples from

HIV low-risk negative individuals [11]. The gene expression

profiles of CD4+ T cells were measured using the NIA/NIH

Human Focused Immune Array 4600. One hundred eight-five

discriminative genes were identified with the Minimum Redun-

dancy-Maximum Relevance (mRMR) principle and Incremental

Feature Selection (IFS) method. The prediction accuracy of the

185-gene signature using the Nearest Neighbor Algorithm (NNA)

was 85.2% according to Leave-One-Out Cross-Validation

(LOOCV). To interpret the relevance of the 185 genes to HIV-1

resistance, we investigated the virus-host protein interaction

network, which integrated the HIV-1, human protein interaction

database [12] and the STRING database [13]. We found that the

185 genes were enriched in targets of the HIV-1 protein nef, which

suggests that nef plays an important role in HIV-1 infection. In

addition, we identified 29 genes from the 185 genes that may disrupt

the communication between virus-targeted proteins based on the

network analysis. These genes are located on the shortest paths

between virus-targeted proteins and are important for exchanging

information between virus-targeted proteins and coordinating virus
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invasion. Targeting of these genes may disrupt the communication

between virus-targeted proteins and infection, and they may serve as

novel drug targets for Acquired Immune Deficiency Syndrome

(AIDS) therapy or prevention.

Methods

Microarray Dataset
The microarray data used in this work were from Paul J.

McLaren’s study [11] of HIV-1-resistant individuals and HIV-1-

susceptible individuals. Their data are publicly available at GEO

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE14279).

There were 85 samples from HIV-1-resistant individuals and 50

samples from HIV low-risk negative individuals. The NIA/NIH

Human Focused Immune Array 4600 was used to measure the gene

expression profiles of CD4+ T cells from those samples. After

averaging the duplicate probes for genes and quantile normaliza-

tion, we obtained the expression profiles of 1868 genes in 85 HIV-1-

resistant samples and 50 HIV-1-susceptible samples.

Minimum Redundancy-Maximum Relevance (mRMR)
feature selection

As a widely used feature selection method, Minimum

Redundancy-Maximum Relevance (mRMR) [14] is designed to

select features that best classify the target variable. The selected

features by mRMR are as similar as possible to the classification

variable and as dissimilar as possible to each other. The mRMR

program can be downloaded from http://penglab.janelia.org/

proj/mRMR/. The mRMR program gives two scores: the score

in the MaxRel list is the relevance score between the features and

the target; the score in the mRMR list maximizes the relevance

and minimizes the redundancy. In our study, we used the mRMR

list.

Classifier Construction and Evaluation
In this study, we used the Nearest Neighbor Algorithm (NNA;

available from http://pcal.biosino.org/NNA.html) [15] to classify

the samples into the HIV-1-resistant and HIV-1-susceptible

groups based on the cosine similarity [16,17,18] between the

query patient and each of the patients in the training set. The

query patient is predicted to be in the same group as that of its

nearest neighbor in the training set.

To evaluate the constructed prediction model, Leave-One-Out

Cross-Validation (LOOCV) [16,17,18,19,20] was applied. During

LOOCV, each sample in the dataset was used as a test sample

and predicted based on the model trained with the other samples.

The prediction accuracy was used to evaluate the prediction

performance:

Q~
TPzTN

TPzTNzFPzFN
ð1Þ

where TP, TN, FP and FN stand for the numbers of true

positive, true negative, false positive and false negative samples,

respectively.

Incremental Feature Selection (IFS)
mRMR only sorts features according to their importance, but

whether more features should be selected was still not known. In

this study, Incremental Feature Selection (IFS) [16,17,18,20] was

used to determine the optimal number of features. By testing all of

the possible top feature sets, the feature set that produces the

highest prediction accuracy is chosen as the optimal feature set.

The possible feature subset Si can be expressed as:

Si~ff1,f2,:::,fig(1ƒiƒN) ð2Þ

where N is the total number of features. The leave-one-out test was

used to obtain the prediction accuracies of the different feature

sets. The feature set that produced the highest prediction accuracy

is the optimal feature set. To visualize the IFS process, we plotted

an IFS curve in which the x-axis is the number of features and the

y-axis is the prediction accuracies.

Communication between virus-targeted proteins in a
weighted interaction network

To investigate the virus-host interaction, we downloaded the

HIV-1, human protein interaction network from the National

Institute of Allergy and Infectious Diseases (http://www.ncbi.

nlm.nih.gov/RefSeq/HIVInteractions/) [12] and the human

protein interaction network from STRING (http://string.embl.

de/) [13], which is a large database of known and predicted

protein interactions. Because the HIV-1, human protein

interaction database used Entrez Gene IDs and STRING used

Ensembl Peptide IDs, we transformed the Entrez Gene IDs in the

HIV-1, human protein interaction database into Ensembl Peptide

IDs and Gene Symbols using BioMart [21]. The ID transformed

HIV-1, human protein interactions are available in Table S1.

