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Background: SPRED1 and 2 are key negative regulators of MAPK signalling in mammalian cells. Here, we investigate the
expression and functional role of SPREDs in prostate cancer.

Methods: A transcriptome bank of microdissected grade-specific primary cancers was constructed and interrogated for transcript
expression of prostate cancer genes, known negative signalling regulators as well as SPRED1 and 2. The effect of SPRED2
manipulation was tested in in vitro assays.

Results: In a panel of 5 benign glands and 15 tumours, we observed concomitant downregulation of the negative regulators SEF
and DUSP1 in tumours with increasing Gleason grade. Profiling in the same cohorts revealed downregulation of SPRED2 mRNA in
tumours compared with benign glands (Po0.05). By contrast, SPRED1 expression remained unchanged. This observation was
further validated in two additional separate cohorts of microdissected tumours (total of n¼ 10 benign and n¼ 58 tumours) with
specific downregulation of SPRED2 particularly in higher grade tumours. In functional assays, SPRED2 overexpression reduced
ERK phosphorylation and inhibited prostate cancer cell proliferation and migration in response to different growth factors and full-
media stimulation (Po0.001). Conversely, SPRED2 suppression by siRNA enhanced the mitogenic response to growth factors and
full media (Po0.001).

Conclusion: These data suggest first evidence that SPRED2 is downregulated in prostate cancer and warrants further investigation
as a potential tumour-suppressor gene.

Enhanced intracellular signalling is an important mechanism
contributing to cancer progression (Brognard et al, 2011).
Intracellular signalling is normally subject to constitutive levels
of regulation that modulate the level of intracellular signalling
(Murphy et al, 2010). Negative regulators provide a feedback
mechanism that controls the intensity and duration of exogenous
stimulation and have been particularly implicated in modulation of
the MAPK pathway. Key members of this group, including the
MAPK phosphatases, RKIP1, SPROUTY and SEF, have been
consistently reported to be downregulated in many malignancies,
including prostate cancer (Murphy et al, 2010). The SPROUTY-
related enabled/vasodilator-stimulated phosphoprotein homology
1 domain-containing (SPRED) proteins (SPRED1 and 2) were first
described by Wakioka et al (2001). SPREDs function by forming a
complex with Raf and inhibiting activation of MEK (Wakioka et al,

2001; Bundschu et al, 2007). To date, there is very limited data on
expression levels of SPRED1 and 2 in human cancers. SPREDs
have only been investigated in hepatocellular carcinoma, with an
observed downregulation of SPRED1 and 2 (Yoshida et al, 2006).
Decreased SPRED levels were also associated with increased
tumour invasion and metastasis (Yoshida et al, 2006; Ma et al,
2011). Given known patterns of loss of other signalling regulators
in prostate cancer, we investigated whether expression of SPREDs
was similarly altered.

MATERIALS AND METHODS

Tumour microdissection, RNA isolation and real-time PCR.
Benign and malignant areas of distinct grades (Gleason grades 3, 4
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or 5) from diagnostic prostate needle biopsies were laser
microdissected, and RNA was extracted as previously described
(ethics 09/H0308/42; Rogerson et al, 2008; Valencia et al, 2011).
cDNA was synthesised (Transcriptor, Roche Diagnostics, Man-
nheim, Germany) and pre-amplified (Taqman PreAmp Master-
mix, Applied Biosystems, Warrington, UK) according to the
manufacturer’s protocol. Real-time PCR conditions comprised of
denaturation at 95 1C for 10 min, 40 cycles of 10 s at 95 1C and 30 s
at 60 1C. Gene expression was performed by relative quantification
using GAPDH as the reference. Results are the mean of three
separate triplicates.

Cell lines, transfection and functional assays. PC3M and LNCaP
cells were maintained in RPMI (Gibco, Paisley, UK) alone or with
10% foetal bovine serum (basal and full medium (FM)). For
androgen induction assays, LNCaP cells were grown in FM, then
deprived of androgens (RPMIþ 10% charcoal-stripped serum) for
24 h before treatment with ethanol (control) or 10 nM of R1881.
RNA was isolated using the RNeasy Mini Kit (Qiagen, Crawley,
UK). In functional assays, cells were transfected (Lipofectamine
200) with 2 mg of pcDNA3 empty/pCDNA3-Myc-tagged SPRED2
(gift from Dr. Yoshimura, Keio University, Tokyo) or Silencer
select pre-designed siRNA SPRED2 (s47267) and control siRNA
(4390844; Applied Biosystems). Transfection efficiency was
quantified by PCR and/or western blot. In proliferation assays,
PC3M cells were starved for 16 h, then stimulated with FGF2
(10 ng ml� 1) or FM and proliferation assessed by adding 10%
WST-1 reagent (Roche Diagnostics). In migration assays, trans-
fected cells prepared in basal medium were seeded in a BD
migration chamber (Scientific Laboratory Supplies, Hessle, UK).

