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ABSTRACT

Motivation: We address the issue of finding a three-way gene
interaction, i.e. two interacting genes in expression under the
genotypes of another gene, given a dataset in which expressions
and genotypes are measured at once for each individual. This issue
can be a general, switching mechanism in expression of two genes,
being controlled by categories of another gene, and finding this
type of interaction can be a key to elucidating complex biological
systems. The most suitable method for this issue is likelihood ratio
test using logistic regressions, which we call interaction test, but
a serious problem of this test is computational intractability at a
genome-wide level.
Results: We developed a fast method for this issue which improves
the speed of interaction test by around 10 times for any size of
datasets, keeping highly interacting genes with an accuracy of
∼85%. We applied our method to ∼3×108 three-way combinations
generated from a dataset on human brain samples and detected
three-way gene interactions with small P-values. To check the
reliability of our results, we first conducted permutations by which
we can show that the obtained P-values are significantly smaller than
those obtained from permuted null examples. We then used GEO
(Gene Expression Omnibus) to generate gene expression datasets
with binary classes to confirm the detected three-way interactions
by using these datasets and interaction tests. The result showed us
some datasets with significantly small P-values, strongly supporting
the reliability of the detected three-way interactions.
Availability: Software is available from http://www.bic.kyoto-
u.ac.jp/pathway/kayano/bioinfo_three-way.html
Contact: kayano@kuicr.kyoto-u.ac.jp
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
We address the issue of efficiently finding a three-way gene
interaction, precisely two interacting genes in expression under the
genotypes of a different gene, given a dataset in which both gene
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Fig. 1. Synthetic examples: expressions of two genes under the three classes
of another gene. (a) randomly distributed, (b,c) easily categorized into three
classes and (d) a switching mechanism.

expressions and genotypes are measured for each individual. We
illustrate our problem setting by using synthetic 2D diagrams in
Figure 1, where expression values of two genes are plotted with
three classes (genotypes): +, * and �. In this figure, panel (a)
shows expression values being just randomly distributed; (b) shows
expression values being easily categorized into three classes; and (c)
shows that classes can be categorized by expressions without using
two genes at the same time. We are not interested in (a–c) but in (d),
which shows that the correlation in expression between two genes
differs for each class. More concretely, two genes are positively
correlated for one class, whereas they are negatively correlated
for another. This is exactly a switching mechanism in expression
between correlation and inverse-correlation of two genes, controlled
by another gene. Also this is the three-way gene interaction which
we attempt to find in this article. We note that this can be categorized
into a general switch in biology. A simple, well-known example is
Max, a transcription factor, which plays a role of an activator or a
suppressor, depending on whether it binds to Myc (i.e. Myc-Max)
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or Mad (i.e. Mad-Max) (Ayer and Eisenman, 1993). We emphasize
that this type of interaction must be a key to elucidating complex
biological systems.

A reasonable approach to detect such three-way interactions
is the likelihood ratio test for regression (LRTR). Particularly,
logistic regression must be suitable the most, because of categorical
responses (genotypes) in our setting (McCullagh and Nelder, 1989).
The first item of note is that parameter estimation for logistic
regression is based on the maximum likelihood, for which a time-
consuming iterative gradient descent, Newton–Raphson, is usually
used. Secondly, in our case, classes are genotypes, causing a problem
of an explosive number of combinations of one SNP (genotypes)
and two genes (expressions). For example, for 50 000 SNPs and
1000 genes, we have roughly 5×1010 (= 50 000×1000×1000)
combinations, making scanning over all possible combinations
intractable. In fact, >24 h are needed to run Newton–Raphson over
only 107 combinations in our experiments. Thus, the main focus
of this article is to speed up the procedure of finding the three-
way interactions. Our strategy for this issue is to prune irrelevant
combinations, such as those in which the expression values of two
genes are randomly distributed as in Figure 1a, by using a hypothesis
test assuming the normality of given examples.

The contribution of this article can be summarized into three
folds: (i) We present a problem setting of finding a three-way
gene interaction of two numerical variables and one categorical,
corresponding to a biological switch in expression. (ii) LRTR and
LRT of logistic regression (LRTLR) are the standard approaches for
this problem, but these are computationally inefficient, particularly
for a huge number of combinations that we can have. We then
propose an efficient method for pruning large part of input
combinations. (iii) Our experiment with a huge dataset of human
brain samples showed that our method run 10 times faster than
LRTLR for any data size, keeping the accuracy of detecting
three-way interactions at ∼85%.

2 RELATED WORK
Three-way interactions in expression have not been considered
except only a few cases of using simple methods (Li et al., 2004;
Zhang et al., 2007). There are two reasons for this: (i) dealing with
more than two-way correlations is intractable at a genome-wide
level, because of the explosive number of combinations and (ii)
three-way interactions along this line can be inferred from two-
way co-expression. We emphasize that our three-way interaction is
different from them, in terms that correlation or inverse-correlation
in expression of two genes is controlled by genotypes of another
gene.

Genome-wide association studies (GWA) using genotypes,
especially single nucleotide polymorphisms (SNPs), have been
highlighted in these few years (McCarthy and Hirschhorn, 2008),
whereas cDNA microarrays have been a standard tool for
understanding gene/protein behaviors in a cell. Thus, currently a
large number of studies use both gene expressions and genotypes,
showing the importance of combining these two information
sources (Nica and Dermitzakis, 2008). Consequently, we now have
a unique dataset, in which both gene expressions and genotypes are
measured at once for each individual, and this type of dataset, which
we use in this article, is increasing in these few years, which makes

our approach very promising (Dixon et al., 2007; Myers et al., 2007;
Schadt et al., 2008).

