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Abstract: Ginseng is one of the most widely consumed herbs in the world and plays an important role in
counteracting fatigue and alleviating stress. The main active substances of ginseng are its ginsenosides.
Ocotillol-type triterpenoid is a remarkably effective ginsenoside from Vietnamese ginseng that has
received attention because of its potential antibacterial, anticancer and anti-inflammatory properties,
among others. The semisynthesis, modification and biological activities of ocotillol-type compounds
have been extensively studied in recent years. The aim of this review is to summarize semisynthesis,
modification and pharmacological activities of ocotillol-type compounds. The structure–activity
relationship studies of these compounds were reported. This summary should prove useful information
for drug exploration of ocotillol-type derivatives.
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1. Introduction

From the 1940s to the middle of 2019, approximately 33.5% of approved drugs were either natural
products or directly derived from them [1]. The development of new drug entities based on natural
products as sources of novel structures is still an area of active research. Ginseng, including Asian
ginseng (Panax vietnamensis HA et GRUSHV.) and American ginseng (Panax quinquefolium L.), is one of
the most widely consumed herbs in the world and plays an important role in counteracting fatigue
and alleviating stress [2,3]. Ginseng contains a variety of active ingredients, but its main active
substances are attributed to its ginsenosides. The ginsenosides with the highest content in Vietnamese
ginseng are protopanaxadiol, protopanaxatriol, oleanolic acid and 20,24-epoxydammarane (ocotillol)
(Figure 1) [4,5].

Among the active components of ginseng, ocotillol-type compounds have received increasing
attention because of their antibacterial, anticancer and anti-inflammatory properties [6,7]. Their different
pharmacologic effects and potential molecular mechanisms have been gradually elucidated. Compared
with the structure of dammarane ginsenosides (including the protopanaxadiol and protopanaxatriol
types), ocotillol-type saponins are tetracyclic triterpenoid saponins containing a furan ring linked
with aglycones.

Ocotillol-type saponins were first isolated from Fozrqwieria splendens Eliselm. in 1965 by Warnhoff et al.
They were also found in Panax quinquefolium L, Panax vietnamensis HA et GRUSHV, and Panax japonicus
var, to name a few [8–17]. However, because of the low content of ocotillol-type saponins in natural
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products, there were few studies on ocotillol-type derivatives in previous years [18,19]. Fueled by
the growing use of semisynthetic methods for the preparation of ocotillol-type derivatives, increased
research of ocotillol-type derivatives has been recently observed. In 2016, Liu et al. published a review
that focused on the discovery, semisynthesis, biological activities and metabolism of ocotillol-type
saponins [6]. However, the structure of most derivatives and its structure–activity relationship (SAR)
were not mentioned in the article. Compared with the previous review, this review summarized
the semisynthesis, modification and pharmacological activities of ocotillol-type derivatives. All the
structures of ocotillol-type derivatives and their SARs in antibacterial, anti-inflammatory and tumor
multidrug resistance reversal were summarized. This review provides useful information for the
development of ocotillol-type derivatives and gives a direction for further inspiration to enrich its
structures with good pharmacological activities.

Figure 1. Ginsenosides are found in the highest abundance in Vietnamese ginseng.

2. Semisynthesis of Ocotillol-Type Compounds

Ocotillol-type sapogenins are less abundant in natural sources. Vietnamese ginseng contains higher
amounts of ginseng saponins compared with other Panax genus species. The content of ocotillol-type
saponins in Panax Vietnamese ginsengs is only 5.6%, while in Panax quinquefolius, it is less than 0.01% [20].
Additionally, 1 kg of fresh rhizome low-quality Vietnamese ginseng is about $1000 in 2019. These factors
may have led to the slow development of ocotillol-type ginsenosides in previous years.

In 2005, 20(S)-protopanaxadiol (20(S)-PPD) was used as a raw material to obtain 4 and 5 by a
semisynthetic method [21]. Yang et al. optimized and improved the synthetic process and achieved
the industrial production of 4 and 5 [22].

Ocotillol-type sapogenins have been made using similar synthetic methods. 20(S)-PPD was used
as the raw starting material and reacted with acetic anhydride, and then acetylated 20(S)-PPD was
oxidized by m-CPBA. The molar ratio of the acetylated 20(S)-PPD to m-CPBA at −3 °C is approximately
1:4, 3 h. The ocotillol-type epimers (4, 5) were obtained by the hydrolysis of the oxidation products.
The synthetic route is shown in Figure 2A [23].