FM/FGF1 (10 ng ml� 1)/FGF2(10 ng ml� 1), FGF8 (10 ng ml� 1)
and IGF(100 ng ml� 1) were used in the lower chamber for 24 h.
Migrating cells were fixed in methanol, stained with hematoxylin
and counts averaged at � 20 magnification over five different
fields. Results for both assays are expressed as a fold change over
un-induced controls and represent the mean of six experiments.
Statistical analysis was performed by using two-tailed Student’s t-
test, Po0.05 being statistically significant.

Western blotting. Cells were lysed in Laemmli buffer and
denatured. Samples were then separated using 10% Bis-Tris pre-
cast gels (Invitrogen, Paisley, UK), followed by transfer to a PDVF
membrane (GE Healthcare, Chalfont St Giles, UK). Antibody
complexes were detected using HRP-conjugated secondary anti-
bodies (Dako, Ely, UK). Protein bands were visualised using ECL
(GE Healthcare). Primary antibodies used were pERK-E4 (sc-
7383), ERK-6G11 (sc-81458) and c-Myc-9E10 (sc-40) (Santa Cruz
Biotechnologies, Heidelberg, Germany). a-Tubulin (ab4074-100)
was used as the loading control (Abcam, Cambridge, UK).

RESULTS

Expression of SPRED1 and SPRED2 in clinical prostate
cancer. RNA was derived from microdissected tumours and
quality tested by confirming expression of at least three house-
keeping genes for each sample as previously described (Rogerson
et al, 2008). Profiling for PCA3 and EZH2 showed minimal
expression in benign glands but high levels in grade 3, 4 and 5
tumours consistent with the literature (Po0.001 for both) (van
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Figure 1. (A–F) Pooled transcript expression of PCA3, COL6A3, EZH2, AR, PSA, SEF and DUSP1 in microdissected benign glands and malignant
tumours of different grades corrected to GAPDH. Results shown are the mean of three experiments repeated in triplicate (*Po0.001, **Po0.05).
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Leenders et al, 2007; Popa et al, 2007; Figures 1A and B). By
contrast, the stromal marker COL6A3 was expressed at low levels
in all the samples (Figure 1A). AR expression was not differentially
expressed between tumours of different grades, consistent with
previous reports (Ruizeveld et al, 1994; Figure 1C). By contrast,
PSA was expressed at lower levels in high-grade tumours, again
consistent with previous reports (Weir et al, 2000; Figure 1D). We
next tested expression of the established negative regulators SEF
and DUSP1. Here we observed high levels of SEF in benign glands
but progressive downregulation in tumours of increasing Gleason
grade (Po0.01; Figure 1E). DUSP1 was similarly reduced in
tumours compared with benign samples, particularly in Gleason
grade 4 and 5 tumours (Po0.05; Figure 1F). These results are again
consistent with previous studies in prostate cancer (Rauhala et al,
2005; Darby et al, 2009). SPRED1 and 2 have not previously been
investigated in prostate cancer. We found no appreciable difference
in SPRED1 transcript comparing benign with tumour samples or
indeed between different tumour grades (Figure 2A). By contrast,
we observed high levels of SPRED2 mRNA in benign glands but
lower levels of expression in tumours (Po0.05) (Figure 2B). This
difference was particularly apparent in higher grade tumours. We

then investigated SPRED expression in a separate set of
microdissected tumours (n¼ 5 benign, n¼ 5 Gleason 3, n¼ 6
Gleason 4 and n¼ 7 Gleason 5). Here we again found similar
SPRED1 expression in benign and tumour glands (Figure 2C). By
contrast, SPRED2 was expressed at high or moderate levels in the
majority of benign glands. Among tumours, however, the majority
had reduced SPRED2 expression, and this was particularly
apparent in the grade 4 and 5 tumours (P¼ 0.03 and P¼ 0.02,
respectively), consistent with the findings from our initial tumour
set (Figure 2D). To further validate the observed downregulation of
SPRED2, we re-tested expression in an expanded cohort of cases
(additional n¼ 5 benign, n¼ 19 Gleason 3, n¼ 13 Gleason 4 and
n¼ 8 Gleason 5; Figure 2E). Here again we found a significant
downregulation of SPRED2, particularly in grade 4 and grade 5
tumours compared with benign glands (P¼ 0.001 and P¼ 0.008,
respectively).