A standard analysis in GWA is conducted between a single
SNP (i.e. genotypes at a locus) and a categorical or continuous
outcome (phenotype). For this analysis, the two most typical
approaches are ANOVA (Analysis of Variance) and LRTR (Balding,
2006). Usually more complex analysis is multiple (usually two)
SNPs with a single phenotype where two-way ANOVA or
LRTR with two explanatory variables can be considered. This
situation is closely related with epistasis, a general concept in
modern quantitative genetics (Aylor and Zeng, 2008; Cordell,
2002), meaning the interaction between multiple loci and
phenotype (Marchini et al., 2005). Our problem setting looks similar
to this but interestingly in the reverse direction. That is, we consider
the interaction between two expression phenotypes under categorical
genotypes which thus have not been examined in GWA. We note
that ANOVA cannot be applied to this issue,1 whereas LRTR can
be applied as a standard manner for our setting. Another item of
note is that finding three-way interactions in only SNPs exists (Lo
et al., 2008), but their problem setting is straightforward and totally
different from our setting.

3 METHODS

3.1 Notations and preliminaries
Let X be an input matrix, in which each row is an individual and each column
is a numerical vector of gene expressions or a categorical vector of SNPs
(in genes). Let E be the set of genes for which expressions are measured
in X and Q be the set of SNPs in X , indicating that |E|+|Q| is the total
number of columns of X . To test the three-way interaction, we choose one
combination, i.e. two genes (e1 and e2) and one SNP (q) out of E and Q,
respectively, and we write X (e1,e2,q) which has only three columns of X ,
corresponding to e1, e2 and q [we write X (e,q) when we choose only one
gene e out of E and q out of Q]. Hereafter, until Section 3.6, we assume that
we already choose one combination.

For gene expressions, let X= (X1 ,...,XK )′ ∈R
K be a K-dimensional

numerical variable, taking value x= (x1 ,...,xK )′. We note that using two
genes in expression does not necessarily mean K=2. For example, for two
genes, we can set K=3, where X1, X2 and X3 correspond to one gene,
the other gene and the interaction between these two genes, respectively.
For genotypes, let C be the number of groups (or classes), and in fact,
C=3. We denote three genotypes by G1,G2 and G3, into one of which
each individual falls. Let Y be the class variable, taking value y, where
Y= (Y1,Y2)′ ∈{0,1}×{0,1}. Here, we note that y takes the following values:
y= (1,0)′ if x∈G1, y= (0,1)′ if x∈G2 and y= (0,0)′ if x∈G3. We denote
N inputs (individuals) by X= (x1,...,xN )′ and Y= (y1,...,yN )′ = (y(1),y(2)),
which can be classified into N1, N2 and N3 inputs for G1, G2 and G3,
respectively. The average expression values can be defined for each class
c and all classes: x̄c= 1

Nc

∑N
j=1|j∈Gc

xj and x̄= 1
N

∑N
j=1 xj , respectively,

where x̄=1/N
∑K

c=1 Ncx̄c. IK is the identity matrix of size K , and 1 is an
n-dimensional vector in which all elements are 1.

We incorporate some basic statistics: T=∑N
j=1(xj− x̄)(xj− x̄)′,

B=∑C
c=1 Nc(x̄c− x̄)(x̄c− x̄)′ and W=∑C

c=1
∑N

j=1|j∈Gc
(xj− x̄c)(xj− x̄c)′,

where T =B+W . We can further define covariance matrix Sc for class
c, Sc= 1

Nc

∑Nc
j=1|j∈Gc

(xj− x̄c)(xj− x̄c)′ (c=1,...,C), and total covariance

matrices S and ST , S= 1
N

∑C
c=1

∑Nc
j=1|j∈Gc

(xj− x̄c)(xj− x̄c)′ (= 1
N W ) and

1ANOVA can be applied only to the case with a single continuous response
(phenotype) and one or more discrete explanatory variables (genotypes).
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ST = 1
N

∑C
c=1

∑Nc
j=1|j∈Gc

(xj− x̄)(xj− x̄)′ (= 1
N T ). We note that W=∑C

c=1 NcSc and S= 1
N

∑C
c=1 NcSc.

We show the multivariate normal distribution, having two parameters, µc
and �c (the mean and the covariance matrix of class c), and the log-density
(log-likelihood) function of this distribution can be given as follows:

�(µ,�|X) = −
C∑

c=1

Nc

2
log det(2π�c)

−
C∑

c=1

Nc

2

{
tr�−1

c Sc+(x̄c−µc)′�−1
c (x̄c−µc)

}
. (1)

From this equation, we can see that x̄c, covariance matrix Sc and covariance
matrix S can be the maximum likelihood estimators of µc, �c and � (=
�1=···=�C ), respectively.