Dijkstra’s algorithm [22] was applied to obtain the shortest

paths between virus-targeted human proteins in the weighted

interaction network. The weight in the protein interaction network

was defined as one minus the confidence score in STRING v8.3.

Inspired by Freeman’s betweenness [23], which measures the

information flow through a network, we calculated the modified

betweenness of node v in graph G~(V ,E):

CB(v)~
X

s=v=t,v[V ,s[VT ,t[VT

sst(v) ð3Þ

where s and t are nodes from the virus-targeted proteins VT in the

network, and sst(v) is whether the shortest path between nodes s
and t goes through node v. A node with high modified

betweenness may be important for the exchange of information

between virus-targeted proteins and may be targets for the

disruption of communication between virus-targeted proteins and

the prevention of virus infection.

The analysis workflow of HIV-1 resistance genes
Our strategy for the analysis of HIV-1 resistance genes is

demonstrated in Figure 1. First, we used mRMR to rank the

genes based on their relevance to HIV-1 resistance. Second, IFS

was applied to optimize the HIV-1 resistance prediction model

and identify the 185 optimal HIV-1 resistance genes. Then, we

obtained the information exchanger genes on the virus-host

interaction network and compared them with the HIV-1

resistance genes indentified by mRMR and IFS. Finally, we

obtained 29 infection information exchanger and HIV-1 resistance

genes.

Results

Identifying the HIV-1 resistance genes
To identify HIV-1 resistance genes, we first applied the mRMR

method to the expression profiles of 1868 genes in 85 HIV-1-

resistant samples and 50 HIV-1-susceptible samples. Then, the

Analysis of HIV-1 Resistance
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1868 genes were ranked by mRMR according to their importance

for discrimination. After the mRMR ranked gene list was

obtained, we used the Incremental Feature Selection (IFS) method

to determine the optimal discriminative gene set. Figure 2 shows

the IFS curve for optimal gene set selection. The top 185 genes in

mRMR gene list formed the optimal discriminative gene set, and

the prediction accuracy of this set using the nearest neighbor

algorithm was 85.2% according to Leave-One-Out Cross-

Validation (LOOCV). Table S2 shows the complete list of the

185 HIV-1 resistance genes. The code used for HIV-1 resistance

gene identification is available by request.

The biological functions of the 185 HIV-1 resistance
genes

To investigate the functions of the 185 HIV-1 resistance genes

and their relevance to HIV invasion, we performed Gene

Ontology (GO) enrichment and HIV protein targets analyses.

Table S3 shows the Gene Ontology enrichment results for the

185 genes using GATHER [24] (http://gather.genome.duke.edu/)

with an adjusted p value smaller than 0.01. These 185 genes were

significantly enriched in the response to stress, defense response,

immune response, cell communication and signal transduction

categories. The Gene Ontology enrichment results were consistent

with a previous report that immune responses contributed to

protection against HIV-1 infection [25].

The relationship between the 185 HIV-1 resistance genes
and HIV-1 proteins

There are nine HIV-1 proteins: env, gag, nef, pol, rev, tat, vif,

vpr and vpu [12]. We wanted to determine which HIV proteins

are crucial for HIV invasion or are associated with HIV-1

resistance. We performed a virus target enrichment of the 185

genes using the hypergeometric test [26]. The virus target gene

sets were defined as the human protein targets of each HIV-1

protein according to the HIV-1, human protein interaction

database [12]. In the virus target enrichment analysis, it was

found that the 185 genes were significantly enriched in targets of

the HIV-1 protein nef with a p value of 0.028. Within the 185

genes, there were 12 target genes of nef: HLA-C, IL2, PAK1,

ICAM1, MMP9, MAP3K5, GFAP, CSF1R, TNF, IRF2, ELK1

and CBL. This result suggests that nef plays an important role in

HIV-1 infection. In fact, it has been reported that in the early

stages of the HIV-1 viral life cycle, the expression of nef promotes

two major processes of HIV infection: T-cell activation and the

establishment of a persistent state of infection [27]. It was observed

in Sydney that the patients infected with nef-deleted virus take

more time to progress to AIDS [28]. This clinical observation

confirmed that nef plays an important role in HIV-1 infection.

Therapies that affect the human protein targets of nef may weaken

the virulence and infectivity of HIV-1 and increase HIV-1

resistance.

Figure 1. Workflow of the HIV-1 resistance gene analysis. First, we used mRMR to rank the genes based on their relevance to HIV-1 resistance.
Second, IFS was applied to optimize the HIV-1 resistance prediction model and identify 185 optimal HIV-1 resistance genes. Then, we obtained the
information exchanger genes based on the virus-host interaction network and compared them with the HIV-1 resistance genes indentified by mRMR
and IFS. Finally, we identified 29 infection information exchanger and HIV-1 resistance genes.
doi:10.1371/journal.pone.0017291.g001
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Network analysis of virus-host interaction
To analyze virus-host interactions, we integrated the HIV-1,

human protein interaction network and the STRING human

protein interaction network. We calculated the modified between-

ness, which is defined in the Methods section, and identified

proteins that are important for communication and potentially

transmit information from one virus-targeted protein to another.

