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1 | INTRODUCTION

Abstract

Over the past decade, spectral or dual-energy CT has gained relevancy, espe-
cially in oncological radiology. Nonetheless, its use in the radiotherapy (RT) clinic
remains limited. This review article aims to give an overview of the current state
of spectral CT and to explore opportunities for applications in RT.

In this article, three groups of benefits of spectral CT over conventional CT
in RT are recognized. Firstly, spectral CT provides more information of phys-
ical properties of the body, which can improve dose calculation. Furthermore,
it improves the visibility of tumors, for a wide variety of malignancies as well
as organs-at-risk OARs, which could reduce treatment uncertainty. And finally,
spectral CT provides quantitative physiological information, which can be used
to personalize and quantify treatment.

KEYWORDS
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Computed tomography (CT) has been around for over
four decades and is indispensable in radiology. In 1983,
the use of CT for radiotherapy (RT) treatment planning
was first proposed,’ and since then CT gained a piv-
otal role within RT treatment simulation. Most contempo-
rary RT departments have a dedicated CT system used
as a RT simulator. The anatomical information from CT
supports delineation of the treatment target and organs-
at-risk (OAR), while the attenuation information serves
dose calculation purposes.

CT techniques have developed significantly over the
years, with spectral CT imaging being one of the most
prominent recent innovations. Conventional CT reports
the averaged attenuation of a polychromatic radia-
tion beam in the patient, which makes the measure-
ments dependent on tube output and body size due to
beam hardening? However, since body attenuation of

kilovoltage (kV) radiation is caused for over 85% by
Compton scatter (CS) and the photoelectric effect (PE),>
a much more quantitative dataset can be created
through dual-energy (DE) CT.

By acquiring CT data at two different energy lev-
els and decomposing these into two base images that
can be used to describe the X-ray interaction (such as
CS/PE or effective atomic numbers [Z]/electron den-
sity [ED]), a quantitative dataset can be composed.*
These datasets can be recomposed into other quan-
titative maps like virtual monochromatic images (VMI)
representing mono-energetic photon energies at dif-
ferent kiloelectron Volt (keV) levels or single material
decompositions,”

Initial decomposition can be done either in the image
or in the sinogram domain. Decomposition in the image
domain is the simplest solution, but since the recon-
structions of the original input conceive conventional
data, beam hardening artefacts are introduced during
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reconstruction. It is therefore beneficial to per-
form decomposition in the sinogram domain before
reconstruction?® although this requires a higher
degree of spatial and temporal fidelity of the input
data.” Decomposition can also be integrated into
the reconstruction to further improve performance?
but this has not yet been implemented commer-
cially due to significant increases in reconstruction
time.

The concept of spectral CT was already described
by Hounsfield in his seminal article from 1973.° How-
ever, computational limitations and a lack of integrated
solutions hindered clinical implementation. In the last
decade, spectral CT has become more mainstream, with
various commercial implementations.'°

The first available spectral technique was a sequen-
tial DE CT scan. By making two sequential scans with
different tube potentials, a DE dataset can be created
without any technical adaptations to the scanner.!’

The technique is associated with a temporal offset
in the order of a single scan duration, which poses a
problem in the presence of (involuntary) motion and
dynamic contrast enhancement and limits the possibility
to perform spectral decomposition on sinogram data.?
Also, integration with more complex acquisition proto-
cols such as 4D CT is possible,'? but it remains chal-
lenging to minimize motion artifacts.

A particular type of sequential DE CT is split-beam
DE CT'2 In a helical scan with a pitch under 0.5, a
two-material filter allows for separation of the tube out-
put into two separate energy levels. This technique
allows for reduction of the temporal offset in compar-
ison to sequential DE CT, but at the cost of spectral
separation.

Because of the limited temporal resolution and image
quality, the use of sequential DE CT remained limited to
certain niche applications,'® such as urinary calculi,'®
gout,'” and hepatic steatosis.'® For RT, the use of these
techniques is mainly limited to proton stopping power
ratio (SPR) calculations.'®2° It was only with the intro-
duction of modern CT scanners providing integrated
dose-neutral solutions with high image quality that spec-
tral CT became an established technique in radiologic
departments .2’

The first integrated iteration introduced an extra X-ray
source and detector pair. This technique allows for two
simultaneous acquisitions at different kilovoltage peak
(kVp) levels,?? but the angular offset will introduce an
effective temporal offset in sinogram space of 25% of
the rotation time. This offset can cause motion uncer-
tainties and will introduce a geometrical offset in helical
mode, which makes sinogram-based decompositions
challenging.” An additional limitation of a dual-source
solution is that both detectors are competing for angular
space?? This implies an intrinsic limitation to the spec-
tral field-of-view (FOV), which is problematic for dose
planning.'?

