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Abstract
Background: The modeling of genetic interactions within a cell is crucial for a basic
understanding of physiology and for applied areas such as drug design. Interactions in
gene regulatory networks (GRNs) include effects of transcription factors, repressors,
small metabolites, and microRNA species. In addition, the effects of regulatory
interactions are not always simultaneous, but can occur after a finite time delay, or as a
combined outcome of simultaneous and time delayed interactions. Powerful
biotechnologies have been rapidly and successfully measuring levels of genetic
expression to illuminate different states of biological systems. This has led to an
ensuing challenge to improve the identification of specific regulatory mechanisms
through regulatory network reconstructions. Solutions to this challenge will ultimately
help to spur forward efforts based on the usage of regulatory network reconstructions
in systems biology applications.

Methods: We have developed a hierarchical recurrent neural network (HRNN) that
identifies time-delayed gene interactions using time-course data. A customized
genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory
genes and a target gene. The proposed design provides a non-fully connected network
with the flexibility of using recurrent connections inside the network. These features
and the non-linearity of the HRNN facilitate the process of identifying temporal
patterns of a GRN.

Results: Our HRNN method was implemented with the Python language. It was first
evaluated on simulated data representing linear and nonlinear time-delayed
gene-gene interaction models across a range of network sizes and variances of noise.
We then further demonstrated the capability of our method in reconstructing GRNs of
the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of
reverse-engineering and modeling approaches (IRMA). We compared the performance
of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different
network sizes and levels of stochastic noise. We found our HRNN method to be
superior in terms of accuracy for nonlinear data sets with higher amounts of noise.

Conclusions: The proposed method identifies time-delayed gene-gene interactions
of GRNs. The topology-based advancement of our HRNN worked as expected by more
effectively modeling nonlinear data sets. As a non-fully connected network, an added
benefit to HRNN was how it helped to find the few genes which regulated the target
gene over different time delays.
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algorithm, Time delay
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Background
New opportunities to reverse engineer the activities of different components of complex
cellular systems are arising due to technologies like DNAmicroarrays and RNA sequenc-
ing which provide genomic-scale data sets [1, 2]. Time series data may be collected either
in longitudinal studies of cell or tissue samples collected over multiple time points [3],
or expressional change across state space [4]. Effective models of gene regulatory net-
works (GRNs) have successfully identified regulatory interactions between genes and the
specific functional roles of individual genes in cellular systems [5, 6].
Reverse engineering of GRNs occurs within the context of stochastic properties of the

system, measurement noise, and high dimensionality [3]. There is strong non-linearity on
temporal patterns of regulatory genes [7]. Further complexity ensues given that genetic
interactions among different genes can have different time delays [8, 9]. These delays are
due to the transcription and translation of genes varying in composition and length, along
with varying kinetics of binding and completion with respect to genes being processed by
the transcriptome, the spliceosome and the ribosome. Transcribed and translated prod-
ucts may be further converted and are eventually degraded, with some products being
more stable than others. Changing physiological conditions can impact many of the above
factors of time delays. As shown in Fig. 1, there are complex combinations by which the
expression level of a gene at a certain time could depend upon the expression level of
another gene at a previous time point.
Diverse methods with different levels of complexity have been used to model, analyze

and infer complex regulatory interactions [10–13]. Boolean networks are the simplest
among them [14]. They are based only upon binary outcomes (on and off ) for gene
expression and therefore lack adequate dynamic resolution. Bayesian networks represent
probabilistic relationships among genes and have shown some success in capturing the
inherent noise and stochasticity of gene expression data [15]. Dynamic Bayesian Net-
works (DBN) are an extension of Bayesian networks that can unravel the feedback cycles
and loops over time points [16]. However, due to their high computational cost, the appli-
cation of dynamic Bayesian networks is limited to small networks. Ordinary Differential
Equations (ODE) are deterministic models, where interactions among genes represent
causal interactions rather than statistical dependencies [17]. They can offer continuous
representations of genetic networks, but are not robust for imprecise data.

Fig. 1 Time-delayed regulatory interactions among 12 genes with maximum time lag equal to 3. Colors
black, red and green represent time delays of one, two and three steps
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Methods such as time delay linear regression [18], correlation matrices [19], stochastic
simulation algorithms [9, 20], dynamic Bayesian networks [16] and delayed differential
equations [21] have been proposed to incorporate a fixed time delay in GRN models.
In [22], pairwise correlations between each pair of genes have been used to address the
various time delays in gene interactions. TD-ARACNE (Time Delay-Algorithm for the
Reconstruction of Accurate Cellular Networks) has been proposed in [23]. This algorithm
detects the time-delayed dependencies between the expression profiles in terms ofmutual
information by assuming a stationary Markov Random Field as its underlying probabilis-
tic model. The TD-ARACNE algorithm does not assign any specific delay or regulatory
effect on the edges of the GRN. HCC-CLINDE [24] is an extension of CLINDE [25],
and has been developed to infer a time-delayed GRN in the presence of hidden common
causes. All directed pairs of genes in the network have possible delays up to a maximum
allowed delay, which is obtained based on either a correlation test or mutual information
test.
The main objective of this paper is to reconstruct a time-delayed GRN which takes into