We briefly describe likelihood ratio test (LRT), which will be used.
We first assume that examples x1,x2 ,...,xn are generated according to
parameter vector θ . Let H0 : θ ∈�0 be a null hypothesis and H1 : θ ∈�1 be the
alternative hypothesis. The statistic λ for testing H0 against H1 can be defined
as λ=L∗0/L∗1 , where L∗0 and L∗1 are the maximum likelihoods under θ ∈�0

and θ ∈�1, respectively. Usually we can use the log-likelihood ratio (LLR),
−2logλ=2(�∗1−�∗0), where �∗1= logL∗1 and �∗0= logL∗0 . We note that this
statistic follows χ2

q−r distribution as N→∞, where q−r is the degree of

freedom (df ) of the χ2 distribution.

3.2 Finding three-way interactions: interaction test
(Likelihood Ratio Test of Logistic Regression,
LRTLR)

A standard and exact approach for our problem is LRTLR (McCullagh and
Nelder, 1989), which we simply call interaction test in this article.

3.2.1 Logistic regression We first denote the probability that x is in
G1 by p1(x), and similarly the probability that x is in G2 by p2(x), by
which the probability that x is in G3 is p3(x) (=1−p1(x)−p2(x)). We
use logistic regression to link these probabilities to K-dimensional input
x by using weight parameters (or coefficients) w= (w′1,w′2)′, where w1=
(w10,w11,...,w1(K−1))′, w2= (w20,w21,...,w2(K−1))′ as follows:

⎧⎪⎪⎨
⎪⎪⎩

p1(x)= exp(w′1x)

1+exp(w′1x)+exp(w′2x)

p2(x)= exp(w′2x)

1+exp(w′1x)+exp(w′2x)

⇔

⎧⎪⎨
⎪⎩

log
p1(x)

p3(x)
=w′1x

log
p2(x)

p3(x)
=w′2x

(2)

Here, we denote p1(x), p2(x) and p3(x) by p1(x;w), p2(x;w) and p3(x;w)
(=1−p1(x;w)−p2(x;w)), respectively, because they can be functions of w.
We can then write the likelihood of logistic regression for given N examples
and parameters w, as follows:

L(w)=
N∏

i=1

p1(xi;w)yi1 p2(xi;w)yi2 p3(xi;w)1−yi1−yi2 ,

where yi= (yi1,yi2)′.

3.2.2 Parameter estimation We can obtain the maximum likelihood
estimator ŵ for w by maximizing the log-likelihood l(w)= logL(w). A
standard approach for this purpose is the Newton–Raphson method, which
is an iterative gradient descent, having the following updating rule by which
we can have ŵ(t+1) at the (t+1)-th iteration, using ŵ(t) of the t-th iteration:

ŵ(t+1)= ŵ(t)−
(

H(w)|w=ŵ(t)

)−1
U(w)|w=ŵ(t) , (3)

where Hessian matrix H(w) (=∂2l/∂w∂w′) and gradient vector U(w)
(=∂l/∂w) can be given in the following:

U(w)=X′∗a(w),

Table 1. Log-likelihoods and LLR by Newton–Raphson

Figure 1 l(ŵ01) l(ŵ0) l(ŵ) LLR (P-value)

(a) −196.4 −195.5 −194.4 2.23 (0.45)
(b) −1.86 −0.42 −2.36 −3.87 (1.00)
(c) −83.5 −1.52 −6.00 −8.97 (1.00)
(d) −197.8 −197.4 −126.4 142.12 (0.00)

where X∗=diag(X,X) (block diagonal matrix of X), a(w)= (a1(w)′,a2(w)′)′
where aj(w)=y(j)−pj(w) and pj(w)= (pj(x1;w),...,pj(xN ;w))′ (j=1,2).

H(w)=
(

X′R11(w)X X′R12(w)X
X′R21(w)X X′R22(w)X

)
=X′∗R(w)X∗ ,

where N×N matrix Rjk(w) (j,k=1,2) is given by Rjj(w)=diag{pj(w)	
(pj(w)−1)} and Rjk(w)=diag{pj(w)	pk(w)} (j 
=k).

Finally, the updating rule of the Newton–Raphson method for logistic
regression can be rewritten in the following:

ŵ(t+1)= ŵ(t)−{X′∗R(ŵ(t))X∗}−1X′∗a(ŵ(t)). (4)

In practise, we start with some initial values ŵ(0) and update ŵ(t+1) according
to Equation (4) until the following equation is satisfied:

‖ŵ(t+1)−ŵ(t)‖2 <2Kδ, (5)

where δ is set at a certain value.

3.2.3 Interaction test We then examine the significance of the interaction
in expression between two genes in terms of classes of another gene. Let xi1

and xi2 be expression values of the corresponding two genes for input i. The
interaction term is xi1xi2, meaning that our purpose is to find the case that the
logistic model is well fitted to the data when this term is added. We then let
xi= (1,xi1,xi2,xi1xi2)′ and w= (w10,w11,w12,w13,w20,w21,w22,w23)′, and
the logistic model with the interaction term is given as follows:

log
pc(x;w)

p3(x;w)
= wc0+wc1xi1+wc2xi2+wc3xi1xi2 (c=1,2)

If wc3=0, the model does not have the interaction term, meaning that the
null hypothesis and w0 are given as follows:

H0 : w13=0 and w23=0

w0 = (w10,w11,w12,0,w20,w21,w22,0)′. (6)

Then the test statistic, LLR and its asymptotic distribution can be given:

−2logλ=2{l(ŵ)−l(ŵ0)}∼ χ2
2(αi), (7)

where χ2
2(αi) is the χ2 distribution with the df of two, meaning that

interacting genes can be obtained as those which have lower P-values under
this distribution than the input significance level αi. We run interaction test
100 times over four examples in Figure 1, and Table 1 shows the average
results over the 100 runs. This table clearly shows that the P-value is
very large for Figure 1a–c, while that is zero for Figure 1d, indicating that
intraction test can detect our target sample correctly.