Another implementation rapidly switches the tube
potential during gantry rotation,?® resulting in two scans
with different energy levels. The advantage of this
technique is that the temporal and geometrical offset
between the scans is minimal, allowing sinogram-based
decomposition.” However, this design poses a constraint
on dose modulation, rotation speed, and scan speed to
counteract for low energy flux which compromises the
advantages over conventional CT?*

The most recent commercial iteration separates the
signal by means of a dual-layer detector?® The top layer
of the detector attenuates and detects the low-energy
photons, while the bottom layer detects the remaining
high-energy photons. A detector-based solution avoids
acquisition constraints and creates two energy datasets
without any offset. It has a reduced spectral separation
in comparison to other solutions?® but with a spectral
signal-to-noise ratio (SNR) that was at least compara-
ble to other commercial solutions?” A unique feature of
this technique is that by recombining the signal from the
two layers, a conventional CT scan can be created from
the spectral data at the energy level of the acquisition
(120 or 140 kVp), which facilitates direct comparison and
adoption.

The term spectral CT and DE CT are often inter-
changed. In this article the term spectral CT has been
chosen, since it is more general than DE-CT and could
also refer to other solutions like photon-counting (PC)
CT. Photon counting CT detects individual photons and
measures their energy?® This has the potential to pro-
vide CT data without electronic noise, improved tissue
contrast, and improved image resolution.

Spectral CT imaging is gaining relevancy in the radi-
ological clinic, since it improves image quality due
to increase of image contrast?’ and a reduction of
beam-hardening,® image noise?® and metal artifacts.3’
Furthermore, it allows for quantification of the con-
centration of contrast agents such as iodine! This is
especially relevant for oncological application, since
intravascular iodine is often used as a contrast agent
for visualizing hyper- and hypo-perfusing tumors. By
assessing spectral images such as low-keV VMI, virtual
non-contrast (VNC), and iodine concentration images,
iodine contrast is enhanced and quantifiable, which
helps in the detection and assessment of tumors, lymph
nodes, and metastasis.®?

The increased use of spectral CT in oncological radi-
ology has sparked an interest within the radiation oncol-
ogy community33 However, despite having a potential in
improved visualization and characterization of cancer?
most of the past works in radiation oncology focused on
improving dose calculation for brachytherapy and proton
therapy.

The main purposes of this review article are to
increase the radiation oncology community’s knowledge
in latest usage of spectral CT and encourage novel clin-
ical applications. This review addresses the threefold
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benefits of spectral CT for RT, summarizing current
and potential applications of spectral CT in the RT set-
ting:improved dose calculation through reliable radiation
physics, treatment certainty through improved disease
visibility, and personalized treatment through physiolog-
ical quantification.

2 | IMPROVED DOSE CALCULATION
THROUGH RELIABLE RADIATION
PHYSICS

Spectral CT measurements are more quantitative than
measurements from conventional CT. Conventional CT
reports the integral attenuation of a spectrum of radia-
tion through the body, with results that are dependent on
tube output and affected by beam hardening.

Spectral CT can provide a wide variety of well-defined
results such as VMI, Z. and ED maps.'? These results
are in principle independent on scanner parameters and
(in case of sinogram decomposition) not associated with
beam hardening, although residual errors may persist®

The implementation of spectral CT data as a replace-
ment of the conventional planning CT for dose planning
can improve accuracy for different RT modalities and
potentially reduce the need for phantom calibration to
convert Hounsfield units (HUs) into ED values.*

2.1 | Dose calculation improvements

The use of HU images from conventional CT is ade-
quate for the estimation of the tissue attenuation in
external beam RT with megavoltage (MV) photons,
because attenuation in water for both MV3® and kV
beams®® is mainly attributed to CS through ED. The large
dose penumbra associated with MV external beam RT
makes additional uncertainties less influential.>’ How-
ever, dose delivery techniques with a steeper dose gra-
dient, such as brachytherapy®® and proton therapy,*
require more precise modeling for optimal therapy plan-
ning.

2.2 | Monte carlo simulations for
brachytherapy

One of the first spectral applications described for RT
was to use spectral CT for Monte Carlo simulations
for brachytherapy® For (low-energy) brachytherapy, the
attenuation contribution of the PE and to a lesser extent
Rayleigh scatter is much more prominent than for MV
external beam RT. This makes the dose gradient sharper,
thus also raising the need for quantification of the effec-
tive atomic number (Z.5) for precise dose calculations.*°

Moreover, Monte Carlo simulation is in general more
sensitive to correct modeling of physical properties of
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tissues than classical dose calculation with analytical
methods, requiring detailed knowledge of the atomic
composition of the underlying tissue*' For this reason,
most Monte Carlo techniques rely on organ tissue seg-
mentations, with assumptions on the chemical makeup
of each tissue type.