After further research by Meng et al., the synthesis mechanism of ocotillol-type epimers was
proposed as follows (Figure 2B). 20(S)-PPD or 20(R)-PPD is oxidized by m-CPBA to generate the
24,25-epoxy intermediates, and then an intramolecular ring-opening loop reaction is carried out
according to Baldwin’s rule, and finally cyclization by a 5-exo-tet method forms a tetrahydrofuran
ring [24–26].

Further research proved that the epimerization of C-24 could also result in remarkable differences
in both the molecular conformation and the crystal packing arrangements. These remarkable differences
may lead to diversity in both polarity and activity of the ocotillol-type epimers. The 24(S)-epimer
(5) had two intramolecular hydrogen bonds, while the 24(R)-epimer (4) had one intramolecular
hydrogen bond (Figure 3A,B) [27,28]. Crystal stacking showed that both the 20(S),24(R)-ocotillol and
20(S),24(S)-ocotillol generated an H-bonded tube, the 24(R)-epimer (4) generated a left-handed chiral
channel, while the 24(S)-epimer (5) extended into the two-dimensional network with right-handed and
left-handed chiral channels (Figure 3C–E) [29]. Additionally, the 24(R)-epimer (4) had weaker molecular
polarity compared with the 24(S)-epimer (5). These differences in hydrogen bonding may contribute
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to the differences in the observed biological activity and molecular polarity of the 24(R)-epimer (4)
compared with the 24(S)-epimer (5).

Figure 2. (A) Semisynthetic route for the preparation of ocotillol-type epimers. (B) Synthetic mechanism
of ocotillol-type epimers. (C) Synthesis of ocotillol-type ginsenosides. Ac = acetyl; Bn = benzyl;
Glc = β-d-glucopyranosyl; Bz = benzoyl. Reagents and conditions: (a) (CH3CO)2O, DMAP, pyridine,
r.t.; (b) m-CPBA, CH2Cl2, r.t.; (c) NaOH, CH3OH, H2O, 65 ◦C; (d) alcohol, mercury cyanide, nitromethane,
90 ◦C, 1 h; (e) alcohol, α-acetobromoglucose, r.t.; (f) KOH/CH3OH, THF, r.t.; (g) Ph3PAuNTf2, CH2Cl2,
r.t.; (h) H2, Pd(OH)2/C, CH3OH, r.t.
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Figure 3. (A) The Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations (ORTEP)
figure of 20(S),24(R)-ocotillol-type saponin (4). (B) The ORTEP figure of 20(S),24(S)-ocotillol-type
saponin (5). Thermal ellipsoids shown at 30% probability. (C) and (D) view of the H-bonded 1D
left-handed chiral channel in 20(S),24(R)-ocotillol-type saponin (4). (E) The 2D net with right-handed
and left-handed chiral channels in 20(S),24(S)-ocotillol-type saponin (5).

Ocotillol-type ginsenosides are rarely found in nature. Less than 20 naturally occurring ocotillol-type
ginsenosides have been characterized and reported [8–17]. The use of chemical methods to synthesize
new ocotillol-type ginsenosides is a promising approach to generate structural diversity. Atopkina et al.
reported the synthesis of ocotillol-type ginsenosides by coupling the acceptor 4 withα-acetobromoglucose
and orthoester donors in the presence of mercury salts (Figure 2C) [30,31]. In 2016, Shen et al. used a
gold-catalyzed glycosylation scheme to synthesize ocotillol-type ginsenosides under neutral conditions
(Figure 2C) [32]. Many ocotillol-type ginsenosides can be synthesized by this method, and further
investigations of ocotillol-type ginsenosides should be pursued.

3. Pharmacological Activities and Chemistry

3.1. Antibacterial Effects

Evidence has shown that ginseng has antibacterial properties, and its extract may be effective for
treating bacterial infections in the future [33]. Compound 5 had strong antibacterial activities against
Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis) with minimum inhibitory concentration
(MIC) values of 8 µg/mL [34]. Further research showed that 5 also had strong synergistic inhibition
against community-associated methicillin-resistant S. aureus (MRSA; strain USA300), as 5 reduced the
MIC of kanamycin (KAN) against MRSA USA300 from 1 µg/mL to 0.125 µg/mL giving a fractional
inhibitory concentration index (FICI) of 0.14.