Figure 2 shows a pseudocode of interaction test. We can write interaction
test by function Interaction_test(e1, e2, q, αi), which outputs one if
given example (e1,e2,q) has the three-way interaction; otherwise zero. A
significant drawback of interaction test is computational inefficiency. In fact,
Equation (6) shows K=8, meaning that Newton–Raphson needs to compute
an 8×8 inverse-matrix at each of its iteration procedure.

3.3 Key idea for speeding-up interaction finding
Abasic idea for accelerating the finding of a three-way interactions is to prune
some combinations, to which interaction test does not have to be applied.
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Input: X (e1,e2,q): Input three vectors of genes e1,e2 and SNP q.
αi: Significance level for interaction test

Output: One if e1 and e2 are interacting with each other under q; otherwise
zero.

Interaction_test(e1, e2, q, αi)
1: w0← some initial value.
2: repeat
3: Update w0, according to the iterative rule of Eq.(4)
4: until Eq.(5) is satisfied
5: w← some initial value.
6: repeat
7: Update w, according to the iterative rule of Eq.(4)
8: until Eq.(5) is satisfied
9: if -2{l(ŵ)−l(ŵ0)}>χ2

2(αi) then
10: return 1
11: else
12: return 0
13: end if

Fig. 2. Pseudocode of interaction test.

Fig. 3. LLR and its components.

From Equation (7), we can see that the interacting genes should have a larger
LLR. Figure 3 shows a schematic figure, in which we plot the log-likelihood
without the interaction term in the left-hand side and with the interaction
term in the right-hand side. We note that the range of the log-likelihood can
be limited, because the maximum log-likelihood is zero and the minimum
log-likelihood can be given by the case of the uniform distribution for pi(x).
The LLR in question can be then given by the distance being shown by a
dotted line in Figure 3. Thus, two interacting genes should have a long dotted
line, meaning that the point in the left-hand side should be lower and that in
the right-hand side should be higher. This observation indicates that we can
prune the following two cases: (I) a large likelihood can be obtained without
the interaction term, and (II) only a small likelihood can be obtained even if
we use the interaction term. These (I) and (II) correspond to areas I and II,
respectively, in Figure 3. We then attempt to efficiently detect examples in
areas I and II by assuming the normality on data distribution.

3.4 Linear discriminant analysis
Area I in Figure 3 contains examples in which expressions can be easily
separated into three classes without the interaction term, as shown in
Figure 1b and c. Thus, in this case, we can consider a simpler, easily
computable estimation method for parameters of the logistic regression
model without the interaction term, and if the likelihood for a given

Table 2. MANOVA, Box’s M test and Means-Covariances (MC) test on
four examples in Figure 1

Examples in
Figure 1

MANOVA Box’s M test MC test

(a) 0.53 (0.28) 0.70 (0.25) 0.60 (0.30)
(b) 0.00 (0.00) 0.68 (0.25) 0.00 (0.00)
(c) 0.00 (0.00) 0.71 (0.25) 0.00 (0.00)
(d) 0.94 (0.09) 0.00 (0.00) 0.00 (0.00)

combination by that model is high enough, this combination can be pruned.
For the simpler estimation method, we use linear discriminant analysis
(LDA), which assumes that x follows the normal distribution N(µ,�) with
the same covariance � for all three classes (Hastie et al., 2001). We skip the
detail of this method due to space limitations because in our experiment only
a small part of all given examples can be pruned by LDA. Interested readers
should refer the Supplementary Material. We can write LDA by function
LDA(e1, e2, q, αi) [or LDA(e, q, αi)], which outputs one if given example
(e1,e2,q) [or (e,q)] should be pruned; otherwise zero.

3.5 Randomness test
Area II in Figure 3 contains an example for which the maximum likelihood
with the interaction term is very low, implying that expression values are
almost randomly distributed in terms of classes, as shown in Figure 1a. To
detect the randomness of expression values, if we use a faster hypothesis test
for randomness than Newton–Raphson, we can speed up the procedure for
finding the three-way interaction. We assume that expression values follow
the K-dimensional normal distribution for each class of genotypes, and under
this assumption, we present our approach, which combines multivariate
ANOVA (MANOVA) and Box’s M test (Mardia et al., 1979). We can set
K=2 for our test, meaning that the largest matrix size is 2×2, making the
computation very efficient.

3.5.1 MANOVA MANOVA considers the following null hypotheses over
the means:

H0 : µ1=µ2=···=µC , H1 : µi 
=µj for some pair of i and j

For testing H0 against H1, we use LLR,−2logλ (=2(�∗1−�∗0)). By replacing
�c in Equation (1) with � and using the maximum likelihood estimators x̄c

and S for µk and �, respectively, we have the following:

�∗1=−
N

2
log det

(
2π

N
W

)
− NK

2
. (8)

On the other hand, for the log-likelihood under null hypothesis, we can use
the maximum likelihood estimators x̄ and ST for µk and �, respectively, and
we have the following:

�∗0=−
N

2
log det

(
2π

N
T

)
− NK

2
. (9)

Thus, the statistic can be given as follows: −2logλ=−N log det(W )
det(T ) . We can

further see that q is KC+ K(K+1)
2 and r is K+ K(K+1)

2 .
We conducted MANOVA over four samples in Figure 1, and Table 2

shows the resultant average over 100 runs with SDs in parentheses. The
P-value of MANOVA for (a) was high (0.53), whereas that for (b) [and (c)]
was zero, meaning that MANOVA can discriminate (a) from (b) [and (c)].
However, the P-value of (d) was also high (0.94), meaning that MANOVA
could not separate (a) from (d). Thus, we need another hypothesis test, which
can distinguish (a) from (d).
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Input: X (e1,e2,q): Input three vectors of genes e1,e2 and SNP q.
αm: Significance level for MC test

Output: One if two genes e1 and e2 are randomly generated in terms of
SNP q; otherwise zero.