A method for classification of tissue groups based
on conventional HU value ranges has been described
by Schneider*? and this technique has since been
regarded as the gold standard. However, studies
have demonstrated that conventional CT segmenta-
tions are associated with large uncertainties, due to
materials having similar conventional CT values, but
different physical properties, leading to large dose cal-
culation errors*® Spectral CT could improve these
segmentations (see the section on visibility), and one
study demonstrated that this could reduce local dose
errors from +9% down to +4% in brachytherapy with
103Pd.44

However, segmentations based on HU values do not
account for interpatient variations in tissue composition,
especially in the case of local tumor pathology. There-
fore, direct parametrizations of spectral features like
ED and Z.s to model elemental mass fractions have
been proposed for particle therapy*®> However, Z. is
not a reliable quantity to reproduce the attenuation for
tissues at energies under 50 keV, which poses chal-
lenges for modelling low-energy brachytherapy*® There-
fore, other authors have proposed other models, like
a three-material water-lipid-protein decomposition;*’ or
a naive model with virtual materials through a linear
model“® or principle component analyses*' The impact
of the latter technique on dose distribution was tested
for brachytherapy and proved to give higher accuracy
than a conventional CT solution.*°

2.3 | Particle treatment planning

Particle therapy has a much steeper dose delivery curve
than conventional external photon therapy, due to the
associated Bragg peak.2? This allows for more precise
targeting, but also raises the bar for SPR estimation. Pro-
ton SPR estimations on conventional CT are associated
with range uncertainties of 3%—3.5%.°C For photon ther-
apy such uncertainties in attenuation would constitute
local dose variations under 1%,” but for proton therapy
variations in SPR could lead to much larger dosimet-
ric uncertainties due to dose shifts. Some studies report
variations up to 7.8% with an average uncertainty of
2.1%,%0 although in theory differences could be up to
100% due to a local dose shift.

There are multiple studies that have described
how spectral images can be used to calculate SPRs
for proton®® and heavy-ion treatment®' Most tech-
niques use various implementations of the Bethe equa-
tion to convert spectral values of each voxel into
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SPR,*1:52-55 glthough stoichiometric calibration can also
be applied.°® Recently, convolutional neural networks
have also been proposed to create SPR maps from
spectral CT data.®’

Spectral CT can lower the root mean square
errors (RMSE) of proton SPR from 3% to below 1%
uncertainty®® for proton beam therapy, although some
articles report clinical errors of 2.2%°0-2.4%5° The
reported reasons for this discrepancy are noise and
residual beam hardening artifacts, mainly related to the
used image-based spectral decomposition technique.t’

2.4 | Dose calculation in the presence of
contrast agent

The use of iodine as a contrast agent is a crucial tool
in the visualization of tumors on CT®" lodine has strong
attenuation of low KV radiation and thereby increases
the HU of perfused areas on CT. This helps with visu-
alization of relevant structures, but it compromises
the radiation dose calculation for photon therapyS?
brachytherapy® and particle therapy®* The associated
increase of HU generally leads to an overestimation
of the attenuation and stopping power, which trans-
lates to an underestimation of the dose during pho-
ton therapy®® or a dose range overshoot for particle
therapy®*

These effects are dependent on the tissue depth and
the proximity of organs with strong perfusion, being
more prominent in abdominal regions than in areas like
the head-and-neck and pelvis. For photon therapy, the
uncertainty on dose estimations remains under 1% for
most areas, but it can be larger than 2% for abdom-
inal treatment areas®® For proton therapy, the effects
are more substantial and can result in dose shifts up to
10 mm 56

To avoid the influence of iodine contrast on the dose
calculations, an additional CT without contrast is typi-
cally added to the acquisition protocol for dose calcula-
tion. However, this increases imaging dose to the patient
and introduces position uncertainty from patient motion
between two scans. Therefore, this additional scan is
sometimes omitted when dose effects are anticipated to
be limited?” or the local HU values in regions with high
iodine uptake are manually replaced with values of the
surrounding tissue.%8

Spectral CT provides the possibility to create VNC
CT scans, with HU similar to conventional CT scans
without iodine®® Some studies have investigated the
use of such scans for the purpose of treatment plan-
ning, reporting RMSE deviations of attenuation and
stopping powers below 1%, rendering these deviations
negligible.”%"?