Functional effect of manipulating SPRED2 in prostate cancer.
The functional role of SPRED2 has not previously been
investigated in prostate cancer. We first tested whether SPRED2
was androgen regulated. AR-positive LNCaP cells were treated
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Figure 2. (A, B) Pooled transcript expression of SPRED1 and SPRED2 in microdissected benign glands and malignant tumours of different grades
corrected to GAPDH. Results shown are the mean of three experiments repeated in triplicate. (C, D) Individual expression of benign and tumours
in a second cohort of clinical samples tested for SPRED1 and SPRED2 transcript. One representative of three repeat experiments is shown. Each
profile represents a tumour derived from an individual patient. (E) Expanded cohort of individual cases profiling SPRED2 expression. One
representative of three repeat experiments is shown (*Po0.05, **Po0.01).
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with synthetic androgens and SPRED2 and PSA (control) levels
assayed by real-time PCR. In this experiment, PSA transcript was
induced by nearly 10-fold (Po0.001), while SPRED2 mRNA levels
remained unchanged (Figure 3A). The effect of manipulating
SPRED2 was next tested using an overexpression plasmid in PC3M
prostate cells (Figure 3B). Transient transfection with SPRED2
effectively blocked pERK stimulation following stimulation with
FM (Figure 3B). By contrast, pERK levels were rapidly induced in
empty vector-transfected cells. In WST-1 assays, stimulation of
empty vector PC3M-transfected cells with FGF2 or FM resulted in
a four-fold increase in proliferation over 48 hours compared with
basal levels of proliferation at time 0. Cells transfected with
SPRED2 however failed to respond to FGF2 or FM stimulation

(Figures 3C and D). In migration assays, compared with controls,
SPRED2 overexpression effectively blocked stimulation by different
FGFs, IGF and full media (Figure 3E). We next tested the converse
effect of suppressing SPRED2 using siRNA knockdown in PC3M
cells. We have been unable to identify a suitable antibody to detect
endogenous SPRED2 protein in our cell line. We therefore
confirmed effective suppression of SPRED2 but not SPRED1 by
siRNA using PCR (Figure 3F). In these experiments, SPRED2
silencing enhanced the response to different ligands compared with
scramble-transfected controls (Figure 3G). These results suggest
that SPRED2 is a putative negative regulator in prostate cancer
cells and is capable of attenuating MAPK stimulation by diverse
growth factor ligands.
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Interpretation. Only one study (in hepatocellular cancer) has
reported on changes in SPRED expression in a human malignancy.
In that study, both SPREDs were downregulated in cancer
(Yoshida et al, 2006). In the present study, we unexpectedly
observed loss of SPRED2 but not SPRED1 in prostate cancers
compared with benign glands. Interrogation of a publically
available transcript data set (MSKCC Prostate Oncogenome
Project) also appears to corroborate this apparent dichotomy
(Taylor et al, 2010). Tumours in this data set were not isolated by
laser microdissection or by distinct grades. Nevertheless, in
comparison to normal controls, SPRED2 was downregulated in
28% of primary tumours and 47% of metastatic tumours, while
SPRED1 expression was unchanged. We have not been able to
reliably test protein expression of SPREDs in prostate tissue.
Different SPRED2 antibodies were extensively tested by western
blot and immunohistochemistry, but none showed sufficient
sensitivity and specificity. Development of a suitable antibody is
a key aim of our current laboratory work.

Ma et al (2011) recently demonstrated the phenotypic effect of
manipulating SPRED2 in human hepatocellular cancer cells
whereby increased expression inhibited cell proliferation and
migration, while suppression enhanced in vivo tumour growth.
In the present study, we were able to recapitulate these effects in
prostate cancer. SPRED2 overexpression blocked ERK phosphor-
ylation and inhibited diverse growth factor-induced proliferation
and migration. By contrast, suppression of SPRED2 enhanced
growth factor-mediated mitogenic effects, similar to the previous
findings in hepatocellular cancer.

In summary we present first evidence of specific SPRED2
downregulation in prostate cancer and a role in inhibiting mitogenic
MAPK signalling. We are currently validating these findings in larger
cohorts and investigating SPRED2 as a prognostic and/or therapeutic
marker. The current results, however, provide a convincing rationale
for further studies to investigate SPRED2 as a candidate tumour
suppressor in prostate cancer.
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