account the non-linearity of gene interaction and the noise of temporal measurements.
Recurrent Neural Networks (RNNs) are computational tools inspired by the structural
and functional aspects of biological nervous systems, and are noted for their effectiveness
in temporal data processing and approximating nonlinear patterns of dynamic temporal
behaviors [26]. The ability of RNNs to learn from temporal data, estimate multivariate
nonlinear functions, and tolerate noise in measurements makes RNNs an ideal fit for the
modeling of gene regulatory interactions using gene expression profiles. Several variants
of RNNs have been deployed for the modeling of GRNs including neural fuzzy recur-
rent networks [27], RNNs combined with particle swarm optimization [28], ensemble
of RNNs and support vector machines [29], RNNs combined with differential evolution
[30] and RNNs hybridized with the generalized extended Kalman filter [31]. Despite the
great capabilities of RNNs for predictive modeling with high accuracy, RNNs are usually
considered “black box” models whose internal structure and learned parameters are not
interpretable. Due to the multiple layers, the non-linearity of the model, and cyclic (feed-
back) connections in the network structure, their interpretability still remains vague [32].
This, in particular, impedes goals with GRN reconstruction to identify pairs of genes,
directions of regulation, effects (i.e. up or down regulation), and time delays.
In this paper, we have proposed a hierarchical RNN (HRNN) that surmounts the inter-

pretation difficulties of the RNNs for application of GRNmodeling. The proposed design
lets us use the features of hierarchical representation in addition to the capabilities of
RNNs for finding temporal dependencies. In this way, time-delayed regulations can be
captured through hierarchical paths between leaf nodes (regulatory genes) and a target
node (regulated gene) in the HRNN. For discovering the underlying hierarchical struc-
ture among the regulatory genes and a target gene, the network topology and connection
weights are encoded by a customized genetic algorithm (GA). Through the training
procedure, in addition to evolving network connection weights, the GA rewires the con-
nectivity and length of hierarchical paths between leaf nodes and the target gene of a
population of candidate networks. From the trained HRNN, the direction and effect of
gene regulations in the presence of time delays can be captured. Our proposed model is
evaluated on a real biological system and linear/nonlinear synthetic generated data for
different sizes of networks and variances of noise. The results of our HRNN method are
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compared with TD-ARACNE, HCC-CLINDE, ODE implemented in the TSNI package
[33] and ebdbNet package (Empirical Bayes Dynamic Bayesian Network Inference) [34].

Method
Assume that {Gl

1(t),G
l
2(t), . . . ,G

l
P(t)} are expression levels of P genes at time t in exper-

iment l where t ∈ {1, . . . ,Tl} and l ∈ {1, . . . , L}. The aim is to capture the potential
regulators for each gene Gi in a decoupled hierarchical RNN. In this network, Gi is the
target gene and the rest of the genes are the potential regulators. At the beginning, a
population of candidate hierarchical RNNs should be randomly generated. A candidate
network can have 0 ≤ c ≤ C context nodes in its structure. The network with c context
nodes has c + 1 neurons. Neurons are the processing units in the RNNs which induce
non-linearity on the inputs. Neurons have multiple inputs and one output. Themaximum
number of context nodes in the candidate networks is set to C. Context nodes in the hier-
archical RNN are nodes without experimental measurements and assist with modeling of
temporal dynamics.
Assume that x1, . . . , xC are context nodes and xC+1, . . . , xC+P are genes. In a network

with c ≤ C context nodes, the first c context nodes x1, . . . , xc and genes (excluded the
target gene) are potential inputs of the c + 1 neurons in the network. In each candidate
network, the target gene is the output of the first neuron, and the context node ci is the
input of neuroni and output of neuroni+1 where i ∈ {1, . . . , c}. In addition to the genes
and context node ci, other context nodes could also be the potential inputs of the neuron
neuroni+1, except for neuronc+1, which has no context nodes as its inputs. Each input
connection has a weight. If context node is the input of the neuron, the corresponding
connection weight is positive. Else, it could be positive or negative. Through training,
the customized GA evolves the connectivity between nodes and neurons and connection
weights.
Figure 2 shows a candidate network generated from a maximum possible number of

three context nodes (x1, x2, x3) and five genes (x4, x5, x6, x7, x8). The candidate network in

Fig. 2 The structure of a hierarchical RNN with 2 context variables, 5 genes and 3 neurons. Each neuron has
only one outgoing connection. For example, Neuron2 has three incoming connections x1, x2, x5 at time t with
corresponding weights w2,1,w2,2,w2,5 and an outgoing connection to context node x1 at time t + 1. Context
nodes, regulatory genes and the target gene are shown by broken, highlighted and double-line ovals
respectively
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this figure uses two out of the three possible context nodes; thus it has three neurons. This
figure shows the regulatory interactions of target gene x8 with x4, x5 and x7. Figure 3(a)
shows the corresponding hierarchical recurrent structure obtained from Fig. 2. For
Fig. 3(b), time-delayed regulations of the target gene x8 are captured by x4, x5, x7 in
presence of two context nodes x1 and x2.
For the target and context nodes xi that are outputs of the neurons, Eq. 1 shows the

updated value from time t to t + 1.

xi(t + 1) = f

⎛
⎝∑

j
wk,jxj(t)

⎞
⎠ (1)

a

b

Fig. 3 The corresponding hierarchical model which shows the direct regulation of x8 by gene x4, and
time-delayed regulations of x8 by genes x4, x5, x7. Context nodes, regulatory genes and the target gene are
shown by broken, highlighted and double-line ovals respectively. a The corresponding hierarchical recurrent
structure obtained from Fig. 2. b Regulation of the target gene x8 with connections from context nodes x1
and x2
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where xj(t) is the value of jth input node connected to xi(t + 1). f is a sigmoid function in
the form of Eq. 2 which is monotonically increasing in the range of [ 0, 1] and is commonly
used in the literature to induce non-linearity.

f (x) = 1
1 + e−(x) (2)

In the case of self-regularization of the target gene, Eq. 3 is used for updating the value of
the target gene:

xi(t + 1) = f

⎛
⎝∑

j
wk,jxj(t)

⎞
⎠ − μxi(t) (3)

where μ is the decay rate of the target gene’s expression over time. Estimating the decay
rate for each gene helps to model the suppression effect of a gene on itself [35].