For photon therapy, it is also possible to directly pro-
duce spectral ED maps for dose planning.”® Primarily,
this would eliminate the need of calibration tables of

HU to ED in photon therapy treatment planning. An addi-
tional advantage to this approach is that ED measure-
ments are only marginally affected by iodine concentra-
tion. A clinically extremely high contrast concentrations
of 20 mg/ml iodine is only associated with ED variations
of about 5%,3* while organ perfusion will typically not
exceed 2-5 mg/ml, leading to local uncertainties of 1%
or less. Using the spectral ED map therefore eliminates
significant planning uncertainty that is associated with
iodine contrast in conventional CT planning.”* An illus-
tration of this effect can be seen in Figure 1.

2.5 | Metal artifact reduction

The presence of metal in the body can be a source of
major artifacts in CT imaging due to photon starvation,
beam-hardening, and scatter effects.”® Foreign metal
objects like hip prostheses,’® spinal fusion hardware,’’
dental fillings’® as well as brachytherapy seeds’® can
greatly compromise the calculation of local dose for dif-
ferent RT methods. These artifacts are often handled by
manually overwriting affected regions with HU values of
normal tissue.2°

Most contemporary CT scanners provide metal arti-
fact reduction (MAR) algorithms that can reduce these
artifacts in conventional CT2" MAR algorithms can be
applied to conventional data by making assumptions on
beam hardening and data that are missing due to photon
starvation, and this can improve the accuracy of calcu-
lated dose.&?

The use of spectral CT can also reduce metal
artifacts.”® The reduction of metal artefacts is mainly
attributed to the reduction of beam-hardening artefacts
in spectral CT83 The overall artefact reduction is largest
in high KeV VMI, since these have the strongest contri-
bution of the high-energy channel of the DE input data
(resulting in minimized photon starvation). MAR algo-
rithms can be combined with spectral high keV VMI to
further optimize results 2*

Reduction of metal artifacts through spectral CT can
improve dose calculation for external photon®88 and
brachytherapy®® The impact in dose calculations effects
varies largely between metal implant type and size.
Although some reported a negligible dose advantage for
photon therapy,° others reported a reduction of average
dose error from 4.4% for conventional CT to 1.1% for a
spectral 180 keV?'

3 | IMPROVED VISIBILITY LEADS TO
INCREASED CERTAINTY

Conventional CT is still the dominant imaging modal-
ity in RT for target definition and disease staging,’> but
other imaging modalities are quickly gaining relevancy.
Conventional CT is associated with limited soft tissue
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Spectral computed tomography (CT) can improve dose calculation in the presence of iodine contrast. This illustration shows

comparisons of intensity-modulated proton therapy plans designed on non-contrast images and re-calculated on post-contrast images (Ates
2020). The isodose distributions are nearly identical when spectral stopping power ratio (SPR) images are used for dose calculations. However,
the clinical target volume is underdosed when conventional post-contrast conventional Hounsfield unit (HU) images as indicated by the arrow.
(Images are courtesy of Dr. Ozgur Ates and Dr. Chiaho Hua from St. Jude Children’s Research Hospital, Memphis, TN, USA)

contrast even in the presence of contrast agent and for
this other imaging modalities with higher sensitivity and
specificity, like positron emission tomography (PET)%
and magnetic resonance imaging (MRI).** are becom-
ing more important in RT?°

Spectral CT can improve the contrast of various
neoplasms and provides insight on their malignancy.>?
Spectral images generally yield reduced noise®® and
beam hardening artifacts® and by selecting the right
spectral results, the visibility of tumors can be optimized.

Low keV VMI maximizes the general iodine contrast
in the scan,?” while high keV VMI data minimize metal
artifacts®? Z.; can characterize materials based on
their chemical composition,’” and an iodine map visu-
alizes iodine concentrations specifically’® These maps
improve the visibility of primary tumors, metastases, and
involved lymph nodes.

3.1 | Tumor delineation

The use of iodine as an intravenous contrast agent can
improve soft tissue contrast on CT.However, the increase
of perfusion can often be very subtle (e.g., prostate
tumors, see Figure 2°°) or even hypodense in compar-
ison to the surrounding parenchyma (e.g., pancreatic
adenocarcinoma'®%). This lack of contrast can cause
stark variations in target delineations of many treatment
areas'Y" for head and neck,'%? gastric,'°® pancreatic,'%
prostate,'% bladder,'%® and even pulmonary'%’ cancers.