MC_test(e1, e2, q, αm)
1: Compute �∗0 according to Eq. (9).
2: Compute �∗1 according to Eq. (10).
3: Compute −2logλ according to Eq. (11).
4: if −2logλ<χ2

2(αm) then
5: return 1
6: else
7: return 0
8: end if

Fig. 4. Pseudocode of MC test.

3.5.2 Box’s M test We then consider the following hypotheses over the
covariance:

H0 : �1=�2=···=�C , H1 : �i 
=�j for some pair of i and j

Here, �∗0 can be given by �∗1 of MANOVA [i.e. Equation (8)], and �∗1 can be
obtained by using maximum likelihood estimators x̄k and Sk for µk and �k ,
respectively, in Equation (1).

�∗1=−
C∑

c=1

Nc

2
log det(2πSc)− NK

2
(10)

Thus, the statistic is −2logλ=∑C
c=1 Nc log det(S−1

c S). Here, q is KC+
KC(K+1)

2 and r is KC+ K(K+1)
2 .

We run Box’s M test over four samples in Figure 1, and Table 2 shows the
results. This result shows that the P-value of (a) was high (0.70), whereas
that of (d) was zero, meaning that M-test separated (a) from (d). However,
this time, this test could not discriminate (a) from (b) [and (c)], since the
P-value of (b) [and (c)] was also high. Thus, this result showed that Box’s
M test can be a complement of MANOVA, implying that we can combine
these two tests for detecting random distributions such as Figure 1a.

3.5.3 MC test (MANOVA + M Test) We finally consider the following
hypotheses over both the means and covariances:

H0 : µ1=µ2=···=µC and �1=�2=···=�C

H1 : µi 
=µj or �i 
=�j for some pair of i and j

We emphasize that this test suits our purpose the most, although this is
an unpopular statistic and not named. We then call this test as MC test.
Interestingly, �∗0 of this test is given by �∗0 of MANOVA, i.e. Equation (9)
and �∗1 is given by �∗1 of M test, i.e. Equation (10). Thus, the statistic of MC
test is given as follows:

−2logλ =
C∑

c=1

Nc log det(S−1
c ST ) , (11)

since 1
N T=ST . Here, q=KC+ KC(K+1)

2 and r=K+ K(K+1)
2 , meaning that

df is 10 in our case. Figure 4 shows a pseudocode of MC test. We can write
MC test by function MC_test(e1, e2, q, αm), having significance level αm as
an input which removes given combination (e1,e2,q) if its P-value is larger
than αm, meaning that a larger number of combinations can be removed if αm

is smaller. This function outputs one if (e1,e2,q) should be pruned; otherwise
zero.

We checked the performance of MC test using synthetic four samples of
Figure 1. Table 2 shows that all P-values are zero, except (a) with the P-value
of 0.60, indicating that MC test can successfully detect (a) out of the four
examples and is expected to work on real data as well.

3.6 Proposed procedure
Figure 5 shows a pseudocode of our entire procedure. We can first check
each pair of a gene and a SNP by LDA, and if the log-likelihood is high,

Input: X : Input dataset
αi: Significance level for interaction test,
αm: Significance level for MC test

Output: I: Interacting gene pairs with the corresponding SNPs
Proposed_procedure(X , αi, αm)
1: for each pair of gene e∈E and SNP q∈Q do
2: // Pruning by LDA: One gene and a SNP
3: if LDA(e, q, αi) == 1 then
4: F←F∪(e,q)
5: end if
6: end for
7: for each combination of genes e1∈E,e2∈E and SNP q∈Q do
8: if (e1,q) /∈F and (e2,q) /∈F then
9: // Pruning by MC test

10: if MC_test(e1,e2,q,αm) == 1 then
11: This combination should be in Area II. go to Pruned
12: end if
13: // Pruning by LDA: Two genes and a SNP
14: if LDA(e1,e2,q, αi) == 1 then
15: This combination should be in Area I. go to Pruned
16: end if
17: // Interaction test for unpruned combinations
18: if Interaction_test(e1, e2, q, αi) == 1 then
19: I←I∪(e1,e2,q)
20: end if
21: end if
22: Pruned
23: end for

Fig. 5. Pseudocode of our entire procedure: FTGI.

this pair is stored to be pruned. We then generate all possible combinations
of two genes and a SNP out of given data. For each of these combinations,
it is first pruned if it contains the stored gene–SNP pair. Then, LDA and MC
test are run in sequence for pruning, and finally interaction test is applied to
the remaining. Hereafter, we call our proposed procedure FTGI, standing for
Fast finding Three-way Gene Interactions, whereas we call the approach of
running Interaction Test Only over all possible combinations as ITO. More
details of our proposed method is shown in the Supplementary Material.