Evolutionary training algorithm

A customized GA is proposed for training the HRNN. At the beginning, the GA gener-
ates a population of random candidate networks. The structure and connection weights
of the candidate networks are evolved over generations of the GA with the guidance of
the fitness function. In each generation, new candidate networks (children) are formed by
applying the evolutionary operators (crossover and mutation) on the old networks (par-
ents) within the constraints of the HRNN. Parents are selected according to their fitness
values, where networks with higher accuracy have more chances to reproduce. The newly
generated population is used for the next generation of the GA. At each generation, an
elitist evolving strategy is applied to keep the best candidate networks from the last popu-
lation. The evolutionary process is repeated until the terminating conditions are satisfied.
The proposed procedure is summarized in Algorithm 1.

Algorithm 1 Evolutionary training of the HRNN
P: number of genes, C: maximum number of context nodes, G: number of generations in GA
for target gene i in range(1,P) do

Generate a population of random candidate hierarchical RNNs, Nets, with maximum C
context nodes
Calculate fitness of the Nets
for generation in range(1,G) do

Make a new poll of candidate networks, Nets, using selection method
Apply evolutionary crossover and mutation operators on Nets
Calculate fitness of new candidate networks Nets

end for
An HRNN with the best fitness is selected to represent the regulations on target gene i
From the selected HRNN, extract all the hierarchical paths from the leaf nodes to the target
gene
From the extracted paths, find the transition time delays and effects of the regulations

end for
Aggregate the obtained information from the decoupled HRNN of all the genes in a network,
where the edges in the network have the tag of the time delay

Representation of candidate networks

Candidate networks in the GA are represented by their number of neurons (Nn), num-
ber of inputs to each neuron (Nin), indices of the input nodes (In), weights of the input
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Fig. 4 Representation of the candidate hierarchical RNNs in the GA. This diagram displays the number of
neurons in the network along with their connectivity description

connections (W ) and the decay rate of the target gene’s expression level (μ) if it exists.
Components of the first, cth and last neurons in a candidate network with c + 1 neurons
are represented in Fig. 4. In this candidate network, P genes and c out of C context nodes
are used in the network. One of the genes is considered as a target gene. The output of
each neuron (Out) does not change in the training process.

Fitness of candidate networks

The performance of the candidate networks (fitness) is evaluated by measuring the
trade-off between the goodness of fit and complexity of the model by using the Akaike

Fig. 5 The crossover operator swaps the input/output connections of the second neurons in the parent 1
and 2. The new generated networks are cross-children 1 and 2. a Parent 1 b Parent 2 c Cross-children 1 d
Cross-children 2
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information criterion (AIC) and the Akaike information criterion with correction (AICc).
AIC is a model selection criterion which estimates the quality of a model relative to other
models (Eq. 4).

AIC = n

⎡
⎢⎣ln

⎛
⎜⎝

∑
l
∑

t

(
xli(t) − x̂li(t)

)2

n

⎞
⎟⎠

⎤
⎥⎦ + 2k (4)

Fig. 6 Effect of number of genes on Link F-score for case of linearity among gene interactions. For a chosen
number of genes, 10 GRNs are randomly generated where Var(noise) = 1. a Box plot of the Link F-score
versus number of genes. � adjusted p-value ≤ 0.05 b Linear regression model of the Link F-score versus
number of genes
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where xli(t) is the expression value of the target gene i at experiment l, and x̂li is the cor-
responding estimation by the candidate HRNN at time t. k is the number of leaf nodes
in the HRNN and n is the total number of temporal samples for gene expression. If n is
small or k is large, the AICc is preferred rather than AIC (Eq. 5). As n gets larger, AICc
converges to AIC.

Fig. 7 Effect of number of genes on Delay F-score for case of linearity among gene interactions. For a chosen
number of genes, 10 GRNs are randomly generated where Var(noise) = 1. a Box plot of the Delay F-score
versus number of genes. � adjusted p-value ≤ 0.05 b Linear regression model of the Delay F-score versus
number of genes
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AICc = AIC + 2k(k + 1)
n − k − 1

(5)

Crossover operator

Crossover is an evolutionary operator for generating a new candidate network. Before
applying the proposed crossover, the tournament selection reproduces a new pool of can-
didate networks. The tournament selection is a method of selecting a candidate among a
few candidates chosen at random from the population. The winner of each tournament
(the one with the best fitness) will be replaced in the new pool.
For applying the proposed crossover, first the networks in the population are shuf-

fled and sorted by the number of neurons (Nn) in their structure. Then, for each pair of

Fig. 8 Effect of number of genes on Effect F-score for case of linearity among gene interactions. For a chosen
number of genes, 10 GRNs are randomly generated where Var(noise) = 1. a Box plot of the Effect F-score
versus number of genes. � adjusted p-value ≤ 0.05 b Linear regression model of the Effect F-score versus
number of genes
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Table 1 The statistical properties of the linear regression models fitted on the F-score values with
respect to the number of genes. Gene expression data is generated from a linear model

Method R-squared p-value

Link

HRNN 0.38 2.3 × 10−5

HCC-CLINDE 0.16 0.01

TD-ARACNE 0.51 2.0 × 10−7

TSNI 0.79 1.8 × 10−14

ebdbNet 0.76 1.2 × 10−13

Delay
HRNN 0.06 0.10

HCC-CLINDE 0.03 0.22

Effect
HRNN 0.16 0.008

HCC-CLINDE 0.12 0.02

selected networks with the same number of neurons (parents 1 and 2), crossover with
probability of Pc swaps the random neurons i ∈ {1, . . . ,Nn} in two parents. Figure 5(c)-
(d) show the crossover operating on neuron 2 of the parents in Figure 5(a)-(b). Crossover
creates new candidate networks (cross-children) with new connectivity and connection
weights.