Various radiological studies have proven that spectral
CT improves tumor visibility, by improving the tumor con-
trast for malignancies such as lymphomas,'%® head and

neck (H&N) lesions,'%%1"2 |ung cancer,''® breast,''*
pancreatic cancer,''>~1"7 prostate cancer,''® gynaeco-
logical cancer,'"® urothelial carcinoma,'?® and hepato-
cellular carcinoma (HCC).'?" All studies indicate that
low keV VMI images yield increased contrast-to-noise
(CNR) of the tumor in comparison to conventional CT.
The increase of CNR was very dependent of tumor type
as well as acquisition and reconstruction methods, rang-
ing from 36.6% for H&N cancer'?® to 62.3% for bladder
cancer.'?? Tumors located near metal implants are an
exception, since high VMI images yield minimalization
of metal artifacts.'?%123

Two articles compared tumor PET uptake to iodine
contrasts of the tumor on spectral CT. One study com-
pared the ability of spectral CT to predict microscopic
invasiveness for non-small cell lung cancers (NSCLCs)
to that of '8F-Fluorodeoxyglucose (FDG) PET, find-
ing that the diagnostic performance of both modali-
ties was similar."* Another study found high correlation
(R?=0.82) between PET standard uptake values (SUVs)
and multiple spectral CT features in patients with pan-
creatic adenocarcinoma, concluding that spectral CT is
a potential surrogate for FDG in assessment of these
tumors.'?°

Although a lot of articles claim to have investigated
the impact of spectral CT on tumor delineation, most
have merely investigated features like SNR and CNR.
Only one study really reported the effect of image
quality improvement on delineation variability. A com-
parison of spectral CT with MRI finds that 60 keV VMI
provided a higher interobserver agreement for non-skull
base tumors in comparison to T1 with contrast and T2
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FIGURE 2

Computed tomography (CT)-based radiotherapy (RT) treatment of the prostate often aims for the entire gland, because the

tumor is usually hardly visible on conventional CT. Magnetic resonance imaging (MRI) data are therefore commonly added to define the exact
tumor extent within the gland. This figure is an example of an 82-year-old male with biopsy-proven prostate cancer (Gleason 3 + 4 = 7) in the
right side of the gland (arrow), demonstrating that spectral CT allows for better discrimination of the tumor. It is very likely that this information
can be used to improve treatment precision. (Images are courtesy of Dr. Michael Brun Andersen and prof. Dr. Finn Rasmussen from Aarhus

University Hospital)

weighted MRI.'?6 A limitation to this study is that the
results are not compared to conventional CT, making it
impossible to attribute the specific benefits of spectral
CT over conventional CT.

3.2 | Staging of lymph nodes and
metastasis

Improved contrast not only increases the visibility of
the main tumor, also metastasis and lymph nodes
become more apparent, which is crucial for disease
staging. Although staging is not typically performed in
RT departments, it is still helpful to detect and assess the
malignancy of lymph nodes and metastasis at the time
of RT planning.

For the detection of metastasis, many of the relevant
techniques are similar to the detection and delineation

of the main tumor. However, for correct assessment of
hyperdense findings, it is essential to discriminate iodine
from other contrasts to determine malignancy>? Spec-
tral CT can be very useful for the detection and assess-
ment of lung,'?’ liver,'?® bone,'?? brain,'*° and adrenal
metastasis,'®! as well as local invasion of gastric'2 and
lung cancer.'®3

This is also the case for determination of lymph node
involvement. For assessment of the lymph node sta-
tions, assessment of node size is not enough; it is
crucial to assess texture, local perfusion, and the pat-
tern of perfusion within the nodes.'>*~3¢ By visual-
ization and quantification of iodine,'®” spectral images
help in the assessment the malignancy of lymph nodes
in the abdomen,'®® HCC,'39 H&N,'40-142 gastric'4359,
pulmonary,'®® colorectal,'** and rectal cancer.'#%146

Within RT, PET,and MRI currently play an integral role
in RT staging of many cancer types. To our knowledge,
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there is no literature on direct comparisons between the
performance of these modalities to spectral CT on stag-
ing. There are, however, two studies that demonstrate the
additional value of spectral CT to PET in staging of sin-
gle osteolytic metastases of resectable NSCLC'#’ and
to both MRI and PET for staging of H&N cancer.'*®

3.3 | Organs-at-risk delineation
Delineation of OAR is crucial for sparing of these
organs, but especially in areas with complex anatomy
like the head and neck, discrimination of different
organs-at-risk can be challenging on conventional CT.'4°
But even in simpler anatomies, improved organ discrim-
ination might help with automation of the delineation
process.'?0

Spectral CT increases HU stability,'®' and the con-
cept of spectral fingerprinting’®? might raise the pos-
sibility to describe tissue types, based on specific CT
features, which would aid tissue segmentation for the
purpose of OAR definition. A number of studies report
that spectral CT improves the performance of artificial
intelligence (Al) for the purpose of auto-delineation for
various abdominal organs,'®3 bones'%* as well as OARs
in the head.'®%.156

4 | QUANTIFICATION LEADS TO
PATIENTS-SPECIFIC CARE

CT is by nature a scanning technique that provides
anatomical information. The introduction of a contrast
agent to a conventional CT scan can add quantitative
information on physiologic features like perfusion and
ventilation. But in order to quantify local concentrations,
a dynamic scan is necessary, complicating the acquisi-
tion protocol at an elevated dose.