4 EXPERIMENTS

4.1 Data
We used the human brain-derived dataset of Myers et al.
(2007), which originally has 193 rows (individuals) and 14 078
numerical columns (corresponding to gene expressions) and 366 140
categorical columns (corresponding to SNPs). We first removed the
columns containing missing values and the columns which have
a genotype to which only less than 10 individuals are assigned.
Our purpose is to find three-way gene interactions, and so we
further removed SNPs which are neither in coding regions nor in
introns, by specifying genes on sequences using the FTP site of
NCBI Mapviewer for Homo sapiens. Finally, we obtained 5269
numerical vectors (in expression of genes) and 13 411 categorical
vectors (in genotypes of SNPs) for 193 individuals, which we
call the Source dataset. Myers et al. (2007) collected the original
dataset from human brains, and so we focused on neurodegenerative
diseases [including Alzheimer’s disease (AD) and Parkinson’s
disease, etc.] out of five disease pathways in the KEGG disease
database (Kanehisa et al., 2008), resulting in 142 genes which we
call Neuro. All experiments were run on a machine with Dual-Core
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AMD Opteron 2222 SE (3.0 GHz) and 18 GB RAM. Throughout
Section 4, each P-value is shown by log10(P-value).

4.2 Results and discussion
4.2.1 Speeding-up finding three-way interactions and pruning
accuracy We examined the improvement in time efficiency by
FTGI over ITO. Figure 6 shows the real computation time of ITO
and FTGI, when we changed the number of combinations randomly
chosen from the source dataset. We here focused on Area II of
Figure 3 only, since we found that in the Source dataset of Area
I had only a small number of examples, which do not affect the
efficiency greatly. This figure clearly shows that as αm decreased,
the amount of running time of FTGI became smaller for any size of
inputs, by pruning a larger number of them. In particular, at αm of
0.001, FTGI runs approximately 10 times faster than ITO, resulting
in only ∼2 h for 107 combinations, being a sizable improvement.
This means that for 5×1010 (= 50 000 SNPs × 1000 genes × 1000
genes) combinations, FTGI just needs only a couple of days with
100 CPUs, while ITO needs more than a month.

The αm controls the number of pruned combinations, and Table 3
shows the pruning rate, i.e. the ratio of pruned combinations to all
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Fig. 6. Computation time improvement by reducing αm.

input combinations, with varying αm for 107 input combinations.
We further checked the pruning accuracy, which can be defined as
the overlap between the resultant top K (set at 100) combinations
by P-values of ITO and those of FTGI. Table 3 shows that for αm
of 0.05, FTGI can prune around ∼70% of input combinations with
pruning accuracy of almost 100%. If αm is reduced to 0.001, ∼94%
inputs can be pruned, keeping the pruning accuracy of ∼85%. This
high pruning rate effects the time efficiency of FTGI.

We note that all results in this section were averaged over three
runs at each corresponding setting.

4.2.2 Detecting three-way interactions We then generated all
combinations from the Source dataset, focusing on the genes in
Neuro, meaning that we had totally∼3×108 combinations (= 13 411
SNPs× 142 genes× 142 genes). We then run FTGI with αm of 0.001
over these combinations. Figure 7 shows the gene expressions of
the resultant top 10 combinations in terms of P-values. We note that
these P-values of interaction test were computed by the procedure in
Section 3.2. Each of Figure 7 is a 2D diagram on which expression
values of the corresponding two genes are plotted with Contour
lines for each genotype. This figure shows that the topographical
distribution of different genotypes are clearly crossed in all cases,
meaning that in each of all the top 10 combinations, genes are
interacting in expression, being controlled by genotypes, as shown
in Figure 1d.

Table 4 shows the detail (Gene name for one SNP and the
name with GeneID, the definition and the pathway for each of two

Table 3. Pruning rates and pruning accuracies (top 100) at three αm values
of FTGI for 107 combinations

αm 0.05 0.01 0.001

Pruning rate 0.7095 0.8611 0.9354
Pruning accuracy (top 100) 0.9967 0.9567 0.8467

(a)    Topranked
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Fig. 7. Expressions of two genes under three genotypes of another gene for top 10 (a–j) ranked three-way interactions out of 3×108 combinations.
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Table 4. Details of the top 10 three-way interactions in Figure 7

P-value SNP
(GeneID and name)

Gene 1 Gene 2

Name Definition Name Definition
(GeneID) (GeneID)

1 −8.91108 rs7487429
(113251, LARP4)

COX6C
(1345)

Cytochrome c oxidase subunit VIc
(EC:1.9.3.1)

UBA1
(7317)

Ubiquitin-like modifier activating enzyme 1
(EC:6.3.2.19)

2 −8.4901 rs13086670
(80163, FLJ11827)

RERE
(473)

Arginine-glutamic acid dipeptide (RE) repeats TNFRSF1A
(7132)

Tumor necrosis factor receptor superfamily,
member 1A

3 −8.10611 rs2175200
(439992, RPS3AP5)

ATP5D
(513)

ATP synthase, H+ transporting, mitochondrial
F1 complex, δ subunit (EC:3.6.1.14)

ITCH
(83737)

ITCHY E3 ubiquitin protein ligase homolog
(mouse)

4 −8.06076 rs2797425
(55227, LRRC1)