Mutation operator

The mutation operator mutates the number of inputs of the neurons, rewires the connec-
tivity of the inputs of the neurons, and evolves the connection weights with the probability
Pm. For a mutation sitemsite in the network, the mutation works as below:

Table 2 The effect of network size on GRN reconstruction in case of linearity between the genes.
Results are the average of the accuracy in terms of the Link criteria for GRN reconstruction of 10
different randomly generated synthetic networks

Methods P TP FP FN Precision Recall F-score Nominal p-value Adjusted p-value

HRNN

5 5.6 4.5 4.3 0.56 0.57 0.56

10 9.7 15.2 9.6 0.39 0.50 0.44

20 14.8 36.5 25.3 0.28 0.37 0.32

30 21.8 58.1 36.5 0.27 0.37 0.31

TD-ARACNE

5 4.3 7.2 5.6 0.33 0.43 0.36 0.008 0.03

10 7.8 27.2 11.5 0.22 0.39 0.26 0.01 0.04

20 9.1 76.9 31.0 0.10 0.23 0.13 1.6 × 10−6 6.4 × 10−6

30 11.3 153.7 47.0 0.07 0.19 0.09 5.0 × 10−8 2.0 × 10−7

HCC-CLINDE

5 4.2 2.1 5.7 0.70 0.44 0.53 0.65 1

10 8.4 5.5 10.9 0.62 0.43 0.51 0.35 1

20 11.9 18.5 28.2 0.40 0.29 0.34 0.77 1

30 17.7 19.8 40.6 0.48 0.30 0.37 0.44 1

TSNI

5 9.9 15.1 0.0 0.39 1.0 0.56 0.99 1

10 17.9 73.1 1.4 0.19 0.93 0.32 0.04 0.16

20 19.5 188.5 20.6 0.09 0.48 0.15 1.1 × 10−6 4.4 × 10−6

30 14.3 189.7 44.0 0.06 0.24 0.10 1.2 × 10−7 4.8 × 10−7

ebdbNet

5 7.8 11.2 2.1 0.40 0.77 0.53 0.47 1

10 15.8 63.2 3.5 0.19 0.80 0.31 0.03 0.12

20 27.4 234.6 12.7 0.10 0.66 0.17 7.6 × 10−6 2.8 × 10−5

30 31.5 430.5 26.8 0.06 0.53 0.12 9.7 × 10−8 3.6 × 10−7

The p-values are for how the Link F-scores of other methods compare with HRNN. P is the number of genes for each of the
networks. The variance of the noise is equal to 1
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• Ifmsite is on the number of inputs of a neuron (Nin), it is mutated to Nin = Nin ± 1.
Therefore, a new input and its corresponding weight are added or deleted.

• Ifmsite is on an input connection of a neuron (In), the selected connection is rewired
to another node in the network.

• Ifmsite is on a connection weight of a neuron and input is a context node, the
Gaussian mutation evolves the weight in the range of [ 0,wmax]; else, the weight is
mutated in the range of [wmin,wmax]

• Ifmsite is on the decay rate μ, the Gaussian mutation is applied to evolve the the
decay rate in the range [ 0,wmax].

Experimental results
In order to evaluate the performance of the proposed method, we have tested our method
with both synthetic data and real data against TD-ARACNE, HCC-CLINDE, TSNI and
ebdbNet. As the underlying regulatory networks for the real biological datasets are
generally unknown, synthetic data are helpful for checking the efficiency of methods. The
generated synthetic models in this paper have different levels of complexity and enable us
to have a broad-ranging performance evaluation of our proposed approach in compari-
son to other approaches. In a real life experiment, we applied our method for finding the
GRN of Saccharomyces cerevisiae.
We assess the performance of the inference algorithm on three aspects, namely Links

(which is considered correct if and only if both the gene pair and the direction are cor-
rect), Delays (which is considered correct if and only if both the link and the time delay
are correct), and Effects (which is considered correct if and only if both the link and the

Table 3 The effect of network size on GRN reconstruction in case of linearity between the genes.
Results are the average of the accuracy in terms of the Delay and Effect criterion for GRN
reconstruction of 10 different randomly generated synthetic networks

Methods P TP FP FN Precision Recall F-score Nominal p-value Adjusted p-value

Delay HRNN

5 3.9 9.3 6.0 0.32 0.40 0.35

10 7.5 20.1 11.8 0.28 0.39 0.32

20 11.6 43.9 28.5 0.21 0.29 0.24

30 19.1 64.9 39.2 0.22 0.33 0.26

Delay HCC-CLINDE

5 3.2 3.1 6.7 0.52 0.33 0.404 0.52 1

10 7.7 6.2 11.6 0.57 0.40 0.47 0.06 0.24

20 11.3 19.1 28.8 0.38 0.28 0.32 0.22 0.88

30 17.0 20.5 41.3 0.46 0.29 0.35 0.23 0.92

Effect HRNN

5 4.5 6.3 6.3 0.44 0.43 0.43

10 8.9 16.2 10.7 0.36 0.46 0.40

20 13.0 38.7 27.7 0.25 0.32 0.28

30 20.2 60.2 38.6 0.25 0.346 0.29

Effect HCC-CLINDE

5 4.0 2.3 5.9 0.67 0.42 0.51 0.32 1

10 7.9 6.0 11.4 0.58 0.41 0.48 0.33 1

20 11.5 18.9 28.6 0.39 0.29 0.33 0.44 1

30 17.4 20.1 40.9 0.47 0.29 0.36 0.31 1

The p-values are for how the Delay and Effect F-scores of HCC-CLINDE method compare with HRNN. P is the number of genes for
each of the networks. The variance of the noise is equal to 1
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sign of an effect are correct) [24]. For each aspect, Recall = TP
TP+FN , Precision = TP

TP+FP
and F-score = 2×Precision×Recall

Precision+Recall metrics are computed. In these metrics, TP, FP and FN
are numbers of true positives, false positives, and false negatives respectively. The F-
scores of the results have been compared as an overall measurement of performance. The
HCC-CLINDEmethod provides F-scores of Link, Delay and Effect criteria. However, TD-
ARACNE, TSNI and ebdbNet provide information for finding the F-score of the Link. In
all simulations, algorithms have been tested by their default parameters.