Spectral material decomposition allows for quantifi-
cation of local contrast agent concentrations in a sin-
gle static scan, which potentially could be used as a
replacement for dynamic scans for tumor differentiation,
treatment response analyses, adaptive treatments, and
elective strategies to save functional parts of organs-at-
risk.

4.1 | Tumor differentiation

Traditionally, RT aims to administer a homogeneous
dose to the delineated tumor. However, it is known that
hypoxia, proliferation, and other functional factors have
a local influence on radiation sensitivity of cancers.'®’
Therefore, inhomogeneous dose can be prescribed by
either giving a boost within a delineated tumor'%8:°" or
by abandoning delineation and use a concept of tumor
probability'*® or dose-painting-by-numbers'®? for local
dose prescription based on functional imaging.

MEDICAL PHYSICS 1=

PET and MRI are primarily used for assessing local
tumor physiology. The role of conventional CT has
been limited in functional tumor differentiation, because
static CT provides little functional information. There
have been attempts to use dynamic contrast enhanced
(DCE) CT'6" for various RT applications, but due to
increased imaging dose, limited scan FOV and general
scan complexity associated with DCE CT, DCE MRI is
generally favored instead.'®? The use of local perfusion
parameters from DCE CT or MRI has been described
extensively for target definition in diseases like prostate
cancer'%® and pulmonary cancers.'

Spectral CT allows quantification of local tumor per-
fusion from a static contrast enhanced CT, by quan-
tification of the iodine concentrations at one timepoint
(see Figure 3). Although this technique does not provide
elaborate DCE features like vascular permeability and
mean transit time, it is regarded as an indicator of local
perfusion.'6®

For lung tumors, spectral iodine quantification val-
ues have been demonstrated to be associated with
tumor differentiation’®® and proliferation.'®’~16° Another
study describes the use of normalized iodine concen-
tration as a biomarker for the aggressiveness of rectal
cancer.'’? Potentially this information could be used for
dose description, although to our knowledge, there is no
study that describes this application.

It is, however, important to realize that timing of the
scan is crucial. There are several studies that assess
the correlation of FDG PET uptake to spectral CT iodine
maps in lung cancer. One study found a positive cor-
relation between the maximum SUV (SUV,,5«) and the
maximum iodine concentration (lodine,,y) in late arte-
rial phase,'”" while another study finds a negative rela-
tionship between SUV,,,« and iodine concentrations in
the venous phase.'”?

In a recent study, it was demonstrated that also
distribution patterns can provide prognostic value for
recurrence after SBRT of lung cancer!”® It was
reported that the ratio between the low-density area
and the total tumor volume was negatively predictive
for outcome, illustrating that heterogeneity of perfu-
sion in the tumor might be relevant to the treatment
plan.

4.2 | Treatment response monitoring
Changes in tumor and normal tissue perfusion, during
and after therapy, can be an indicator of treatment effi-
cacy as well as damage inflicted to the surrounding
parenchyma. For this reason, DCE MRI and CT are often
used to monitor treatment effects of various treatment
modalities on different cancer types.'”-176

There have been a number of articles that describe
that perfusion parameters can be used for treatment
response of RT, specifically for various tumor types, like
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FIGURE 3

rectal,'”’”='7° pulmonary,'8%.18" cervical,'82-184 H&N,'8°
and pancreatic cancers.'86

Since spectral iodine maps are an indicator of
local perfusion, they have been used to monitor
targeted therapies for diseases like gastrointestinal
stromal tumors’®”188 and NSCLC.'®® More recently
studies have demonstrated the feasibility of monitoring
RT outcomes with spectral CT for lung,'®® cervical,'’
pancreatic,'%? and H&N cancers.'93.194

In two studies, iodine quantification through spectral
CT to assess treatment response of lung cancers to
chemoradiotherapy and RT was compared to FDG PET.
It was found that both modalities correlated well, indicat-
ing the feasibility for substitution of the PET follow-up
scan with a spectral CT exam.9%.196

Also, for rectal cancers spectral iodine quantifica-
tion can be used for response evaluation. In a study
from 2020, Sauter at al.'®” demonstrated a very
strong correlation (r = 0.73; p = 0.01) between the
changes of both spectral iodine quantification and
MRI-based mean apparent diffusion coefficient (ADC),