The furan ring, C-3 and C-12 are possible to explore in terms of chemical diversity as a modification
of the furan ring, C-3, and C-12 significantly changed the antibacterial activity of ocotillol-type
derivatives. Aromatic-substituted ocotillol-type derivatives 6–17 were synthesized by an esterification
reaction, and their in vitro activity against Escherichia coli (E. coli), B. subtilis, S. aureus, Pseudomonas
aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) was determined (Figure 4) [35].
Compounds 6 and 7 exhibited excellent antibacterial activities with MIC values of 1 µg/mL against
S. aureus and B. subtilis, while compounds 9, 10, 12 and 16 exhibited moderate antibacterial activities
against S. aureus. Further research showed that 6 and 7 displayed good antibacterial activities
against MRSA USA300 with MIC values of 4 µg/mL. Additionally, 6 and 7 combined with KAN and
chloramphenicol had strong synergistic inhibition against MRSA USA300 and reduced the MICs
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of KAN against MRSA USA300 from 1 µg/mL to 0.0156 and 0.0625 µg/mL (FICI = 0.078 and 0.020,
respectively).

Figure 4. Synthesis of ocotillol-type derivatives 6–61. Reagents and conditions: (a) anhydrous
CH2Cl2, anhydride or acids or Boc-amino acid, 1-ethyl-3(3-dimethylpropylamine) carbodiimide (EDCI),
4-dimethylaminopyridine (DMAP), r.t.; (b) trifluoroacetic acid (TFA), CH2Cl2, r.t.; (c) anhydrous
pyridine, Ac2O, DMAP, r.t.; (d) anhydrous pyridine, anhydride or acid chloride, DMAP, ref.; (e) CH3OH,
KOH, ref.

Bi et al. synthesized aliphatic ocotillol-type derivatives 18–33 (Figure 4) [36–38]. Compounds
18, 20–23, 25 and 30 showed good antibacterial activities against S. aureus and B. subtilis. Further
screening results showed that 5, 18 and 19 had similar antibacterial activities against MRSA USA300
with MIC values of 8 µg/mL. Most ocotillol-type derivatives with an amino group at C-3 displayed
excellent antibacterial activities, while those with a carboxylic group at C-3 showed moderate activities.
A synergistic effect was observed for compound 19 as it reduced the MIC of KAN against MRSA
USA300 from 1 µg/mL to 0.25 µg/mL with a FICI of 0.28.

A series of ocotillol-type derivatives 34–55 with an amino group was also synthesized (Figure 4) [39,40].
The antibacterial activity results showed that most of the ocotillol-type derivatives with an amino
group had moderate to good inhibitory activities against Gram-positive bacteria but had no effect on
Gram-negative bacteria. Compounds 38, 40 and 51 had good inhibitory activities against MRSA USA
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300 with MICs ≤ 4 µg/mL, while 51 had the same antibacterial activity as KAN. A synergistic effect
was observed for 39 when it was combined with KAN as shown by the significant enhancement of the
MIC from 4 µg/mL to 0.25 µg/mL (FICI < 0.0088) against MRSA USA300.

A series of derivatives 57–61 were synthesized and screened. Among them, compound 58 had the
best antibacterial activity against MRSA USA300 with a MIC of 8µg/mL, and 60 had a moderate inhibitory
effect against both Gram-positive and Gram-negative bacteria (Figure 4). Additionally, 58 combined
with KAN had strong synergistic inhibition against MRSA USA300 with a FICI of 0.008 [34].

The synthetic approaches to prepare compounds 6–56B are only slightly different. Compound 6
was synthesized by the treatment of compound 4, DMAP and phthalic anhydride in dry dichloromethane
over 6 h to obtain 6 with 73% yield at room temperature. 1-ethyl-3(3-dimethylpropylamine) carbodiimide
(EDCI) is an excellent dehydrating agent that can accelerate the esterification reaction. Compound 20
was synthesized by the treatment of 4, DMAP, N-Boc-isonipecotic acid and EDCI in dry dichloromethane
over 3 h to obtain the intermediate with 80% yield at room temperature. The use of EDCI can increase
the speed and yield of the esterification reaction. It is noteworthy that the hydroxyl group at the C-12
does not easily react with anhydride or acid because of steric hindrance and the formation of hydrogens
bond. After the addition of 56A, DMAP and phthalic anhydride to anhydrous pyridine at 120 ◦C for
25 h, the yield of the intermediate is only 50%.

Ocotillol ketone derivatives 62–69 were synthesized by Zhou et al. (Figure 5) [34,36]. Compound 4
(0.21 mmol) in dry dichloromethane (8 mL) was added to pyridinium chlorochromate (0.40 mmol),
and the mixture was stirred at room temperature for 3 h to obtain compound 62 with 66% yield.
While compound 64 was synthesized by combining 4 (0.33 mmol) and pyridinium chlorochromate
(1.00 mmol) in dry dichloromethane (8 mL), the reaction takes about 8 h to obtain intermediate with
76% yield at room temperature. Compound 65 had excellent antibacterial activities against S. aureus
with a MIC of 16 µg/mL, while compounds 67 and 69 had moderate inhibitory effects against S. aureus.