Fig. 9 Effect of number of genes on Link F-score for case of non-linearity among gene interactions. For a
chosen number of genes, 10 GRNs are randomly generated where Var(noise) = 1. a Box plot of the Link
F-score versus number of genes. � adjusted p-value ≤ 0.05 b Linear regression model of the Link F-score
versus number of genes
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Synthetic data

The generation of synthetic data has been considered in two instances of linear and
nonlinear models. To compare the accuracy of the HRNN with TD-ARACNE, HCC-
CLINDE, TSNI and ebdbNet, the effects of the noise levels and number of genes in small
and medium size networks are investigated. For a chosen number of genes and level of
noise, ten randomGRNs with random connectivity between nodes, weight of the connec-
tions, time delay and initial value of gene expressions are generated. The purpose of these
experiments is to evaluate the performance of the proposed method in terms of linearity
versus non-linearity of gene expression values, network size (P ∈ {5, 10, 20, 30}) and noise

Fig. 10 Effect of number of genes on Delay F-score for case of non-linearity among gene interactions. For a
chosen number of genes, 10 GRNs are randomly generated where Var(noise) = 1. a Box plot of the Delay
F-score versus number of genes. � adjusted p-value ≤ 0.05 b Linear regression model of the Delay F-score
versus number of genes
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variance (σ 2 ∈ {0.1, 0.25, 0.5, 1.0, 1.5}). The linear and nonlinear models of random GRNs
are generated by Eqs. 6 and 7 respectively:

Gi(t + 1) =
∑
j
ai,jGj(t − τij) + εi(t) (6)

Fig. 11 Effect of number of genes on Effect F-score for case of non-linearity among gene interactions. For a
chosen number of genes, 10 GRNs are randomly generated where Var(noise) = 1. a Box plot of the Effect
F-score versus number of genes. � adjusted p-value ≤ 0.05 b Linear regression model of the Effect F-score
versus number of genes
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Table 4 The statistical properties of the linear regression models fitted on the F-score values with
respect to the number of genes

Method R-squared p-value

Link HRNN 0.558 2.9 × 10−8

HCC-CLINDE 0.56 2.3 × 10−8

TD-ARACNE 0.74 7.0 × 10−13

TSNI 0.81 1.2 × 10−15

ebdbNet 0.64 3.8 × 10−10

Delay HRNN 0.28 4.0 × 10−4

HCC-CLINDE 0.43 3.4 × 10−6

Effect HRNN 0.347 6.2 × 10−5

HCC-CLINDE 0.49 3.4 × 10−7

Gene expression data is generated from a non-linear model

Gi(t + 1) =
∑
j
f (ai,jGj(t − τij)) + εi(t) (7)

where Gi(t) is the expression value of gene i at time t, i ∈ {1, . . . ,P} and t ∈ {1, . . . , 50}.
τij ∈ {1, . . . , τmax} is the time delay of the edge j −→ i (if τij �= 0). aij is the regulatory effect
of gene j on gene i, where the regulatory effect is repressive if aij is negative, activatory if
positive, and absent if zero. εi(t) is a random Gaussian noise with zero mean and variance
σ 2. The regulatory effects aij are randomly selected at the beginning of each simulation
run. The network generation algorithm is set in such a way that each gene could have a
maximum of 3 regulators with maximum delay τmax = 4. The number of regulators and

Table 5 The effect of network size on GRN reconstruction in case of non-linearity between the
genes. Results are the average of the accuracy in terms of the Link criteria for GRN reconstruction of
10 different randomly generated synthetic networks

Methods P TP FP FN Precision Recall F-score Nominal p-value Adjusted p-value

HRNN 5 5.6 3.4 4.7 0.62 0.54 0.57

10 6.4 12.8 12.6 0.33 0.33 0.33

20 11.2 30.5 28.4 0.26 0.28 0.27

30 10.9 50.3 46.1 0.18 0.19 0.18

TD-ARACNE 5 6.60 6.9 3.7 0.50 0.64 0.54 0.60 1

10 9.3 35.7 9.7 0.21 0.50 0.28 0.16 0.64

20 14.5 129.5 25.1 0.10 0.37 0.15 3.0 × 10−4 1.2 × 10−3

30 12 162 45 0.07 0.20 0.09 2.0 × 10−5 8.0 × 10−5

HCC-CLINDE 5 3.1 1.8 7.2 0.65 0.29 0.39 7.0 × 10−4 2.8 × 10−3

10 3.3 4.4 15.7 0.46 0.17 0.24 0.05 0.2

20 4.1 9.4 35.5 0.29 0.10 0.15 0.007 0.028

30 3.4 13.0 53.6 0.21 0.05 0.09 0.002 0.008

TSNI 5 10.3 14.7 0.0 0.41 1 0.58 0.91 1

10 16.9 71.1 2.1 0.19 0.89 0.31 0.60 1

20 17.6 160.4 22.0 0.09 0.44 0.16 4.0 × 10−4 1.6 × 10−3

30 10 158 47 0.06 0.17 0.08 2.0 × 10−4 8.0 × 10−4

ebdbNet 5 4.4 6.1 5.9 0.43 0.43 0.41 0.008 0.032

10 4.8 20.2 14.2 0.19 0.25 0.20 0.004 0.016

20 6.2 55.80 33.4 0.10 0.15 0.12 5.0 × 10−5 2.0 × 10−4

30 3.8 59.2 53.2 0.06 0.06 0.06 7.9 × 10−5 3.1 × 10−4

The p-values are for how the Link F-scores of other methods compare with HRNN. P is the number of genes for each of the
networks. The variance of the noise is equal to 1
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time lag for each edge in the synthetic networks are also generated randomly. In Eq. 7,
f is a sigmoid and monotonically increasing function in the form of Eq. 2 which adds
non-linearity to the model.
The accuracy of GRN reconstruction using synthetic gene expression data generated