Spectral iodine quantification can be used to differentiate within the tumor and lymph nodes. This figure shows data from a
75-year-old male with lung cancer. In the top row, the conventional series show a 25 mm tumor paravertebral in the left lower lobe with slight
enhancement. The iodine map shows that there is iodine uptake in the entire tumor with strong increased perfusion in the lateral and posterior
part of the tumor, where corresponding positron emission tomography (PET) images show 8F-Fluorodeoxyglucose (FDG) uptake in the entire
tumor. The patient also had an enlarged 4L lymph node of 14 mm in short axis. The corresponding iodine overlay shows a similar perfusion and
FDG uptake pattern in the left side of the lymph node. (Images are courtesy of Dr. Michael Brun Andersen and prof. Dr. Finn Rasmussen from
Aarhus University Hospital)

in follow-up scans of patients that underwent radio-
chemotherapy. Since ADC MRI is considered the gold
standard for response evaluation in rectal cancer and
because of the strong correlation, they concluded
that spectral iodine quantification could be a good
alternative.

Another study investigated the potential use of spec-
tral iodine maps for follow-up imaging of NSCLC after
chemoradiotherapy.'® In this study, a correlation was
found between local iodine values in the tumor and
disease progression as defined by RECIST criteria.
Patients with disease progression also demonstrated
higher iodine hotspots directly after treatment, indicat-
ing remaining vital tumor tissue.

4.3 | Functional sparing of
organs-at-risk

Functional discrimination within OARs might raise
the possibility to spare healthy parts of OARs, over
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less-functioning parts. Some studies have used
ventilation'®® and perfusion’® parameters to selec-
tively spare healthy lung tissues.

The imaging standard for assessment of pulmonary
function in diseases like chronic obstructive pulmonary
disease is combined ventilation/perfusion single-photon
emission CT (SPECT). This technique, however, lacks
high spatial resolution?° and general availability in RT
clinics. For this reason, assessment of perfusion through
other modalities, like PET and CT, is favorable, and it
has been demonstrated that spectral iodine maps can
be used as a replacement of perfusion SPECT, for the
sparing of functional lung tissue.?°"

Some groups have also attempted to assess lung
ventilation through conventional CT techniques like 4D
CT?%2 and dynamic imaging with krypton or xenon gas
as a contrast agent?%® Xenon quantification can be
performed by conventional subtraction CT?%* but visu-
alization and quantification are generally improved by
spectral CT2% even for dynamic scans?°¢). By combin-
ing these data with spectral iodine perfusion scans, a
ventilation/perfusion CT can be constructed 207208

Since iodine and xenon have similar attenuating fea-
tures, it is not possible to discriminate them on a single
spectral CT. However, by replacing iodine with gadolin-
ium as an intravenous contrast agent, it has been
demonstrated that it is feasible to acquire a ventila-
tion/perfusion CT with one spectral scan through three-
material differentiation.?%°

The potential of sparing functional tissue is not limited
to pulmonary treatments only. In a recent study, spec-
tral iodine maps were used to minimize the dose to
the functional parts of the liver?'? It was demonstrated
that this was possible, without compromising target
coverage.

5 | DISCUSSION
Spectral CT is becoming an established technique in
radiology. There is extensive and convincing proof that
spectral CT adds relevant radiological information for
various tumors 32211213

The main application of spectral CT in RT is for the
creation of SPR to improve dose calculation in pro-
ton therapy. However, by improving tumor contrast and
adding functional information, spectral CT could poten-
tially pose an alternative for PET and MRI, hereby reduc-
ing treatment cost and complexity. But although it is
tempting to extrapolate this radiological value toward the
RT clinic, there is a need to test this hypothesis in clinical
studies in an RT setting.2""

Although PC CT systems are not yet clinically avail-
able, and RT applications have not been tested, the val-
ues that are described in this article will likely apply to
this technique as well. Especially with regard to tumor
quantification and visualization, PC CT has large poten-
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tials, due to the ability to potentially use new con-
trast agents and better quantify tissue composition.?®
For dose calculation, the improved quantification of tis-
sue make-up could improve for instance Monte Carlo
simulation.

Recent usability improvements of spectral CT have
facilitated clinical adoption,?'* but it still needs to estab-
lish its position in radiation oncology>? It has been criti-
cal for radiologic adoption of spectral CT that the tech-
nigue does not negatively impact workflow and patient
throughput2'#

Sequential DE-CT protocols are available on most
contemporary CT simulators and are being used in
RT for applications like SPR calculations,'® contrast
enhancement,’™® and 4D CT imaging.'? They might
remain an alternative to the much more expensive inte-
grated spectral solutions, in spite of their limitations in
applications, quantitative features, and data integration.