Figure 5. Synthesis of ocotillol-type derivatives 62–69. Reagents and conditions: (a) anhydrous
pyridine, Ac2O, DMAP, r.t.; (b) anhydrous CH2Cl2, pyridinium chlorochromate (PCC), r.t.; (c) CH3OH,
KOH, ref.; (d) anhydrous pyridine, NH2OH·HCl, 80 ◦C.

Ocotillol-type derivatives with a nitric oxide (NO) donor 70–91 were synthesized, their NO release
ability and the antibacterial abilities of some derivatives were studied (Figure 6) [4,41]. Compounds
70–91 showed similar NO-releasing capability at 100 µM. Compounds 71, 75, 77, 83, 84, 86, and 91
showed better NO-releasing capability at 500 µM as after 30 min of reaction, they all released more



Molecules 2020, 25, 5562 7 of 23

than 0.2 M NO. Compounds 83 and 86 demonstrated good activities against Gram-positive bacteria
(MIC = 16 µg/mL against B. subtilis 168 and S. aureus). Compound 86 displayed broad-spectrum
activity against Gram-positive and Gram-negative bacteria. Compound 86 used with chloramphenicol
also showed good synergistic effects with a FICI = 0.03 against MRSA USA300.

Figure 6. Synthesis of ocotillol-type derivatives 70–91. Reagents and conditions: (a) NaNO2, HOAc,
r.t., 1 h; (b) SOCl2, pyridine, CH2Cl2, r.t., 8 h; (c) HOR1OH, K2CO3, KI, CH3CN, r.t., 3 h; (d) 1 M NaOH,
ethyl chlorocarbonate, −5 °C; (e) Acetic anhydride, nitrosonitric acid, CH2CI2, 0 °C; (f) cholamine, ethyl
alcohol, r.t.; (g) K2CO3, 1,2-dibromoethane, THF, r.t.; (h) AgNO3, CH3CN, 70 °C, protection from light;
(i) succinic anhydride, DMAP, CHCl3, 42 ◦C, 6 h; (j) A3-6, A10, A12, DMAP, EDCI, 25 ◦C, CH2Cl2, 6 h;
(k) Bromoacetic acid, 5-bromopentanoic acid or 6-bromohexanoic acid, Et3N, DMAP, EDCI, dry CHCl3,
r.t.; (l) AgNO3, CH3CN, 70 ◦C, protection from light; (m) CrO3, CH3COOH, H2O, r.t., 3 h; (n) NaOH,
H2O, CH3OH, reflux, 6 h.
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A series of ocotillol-type lactone derivatives 92–108 was designed by Zhang et al. (Figure 7) [42].
Compounds 96–98, 100 and 102 demonstrated good activities against S. aureus and B. subtilis with MIC
values of 1 to 8 µg/mL. Compounds 96, 100, 101, 102, 105 and 107 showed good activities against MRSA
USA 300. Compounds 96 and 102 also exhibited bactericidal activities with minimum bactericidal
concentration (MBC) values of 4 and 8 µg/mL. Additionally, 102 reduced the MICs of KAN and
chloramphenicol against MRSA USA300 from 1 and 4 µg/mL to 0.125 and 1 µg/mL (FICI = 0.141 and
0.375), respectively. Zhang et al. also analyzed the antibacterial effect of the ocotillol-type lactone
derivative 102 by scanning electron microscopy, a cytoplasmic β-galactosidase leakage assay and
UV-visible analysis [42]. The results showed that 102 might exert its antibacterial effect by damaging
bacterial cell membranes and disrupting the function of DNA. The precise mechanism of its DNA
antibacterial action is currently under investigation.

Figure 7. Synthesis of ocotillol-type derivatives 92–108. Reagents and conditions: (a) Jones reagent,
acetone, r.t.; (b) (1) KOH, MeOH, H2O, 60 ◦C; (2) 50% H2SO4; (c) 1) corresponding acid, anhydride or
Boc-amino acid, DMAP, EDCI, CH2Cl2, r.t.; (2) CH2Cl2, TFA, r.t.; (d) excess of PCC, CH2Cl2, r.t.; (e) 1 M
of PCC, CH2Cl2, r.t.; (f) NaOH, THF, R1NH2, r.t.