ATP5G1
(516)

ATP synthase, H+ transporting, mitochondrial
F0 complex, subunit C1 (subunit 9)

ATP5H
(10476)

ATP synthase, H+ transporting, mitochondrial
F0 complex, subunit d (EC:3.6.1.14)

5 −8.02645 rs7116710
(440031,
LOC440031)

NCSTN
(23385)

Nicastrin HSPA5
(3309)

Heat shock 70kDa protein 5
(glucose-regulated protein, 78kDa)

6 −8.02495 rs2058619
(728730,
LOC728730)

NDUFA8
(4702)

NADH dehydrogenase (ubiquinone) 1 α

subcomplex, 8, 19 kDa (EC:1.6.5.3
1.6.99.3)

NDUFA6
(4700)

NADH dehydrogenase (ubiquinone) 1 α

subcomplex, 6, 14kDa

7 −8.0149 rs1893261
(25833, POU2F3)

ALS2
(57679)

Amyotrophic lateral sclerosis 2 (juvenile) SLC25A6
(293)

Solute carrier family 25 (mitochondrial
carrier; adenine nucleotide translocator),
member 6

8 −7.86801 rs1571176
(9044, BTAF1)

ATP5G1
(516)

ATP synthase, H+ transporting, mitochondrial
F0 complex, subunit C1 (subunit 9)

ATP5J
(522)

ATP synthase, H+ transporting, mitochondrial
F0 complex, subunit F6 (EC:3.6.1.14)

9 −7.84081 rs12425705
(91012, LASS5)

COX6C
(1345)

Cytochrome c oxidase subunit VIc
(EC:1.9.3.1)

UBA1
(7317)

Ubiquitin-like modifier activating enzyme 1
(EC:6.3.2.19)

10 −7.73205 rs12698191
(393078,
tcag7.1023)

NDUFA10
(4705)

NADH dehydrogenase (ubiquinone) 1 α

subcomplex, 10, 42kDa (EC:1.6.5.3
1.6.99.3)

COX4
(1327)

Cytochrome c oxidase subunit IV isoform 1
(EC:1.9.3.1)

interacting genes in expression) of the 10 three-way interactions in
Figure 7, all information in this table being retrieved from KEGG.2

For example, the first interaction of Table 4 shows the switching
mechanism of two genes, COX6C and UBA1, being controlled by
a SNP in LARP4.

4.2.3 Validating detected interactions with permutations To
confirm the statistical significance of the detected three-way
interactions, we conducted permutations by measuring P-values of
‘null data’, generated in the following three manners, and comparing
them with those of the interactions we detected.

• Null data 1: we randomly chose 10 000 combinations out of all
combinations using the Source dataset (13 411 SNPs × 5269
genes × 5269 genes) and randomly permuted the genotypes of
these combinations 100 times. Totally, we had one million null
examples.

• Null data 2: we randomly chose 10 000 combinations out of
all combinations using the Neuro dataset (13 411 SNPs × 142
genes × 142 genes) and randomly permuted the genotypes of
these combinations 100 times. Totally, we had one million null
examples.

• Null data 3: we permuted the genotypes of each of the detected
top 10 interactions in Figure 7 one million times, resulting in
one million null examples for each combination.

We first show the results of permutation tests when we use Null data
1 and 2. Figure 8 shows the distribution of P-values of null examples,
being located in the right side, for Null data 1 and 2. In this figure,
the distribution of P-values for the top 10 000 interactions detected

2The Supplementary Material shows annotations by Reactome (Vastrik et al.,
2007) for interacting genes.
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Fig. 8. Distributions (left side) of P-values of the top 10 000 interactions
detected by FTGI, with those (right side) of Null data (a) 1 and (b) 2.

by FTGI is located in the left side. This figure shows that the red-
colored distribution is clearly separated from the black-colored one,
meaning that the detected three-way interactions have significantly
small P-values. For Null data 3, we show the result, focusing on two
cases (the top and the 10th interactions), since the trend of results
was kept the same for all 10 interactions in Table 4. Figure 9 shows
the distribution of P-values of null examples generated from the top
interaction (or the 10th), with the P-value of the top (or the 10th)
interaction by an arrow. This figure indicates that the P-value of
the top (or the 10th) interaction is clearly distant from the P-value
distribution of null examples, implying that P-values of the detected
interactions are statistically significant.

4.2.4 Validating detected interactions with GEO To confirm the
reliability of the interactions in Table 4, we tried to find, for each gene
pair, the switching mechanism in expression which can be controlled
by some experimental condition of gene expression. This is because
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Table 5. Results of interaction test over the datasets from GEO

Rank Gene pair #datasets GDS P- value #ex. #ex. Annotation
from GEO class 1 class 2