An alternative approach would be to register an extra
diagnostic spectral CT scan to the conventional plan-
ning CT, but this would complicate the workflow and
render the conventional planning CT largely redundant.
The use of a spectral CT scanner from a radiology
department as a simulator could pose as a solution,
but this could result in patient/staff scheduling complex-
ity, since it would require interdepartmental cooperation.
The scanners could furthermore compromise on spe-
cific RT needs, like bore size.

The optimal implementation option seems to be an
integrated spectral solution, which is lacking in the cur-
rent generation of CT scanners dedicated for RT simu-
lation. An integrated spectral CT simulator would require
significant design modifications, which can only be jus-
tified by considerable benefits for the majority of RT
use cases. Spectral CT is currently mainly used in insti-
tutions that offer particle therapy for the promise of
improved treatment planning, but it needs to demon-
strate a broader benefit to exert a stronger impact on
the radiation oncology community.

The increased disease visibility and quantifiability that
are associated with spectral CT are potentially beneficial
for all treatment modalities and might even be crucial
for the future of CT simulation. However, most of these
potentials require iodine as a contrast agent, which is
problematic for sequential DE-CT due to limitations in
temporal resolution. The lack of an integrated spectral
RT solution is therefore part of the reason that the appli-
cation of spectral CT in RT is limited to applications that
do not require high temporal resolution, like dose plan-
ning for particle therapy.>°

Over the past two decades, the need for func-
tional imaging in RT has increased both for staging?'®
treatment planning,?® and response assessment.?? As a
result, the demand for?'69% and access to?'” both PET
and MRI in RT departments has increased significantly
over the last two decades, thereby potentially reducing
the role for CT to mere dose calculation and cone-beam
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position verification2'® The integration of MR scanners
during RT treatment?'? as well as the development of
MR-based synthetic CT images??%??! enable an MR-
only workflow,222 which could potentially erode the value
of CT in RT?%?

Although both PET and MRI provide useful informa-
tion, both bring limitations to a nimble RT clinic. Both
modalities are expensive, complex, time-consuming and
require specialized staff that needs to be trained in the
RT department or lend from other department to safely
operate the scanners 296224225 MR is associated with
reduced geometric fidelity, and PET is associated with
low intrinsic resolution. PET also requires expensive,
short-lived radioactive tracers and requires long prepa-
ration procedures of fasting and resting prior to the scan,
which hamper integration into adaptive RT schemes 226
Furthermore, both PET and MRI have typical acquisition
times in the order of 15—60 min, which limit throughput
and pose a challenge for dynamic organs. In comparison
to that, CT is much faster with acquisitions in the order
of singular minutes.

Another issue for both MRI and PET is reproducibility.
To be able to use quantitative results for local dose pre-
scription, reproducibility of results between patients and
vendors is paramount. Both PET??” and MRI?'%-9° have
a vast number of acquisition parameters that can influ-
ence measurements. There are many efforts to homog-
enize outcomes, but it remains challenging to assure
reproducibility between patients and machines. This is
problematic when local values are directly linked to local
dose definition.'®?

CT results are much more reproducible, because the
interaction of radiation with tissues is well defined.®®
Spectral CT adds precision to conventional CT since it
largely eliminates the effects of tube output and beam
hardening on the results (in the case of sinogram-based
decomposition).'® This makes the results more repro-
ducible and very suitable for direct dose prescription,
although small differences between implementations of
vendors exist.?%®

Spectral CT constitutes a wide variety of results, but
how to practically implement these results into the RT
clinic remains to be investigated. Because of the quanti-
tative values of spectral CT results, spectral SPR or ED
results could theoretically be sent straight to the treat-
ment planning system to replace the planning CT, elim-
inating the need for a lookup table. But to incorporate
different keV images, iodine and Z-effective maps into
the delineation process would require careful consider-
ations to maximize efficiency and avoid incorrect use of
images that jeopardize patient safety. It is likely that we
could learn much from how different parametric images
of PET and MRI results were introduced into treatment
planning.

The development of Al could aid implementation of
spectral CT. The performance of Al benefits from an
increased number of parameters;?2%230 and the use of
spectral CT will therefore likely improve the outcome of

such algorithms. Al could help to manage large amounts
of data, by aiding the radiation oncologist in their anal-
yses. Al has already been applied to spectral CT data
to detect lesions?®! predefine OARs,'®® and assess
involved lymph nodes.?*? It is therefore likely that spec-
tral CT and Al will develop in a symbiotic manner, where
spectral CT improves the performance of different tasks
performed by Al, while Al could make the associated
data-load manageable.
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