from the linear model are presented in Figs. 6, 7 and 8. These figures compare the Link F-
score, Delay F-score and Effect F-score of the HRNNwith HCC-CLINDE, TD-ARACNE,
TSNI and ebdbNet for different number of genes in the network. The variance of noise in
these experiments is the same, and is equal to (σ 2 = 1). In part a of these figures, the box
plot of F-score values of Link, Delay and Effect criterion are compared. In parts b of these
figures, a linear regressionmodel is fit on the F-score values with respect to the number of
genes in the network. R-squared and p-values of the linear regression models in Figs. 6(b),
7(b) and 8(b) are stated in Table 1. In case of the linear data, the linear regression models
in Fig. 6(b) shows that the HRNN and the HCC-CLINDE are responsibly competitive for
finding the correct Link between the nodes in networks.
Table 2 includes the average of the TP, FP, FN, Precision, Recall and F-score of Link

criteria for 10 independent runs of the methods and different number of genes in the
network. Also, we conduct a hypothesis test for the difference between means of F-score.
For a selected number of genes in Table 2, a t-test performed on F-score values of the
HRNN and other methods. The null hypothesis is defined as two population means are
equal. The nominal and adjusted p-values are mentioned in the table. HRNN is tested
multiple times for four different number of genes in the network, to obtain the adjusted
p-values, the nominal p-values are multiplied by four. If the corresponding adjusted p-
value is less than 0.05, the null hypothesis is rejected, meaning that mean of F-scores
are significantly different. p-values are for how the F-scores of the other methods may
significantly differ with the F-scores of HRNN; therefore, p-values are not shown for the

Table 6 The effect of network size on GRN reconstruction in case of non-linearity between the
genes. Results are the average of the accuracy in terms of the Delay and Effect criterion for GRN
reconstruction of 10 different randomly generated synthetic networks

Methods P TP FP FN Precision Recall F-score Nominal p-value Adjusted p-value

Delay HRNN 5 4.7 7.0 5.6 0.40 0.45 0.42

10 3.9 19.0 15.1 0.17 0.19 0.18

20 8.0 37.8 31.6 0.17 0.20 0.18

30 9.0 55.4 48.0 0.14 0.16 0.15

Delay HCC-CLINDE 5 2.6 2.3 7.7 0.57 0.25 0.34 0.25 1

10 2.6 2.3 7.7 0.57 0.25 0.34 0.69 1

20 3.9 9.6 35.7 0.28 0.09 0.14 0.27 1

30 3.3 13.1 53.7 0.21 0.05 0.08 0.03 0.12

Effect HRNN 5 4.8 4.3 6.0 0.52 0.44 0.47

10 4.6 15.0 14.5 0.23 0.23 0.23

20 9.8 32.3 29.9 0.23 0.24 0.23

30 9.9 51.7 47.3 0.16 0.17 0.17

Effect HCC-CLINDE 5 2.7 2.2 7.6 0.59 0.26 0.35 0.08 0.32

10 3.1 4.6 15.9 0.43 0.16 0.23 0.95 1

20 3.9 9.6 35.7 0.28 0.09 0.14 0.02 0.08

30 3.4 13.0 53.6 0.21 0.05 0.09 0.01 0.04

The p-values are for how the Delay and Effect F-scores of HCC-CLINDE method compare with HRNN. P is the number of genes for
each of the networks. The variance of the noise is equal to 1
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HRNN row in the tables. Table 3 includes the average of the TP, FP, FN, Precision, Recall,
F-score and also p-values of Delay and Effect criterion for 10 independent runs of the
HRNN and HCC-CLINDE and different number of genes in the network. Results shows
that HRNN and HCC-CLINDE are not significantly different in terms of Delay and Effect
F-scores in case of linearity among genes.
In the next step for testing synthetic data, we considered a more realistic scenario where

the gene expression values are generated from nonlinear models. For 10 different ran-
domly generated networks, the effect of the number of genes in the accuracy of GRN
reconstruction of HRNN was compared with other methods. Figures 9, 10 and 11 com-
pare the accuracy of Link F-score, Delay F-score and Effect F-score for different number

Fig. 12 Effect of noise level on Link F-score for case of non-linearity among gene interactions. For a chosen
variance of the noise, 10 GRNs are randomly generated where number of genes is 20. a Box plot of the Link
F-score versus variance of the noise. � adjusted p-value ≤ 0.05 b Linear regression model of the Link F-score
versus variance of the noise
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of genes in the network respectively. The variance of noise in these experiments is the
same, and is equal to (σ 2 = 1). The linear regressionmodels between F-score and number
of genes, shown in part b of these figure. R-squared and p-values of the linear regression
models in Figs. 9(b), 10(b) and 11(b) are stated in Table 4.
Tables 5 and 6 include the average of the TP, FP, FN, Precision, Recall and F-score in

term of Link, Delay and Effect criterion for 10 independent runs of the methods and dif-
ferent number of genes in the network. For a selected number of genes in these tables, a
t-test performed on F-score values. If the corresponding adjusted p-value is less than 0.05,
the null hypothesis is rejected, meaning that mean of F-score of HRNN is significantly
different from other method. The results show that the proposed HRNN works better
than HCC-CLINDE, TD-ARACNE, TSNI and ebdbNet for cases of non-linearity among