Twenty-nine genes out of the 185 HIV-1 resistance genes were

infection information exchangers. For instance, CBL was on

19,859 of the shortest paths between virus-targeted proteins, and

IL2 controls 12,939 virus target communication pathways. These

proteins are important for exchanging information between virus-

targeted proteins and coordinating virus infection. Table S4 gives

the 29 infection information exchanger genes from the 185 genes.

Discussion

Based on the effective integration between the human protein

interaction network and the STRING human protein interaction

network, 29 infection information exchanger and HIV-1 resistance

genes (see Table S4) were identified. The infection information

exchanger genes are located on the shortest paths between virus-

targeted proteins, which suggest that they play essential roles in the

coordination of virus infection. The concept of infection information

exchanger genes is useful for revealing key players in virus infection

and for providing candidates for drug target screening. It can be easily

applied to other virus-related studies, such as hepatitis B virus (HBV),

hepatitis C virus (HCV) [29], and influenza A (H1N1) virus [10].

Within the 29 genes identified as infection information

exchanger and HIV-1 resistance genes, some have been well

studied. CBL (murine Cas-Br-M) was first identified as part of a

transforming retrovirus that induces mouse pre-B and pro-B cell

lymphomas [30]. CBL positively regulates receptor protein-

tyrosine kinase ubiquitination as an adaptor dependent upon its

variant SH2 and RING finger domains [31]. HIV nef modifies T

cell signaling by enhancing CBL phosphorylation in the absence of

T cell receptor engagement and co-stimulation [32]. Nef-mediated

lipid raft exclusion inhibits CBL activity, which positively regulates

signaling in T cells [33]. In our study, CBL was on 19,859 of the

shortest paths, which suggests that it is important for HIV

infection. The second gene on the list of 29 genes, IL2, is a

secreted cytokine that regulates CD4+ T cell production and

survival [34]. IL2 is also known to increase CD4 cell counts in

HIV-infected patients [35]. Here, IL2 was implicated in the

control of 12,939 virus target communication paths, contributing

to the hypothesis that IL2 is involved in HIV entry. The third gene

on the list of 29 genes, ABL1 (c-abl oncogene 1, non-receptor

tyrosine kinase), encodes a tyrosine kinase involved in cell

differentiation, cell division, cell adhesion, and stress responses

[36,37,38]. ABL1 is negatively regulated by its SH3 domain, and

deletion of the SH3 domain changes ABL1 into an oncogene [37].

The DNA-binding activity of ABL1 is regulated by CDC2-

mediated phosphorylation [39]. ABL1 was on 7516 virus target

communication paths in this study. This is the first evidence of a

link between ABL1 and HIV infection.

We also found many other factors that would potentially be

target genes in HIV infection, such as mitochondrial ribosomal

protein S12 (MRPS12), nuclear factor erythroid-derived 2 (NFE2),

mitogen-activated protein kinase 7 (MAPK7), CASP8 and FADD-

like apoptosis regulator (CFLAR), and glutathione S-transferase

Figure 2. The IFS curve for HIV-1-resistant and susceptible sample classification. In the IFS curve, the x-axis is the number of genes used
for classification, and the y-axis is the prediction accuracies of nearest neighbor algorithm evaluated by Leave-One-Out Cross-Validation (LOOCV). The
peak accuracy was 0.852 with 185 genes. The top 185 genes in the mRMR gene list formed the optimal discriminative gene set.
doi:10.1371/journal.pone.0017291.g002
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alpha 4 (GSTA4). The identification of the targets cannot predict

whether increasing or decreasing its function will generate

resistance to HIV. Further investigation of these proteins during

HIV infection is needed.

To summarize, we identified 185 HIV-1 resistance genes that

discriminate between HIV-1-resistant samples and HIV-1-suscep-

tible samples. The prediction accuracy was 85.2% evaluated by

Leave-One-Out Cross-Validation (LOOCV). The virus target

enrichment of the 185 genes suggests that the HIV-1 protein nef

may play an important role in HIV-1 infection. A novel method

for the analysis of virus-host interactions was proposed, and

modified betweenness was used to measure the information

exchange between virus-targeted proteins. Twenty-nine genes

out of the 185 HIV-1 resistance genes were infection information

exchangers, which were located on the shortest paths between

virus-targeted proteins and may disrupt the communication

between virus targets. These proteins are important for the

coordination of virus infection, and therapies that affect the

infection information exchanger genes may disrupt communica-

tion between virus-targeted proteins and HIV-1 infection. They

are potential novel drug targets for AIDS therapy or prevention

and may be important for understanding the mechanism of HIV-1

infection.

Supporting Information

Table S1 The HIV-1, human protein interactions from
(http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/).

(XLS)

Table S2 The 185 genes selected by mRMR and IFS.

(XLS)

Table S3 The Gene Ontology enrichment of the 185
genes using GATHER (http://gather.genome.duke.
edu/).

(XLS)

Table S4 Descriptions of 29 infection information
exchanger gene identified from the 185 HIV-1 resistance
genes.
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