1 {COX6C,UBA1} 117 GDS2960_1 −3.9532 60 41 Marfan syndrome: cultured skin fibroblasts
2 {RERE,TNFRSF1A} 284 GDS2736_25 −5.9049 19 15 Malignant fibrous histiocytoma and various soft tissue sarcomas
3 {ATP5D,ITCH} 324 GDS1875_3 −5.1235 27 24 Host cell response to HIV-1 Vpr-induced cell cycle arrest
4 {ATP5G1,ATP5H} 392 GDS2733_1 −7.9996 17 17 Cytosine arabinoside effect on Ewing’s sarcoma cell line
5 {NCSTN,HSPA5} 102 GDS2545_5 −6.4398 63 25 Metastatic prostate cancer (HG-U95A)
6 {NDUFA8,NDUFA6} 142 GDS2733_4 −4.7027 17 16 Cytosine arabinoside effect on Ewing’s sarcoma cell line
7 {ALS2,SLC25A6} 108 GDS1627_2 −3.2808 16 15 Breast cancer cell lines response to chemotherapeutic drugs
8 {ATP5G1,ATP5J} 418 GDS2960_1 −3.1628 60 41 Marfan syndrome: cultured skin fibroblasts
9 {COX6C,UBA1} 117 GDS2960_1 −3.9532 60 41 Marfan syndrome: cultured skin fibroblasts
10 {NDUFA10,COX4} 232 GDS2643_9 −6.2133 13 12 Waldenstrom’s macroglobulinemia: B lymphocytes and plasma cells

For each gene pair of 10 interactions in Table 4, the number of datasets obtained from GEO, the GDS which gave the smallest P-value, the P-value, the number of examples (ex.)
in two classes of the GDS and the annotation of the GDS are shown.
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Fig. 9. The P-values of the (a) top and (b) 10th interactions (shown by
arrows) and the distributions of P-values of the corresponding null examples
generated.

if found, this directly means that the corresponding gene pair can
be controlled by another categorical factor, such as genotypes of
another gene.

For this purpose, we used GEO (version of June 1, 2009; Barrett
et al., 2007), from which we found 2089 GDSs (gene datasets)
which are annotated. Out of the 2089 datasets, we selected datasets
which satisfy all the following four conditions for each gene pair
in Table 4: (i) expression values of the corresponding gene pair
are contained; (ii) the total number of experiments is ≥50; (iii)
experimental conditions can be divided into two or more classes;
and (iv) each class has 10 or more experiments. We then obtained
36 datasets.3 For each gene pair of the top 10 list, we conducted
interaction test by using pairwise (binary) classes in each dataset and
ranked them according to P-values of interaction test. Table 5 shows
a list of datasets, each giving the lowest P-value for each gene pair of
the 10 interactions in Table 4. For example, for COX6C and UBA1,
the gene pair of the first interaction of Table 4, we found a switching
mechanism in GDS2960_1 with the P-value of −3.9532, showing
the statistical significance of this mechanism. This directly indicates
that there must exist a switching mechanism in expression between

3In each GDS, if it has more than two classes or replicated experiments, we
consider all possible pairwise combinations of them. We then name generated
multiple datasets from one GDS (e.g. GDS2960) those like GDS2960_1,
GDS2960_2, etc. This results in that the number of datasets we used could
be >36. The actual number of datasets for each gene pair is shown in Table 5.

these two genes under the alteration of experimental conditions
which is specified by the annotation of GDS2960_1. In fact, Table 5
indicates that the switching mechanism happens between patients of
Marfan syndrome and controls. This type of explanation is possible
for all 10 GDSs in Table 5 by using annotations in this table. As
well all P-values shown in Table 5 are small enough,4 supporting the
reliability of the three-way interactions in Table 4 which our method
detected. Furthermore, Figure 10 shows the real expression values
of two genes, being categorized into two classes, for each GDS of
Table 5. These orthogonal Contour plots also assist the reliability of
three-way interactions that we detected in Table 4.

We further briefly checked the genes having SNPs in the first
and the third interactions in Table 4: (i) the first interaction in
Table 4 has two genes, COX6C and UBA1, which is controlled
by a SNP in LARP4, i.e. La ribonucleoprotein domain family
member 4. This gene was already known as an important gene in
both AD and aging, being already pointed out that LARP4 increases
expression with increasing AD progression and normal aging (Miller
et al., 2008). As our focus was on 142 genes on neurodegenerative
diseases including AD, the known function on LAPR4 is consistent
enough with the interaction with COX6C and UBA1, being possibly
in the switching mechanism. (ii) The gene with the SNP in the
second interactions in Table 4 was a hypothetical one, but the
third interaction has two genes, ATP5D and ITCH, being controlled
by a SNP in RPS3AP5, which is a pseudogene of RPS3A, i.e.
ribosomal protein S3A. This gene is known to be downregulated
in the same manner as some genes in oxidative phosphorylation
pathway (Welle et al., 2003), which includes ATP5D. Thus, these
observations reveal the possibility that the third interaction also may
exist as the switching mechanism in expression of two genes, i.e.
ATP5D and ITCH.

Overall our extensive analysis has implied that the detected three-
way interactions can exist. These results show the potential of
our approach to explicate complex biological systems appearing in
modern biology and medical sciences.

4For each gene pair, not only the dataset giving the top P-value but also
10 datasets providing the top 10 P-values are shown in the Supplementary
Material. All P-values in the Supplement Material are small, showing the
statistical significance of the switching mechanism of each gene pair.
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Fig. 10. (a–j) Expressions of two genes which give the smallest P-value of interaction test in the corresponding GDS of GEO.

5 CONCLUDING REMARKS
We have presented a fast method for finding three-way
gene interactions from transcript-and genotype-data and showed
experimental results obtained by applying this method to ∼3×108

human brain samples. In our experiments, we confirmed the three-
way interactions that we found in various manners. Possible future
work would be to apply our approach to various types of transcript-
and genotype-data further to uncover three-way gene interactions,
i.e. biological switches by genotypes.
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