Fig. 13 Effect of noise level on Delay F-score for case of non-linearity among gene interactions. For a chosen
variance of the noise, 10 GRNs are randomly generated where number of genes is 20. a Box plot of the Delay
F-score versus variance of the noise. � adjusted p-value ≤ 0.05 b Linear regression model of the Delay F-score
versus variance of the noise
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gene interactions in bigger networks. The accuracy of HCC-CLINDE for finding the cor-
rect link drops significantly in case of non-linearity between the genes in comparison to
the the linear relationships.
In another simulation, the effect of noise in non-linear models is examined. In

synthetic non-linear networks with 20 genes, the level of noise is changed (σ 2 ∈
{0.1, 0.25, 0.5, 1.0, 1.5}). Figures 12, 13 and 14 show the results of GRN reconstruction of
HRNN in comparison to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet in the forms
of box plot and linear regression model and in terms of Link, Delay and Effect F-scores
respectively. R-squared and p-values of the linear regression models in Figs. 12(b), 13(b)
and 14(b) are stated in Table 7. Tables 8 and 9 include the average of the TP, FP, FN,

Fig. 14 Effect of noise level on Effect F-score for case of non-linearity among gene interactions. For a chosen
variance of the noise, 10 GRNs are randomly generated where number of genes is 20. a Box plot of the Effect
F-score versus variance of the noise. � adjusted p-value ≤ 0.05 b Linear regression model of the Effect F-score
versus variance of the noise
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Table 7 The statistical properties of the linear regression models fitted on the F-score values with
respect to the noise level

Method R-squared p-value

Link HRNN 0.74 5.5 × 10−16

HCC-CLINDE 0.84 2.2 × 10−21

TD-ARACNE 0.03 0.19

TSNI 4.0 × 10−5 0.96

ebdbNet 0.10 0.02

Delay HRNN 0.74 5.1 × 10−16

HCC-CLINDE 0.83 1.4 × 10−20

Effect HRNN 0.76 6.9 × 10−17

HCC-CLINDE 0.84 7.3 × 10−21

Gene expression data is generated from a non-linear model

Precision, Recall, F-score, nominal and adjusted p-value for 10 independent runs of the
methods and different levels of the noise. HRNN is tested multiple times for five different
noise levels of gene measurements, to obtain the adjusted p-values, the nominal p-values
are multiplied by five. Figure 12 show that the accuracy of our proposed method in terms
of Link F-score is often higher than HCC-CLINDE, TD-ARACNE, TSNI and ebdbNet.

Table 8 The effect of noise level on GRN reconstruction in case of non-linearity between the genes.
Results are the average of accuracy of the Link criteria for GRN reconstruction of 10 different
randomly generated synthetic networks

Methods σ 2 TP FP FN Precision Recall F-score Nominal p-value Adjusted p-value

HRNN 0.1 20.2 28.3 19.0 0.41 0.51 0.46

0.25 19.9 26.7 20.6 0.42 0.49 0.45

0.5 17.9 28.4 21.3 0.38 0.45 0.41

1 11.2 30.5 28.4 0.26 0.28 0.27

1.5 5.9 32.2 33.6 0.15 0.14 0.15

TD-ARACNE 0.1 13.5 102.5 25.7 0.12 0.34 0.17 1.9 × 10−10 9.5 × 10−10

0.25 14.7 107.3 25.8 0.11 0.36 0.16 1.4 × 10−8 7.0 × 10−8

0.5 12.0 102.0 27.2 0.09 0.30 0.13 1.3 × 10−7 6.5 × 10−7

1 14.5 129.5 25.1 0.10 0.37 0.15 3.0 × 10−4 1.5 × 10−3

1.5 12.2 115.8 27.3 0.11 0.31 0.14 0.86 1

HCC-CLINDE 0.1 19.0 9.5 20.2 0.66 0.48 0.56 0.04 0.2

0.25 18.0 10.3 22.5 0.63 0.44 0.52 0.08 0.4

0.5 12.8 8.4 26.4 0.61 0.33 0.42 0.78 1

1 4.1 9.4 35.5 0.29 0.10 0.15 0.01 0.05

1.5 0.5 7.3 39.0 0.06 0.01 0.02 1.2 × 10−6 6.0 × 10−6

TSNI 0.1 14.1 139.9 25.1 0.09 0.36 0.14 6.2 × 10−11 3.1 × 10−10

0.25 13.6 128.4 26.9 0.09 0.33 0.14 7.2 × 10−10 3.6 × 10−9

0.5 15.3 138.7 23.9 0.09 0.38 0.15 4.2 × 10−8 2.1 × 10−7

1 17.6 160.4 22.0 0.09 0.44 0.16 4.8 × 10−4 2.4 × 10−3

1.5 15.1 150.9 24.4 0.08 0.37 0.14 0.63 1

ebdbNet 0.1 7.8 56.2 31.4 0.12 0.20 0.14 1.5 × 10−9 7.5 × 10−9

0.25 7.7 58.3 32.8 0.11 0.18 0.13 8.9 × 10−10 4.4 × 10−9

0.5 5.2 48.8 34.0 0.09 0.13 0.10 4.4 × 10−9 2.2 × 10−8

1 6.2 55.8 33.4 0.10 0.15 0.12 5.0 × 10−5 2.5 × 10−4

1.5 5.2 54.8 34.3 0.07 0.13 0.09 0.02 0.1

The p-values are for how the Link F-scores of other methods compare with HRNN. σ 2 is variance of the noise. Networks include
20 genes
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Table 9 The effect of noise level on GRN reconstruction in case of non-linearity between the genes

Methods σ 2 TP FP FN Precision Recall F-score Nominal p-value Adjusted p-value

Delay HRNN 0.1 18.7 34.2 20.5 0.35 0.47 0.41

0.25 18.5 31.9 22.0 0.36 0.45 0.41
0.5 15.6 34.4 23.6 0.31 0.39 0.34
1 8.0 37.8 31.6 0.17 0.20 0.18
1.5 4.5 37.3 35.0 0.11 0.11 0.11

Delay HCC-CLINDE 0.1 18.3 10.2 20.9 0.64 0.46 0.53 0.01 0.05

0.25 17.9 10.4 22.6 0.63 0.44 0.51 0.005 0.025
0.5 12.7 8.5 26.5 0.60 0.32 0.42 0.03 0.15
1 3.9 9.6 35.7 0.28 0.09 0.14 0.27 1
1.5 0.4 7.4 39.1 0.05 0.01 0.01 3.9 × 10−6 1.9 × 10−5

Effect HRNN 0.1 19.8 29.3 19.8 0.40 0.50 0.44
0.25 19.2 27.6 21.9 0.41 0.46 0.43
0.5 16.1 30.7 23.5 0.34 0.40 0.37
1 9.8 32.3 29.9 0.23 0.24 0.23
1.5 5.1 33.3 34.5 0.13 0.12 0.13

Effect HCC-CLINDE 0.1 18.5 10.0 20.7 0.64 0.47 0.54 0.06 0.3
0.25 18.0 10.3 22.5 0.63 0.44 0.52 0.02 0.1
0.5 12.7 8.5 26.5 0.60 0.32 0.42 0.16 0.8
1 3.9 9.6 35.7 0.28 0.09 0.14 0.02 0.1
1.5 0.4 7.4 39.1 0.05 0.01 0.01 3.4 × 10−7 1.7 × 10−6

Results are the average of accuracy of the Delay and Effect criterion for GRN reconstruction of 10 different randomly generated
synthetic networks. The p-values are for how the Delay and Effect F-scores of HCC-CLINDE method compare with HRNN. σ 2 is
variance of the noise. Networks include 20 genes

Fig. 15 GRN reconstruction of real biological system of IRMA. a True regulations b HRNN c TD-ARACNE d
HCC-CLINDE e TSNI f ebdbNet
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Figures 13 and 14 show that the HRNN and HCC-CLINDE are competitive in terms of
Delay and Effect F-scores.

Real-life biological data of Saccharomyces cerevisiae (IRMA)

In order to validate the performance of the proposedmethod on real-life biological GRNs,
we considered a recent significant contribution to systems biology reported in [36] where
the authors built a synthetic network, called IRMA, of the yeast organism Saccharomyces
cerevisiae. The researchers tested transcription of network genes by culturing cells in
presence of galactose and glucose. This is one of the first attempts at building a refer-
ence data set, having a fairly true table of regulations [8, 23]. The regulatory network
includes five genes. It is negligibly affected by endogenous genes. Two sets of gene pro-
files called Switch ON and Switch OFF were provided, each containing 16 and 21 time
points. The former corresponds to the shifting of the growing cells from glucose to the
galactose medium; the latter corresponds to the reverse shift. Due to the lack of stimulus,
reconstruction of the GRN from the Switch OFF dataset is difficult [8, 23].
The performance comparisons among various methods for the IRMA ON dataset

are shown in Fig. 15 and Table 10. In Fig. 15(a), the true IRMA network is shown.
Figure 15(b) displays the GRN obtained by the proposed method. Figure 15(c-f) present
the GRN reconstructions by TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet obtained
with default parameters. In Table 10, TP, FP, FN, precision, recall and F-score values are
also compared. The proposed HRNN finds the true regulations of ASH1 by SWI5, CBF1
by ASH1, GAL80 by SWI5, GAL4 by GAL80, GAL80 by GAL4 and CBF1 by SWI5. The
regulation of SWI5 by GAL4 and regulation of GAL4 by CBF1 are not found. The method
finds three regulations (regulations of SWI5 by CBF1, SWI5 by ASH1 and SWI5 byGAL4)
that are not in the true network of IRMA. Among the eight connections in the true net-
work, TD-ARACNE finds two correct regulations. The HCC-CLINDE method found
one true regulation and one false regulation. Also, HCC-CLINDE finds the regulations of
ASH1 and SWI5 by a hidden common cause which is not reported in the actual GRN of
the IRMA. Results show higher accuracy in the proposed HRNN approach for finding the
regulatory interactions between the genes in comparison to the other two approaches.

Conclusions
In this study, we developed and implemented a hierarchical recurrent neural network
(HRNN) approach to identify time-delayed regulatory interactions of genes. The designed
HRNN facilitates capturing the paths with different lengths from the leaf nodes in the
network to the target node. Hierarchy and non-linearity in the network and the allowance
for recurrent connections in HRNN provide an effective capability for modeling the tem-
poral patterns of gene expression. Furthermore, partial connectivity of the nodes aids in

Table 10 Comparison of results for GRN reconstructions of IRMA

Methods TP FP FN Precision Recall F-score

HRNN 6 3 2 0.66 0.75 0.70

TD-ARACNE 2 1 6 0.66 0.25 0.36

HCC-CLINDE 1 3 7 0.25 0.12 0.16

TSNI 6 12 2 0.33 0.75 0.46

ebdbNet 1 2 7 0.33 0.12 0.18
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finding the limited set of genes which regulate the target gene over different time delays.
The proposed method outperformed TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet
in terms of reconstructing small andmedium size networks having non-linearity and high
levels of noise for measurement data.
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