At present, the antibacterial target of ocotillol-type derivatives is still not clear. Bi et al. synthesized
the ocotillol-type probe 109A, which had a MIC of 8 µg/mL against B. subtilis. An epifluorescent
microscopy study showed that 109A was mainly distributed on the bacterial cell membrane rather
than within the nucleoid (Figure 8) [4]. On this basis, Bi et al. synthesized the ocotillol-type probe
109B, which had a MIC of 1 µg/mL against MRSA 18–19 (Hospital-acquired methicillin-resistant
Staphylococcus aureus, collected in Chengdu, China from 2018) [43]. The antibacterial mechanism
of 109B against MRSA 18–19 is currently underway. The number of ocotillol-type probes is small,
which limits the discovery of their antibacterial target. In 2017, 28-hydroxy protopanaxadiol was
synthesized as a novel probe template [44]. The synthesis of new ocotillol-type probes employing
28-hydroxy protopanaxadiol may provide an effective means to enrich the structure of ocotillol-type
probes. Additionally, functional probes that target the cell membrane are needed. Further research of
ocotillol-type probes will promote the discovery of the target protein and provide a reference for the
development of more effective drugs.
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Figure 8. Structure of the ocotillol-type derivative 109A-109D and the epifluorescent microscopy
images of B. subtilis strain BS125 (top), strain 168 with compound 109A treatment (middle), and strain
BS3 (bottom). Scale bar: 4 µm. Reagents and conditions: (a) DMAP, EDCI, N-Boc-N’-Fmoc-l-Lysine,
CH2Cl2, r.t.; (b) TFA, CH2Cl2, r.t.

Based on the present research of the ocotillol-type derivatives, a preliminary SAR of their
antibacterial activities is summarized in Figure 9. The 24(S)-configuration is preferred, while substitution
at the 3-OH changes the conformation to render the 24(R)-compound bioactive. A hydrogen donor at
C-3 and C-12 are preferred to maintain the activity against Gram-positive bacteria. Decreased activity
was observed when the functional groups at C-3 and C-12 were a ketone. When R2 is an ester, mild
activity against Gram-negative bacteria was observed.

Figure 9. Structure–activity relationship (SAR) of the antibacterial activity of ocotillol-type derivatives.
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3.2. Anti-Inflammatory Activities of Ocotillol-Type Derivatives

Lipopolysaccharide-stimulated RAW 264.7 cells can release the inflammatory mediator NO,
prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and anti-inflammatory
mediator interleukin-10 (IL-10). The anti-inflammatory activity of 20(S)-ocotillol (4, 5) and 20(R)-ocotillol
(150, 151) was evaluated in RAW 264.7 cells. The results showed that both 20(S)-ocotillol and
20(R)-ocotillol inhibited the release of the inflammatory cytokines NO and interleukin-6 (IL-6).
However, the 20(S)-epimers mainly inhibited the release of PGE2 and primarily increased the release
of the anti-inflammatory mediator IL-10. The 20(R)-epimers inhibited the release of the inflammatory
cytokine TNF-α [45,46]. Oral ocotillol-type ginsenosides such as 109C (Figure 8) are metabolized
to ocotillol-type sapogenin in the gut by gut microbiota [47]. Ocotillol-type sapogenin showed the
highest inhibitory effect. In vitro studies demonstrated that 20(R),24(R)-ocotillol might ameliorate
colitis by inhibiting the expression of the proinflammatory cytokines TNF-α, interleukin-1β, IL-6,
interleukin-17 (IL-17), interleukin-23 (IL-23) and interferon-γ (IFN-γ). Additionally, 20(R),24(R)-ocotillol
strongly ameliorated Trinitro-benzene-sulfonic acid-induced iNOS and cyclooxygenase-2 (COX-2)
expression, as well as activation of their transcription factors NF-κB and MAPKs in mice [47,48]. In 2019,
Wang et al. found that 109D (Figure 8) could attenuate lipopolysaccharide (LPS)-induced acute lung
injury. A further mechanistic study indicated that 109D reversed the LPS-induced increases of mRNA
expression and protein levels of macrophage inflammatory protein-2 (MIP-2) and intercellular adhesion
molecule-1 (ICAM-1) [49]. Compound 109D also possessed neuroprotective activity by inhibiting
the TLR4-mediated transforming growth factor-β-activated kinase-1(TAK1)/ nuclear factor kappa-B
kinase 2 (IKK) /NF-κB, MAPKs, and Akt signaling pathways to exert anti-neuroinflammatory effects on
LPS-activated microglia. In vivo experiments demonstrated that 109D significantly inhibited microglial
activation and proinflammatory factor expression in the mouse cortex and hippocampus after the LPS
injection [50].

Ocotillol-type derivatives with NO-inhibitory activity were further studied (Figure 10) [51–54].
Derivatives 6, 46, 110, 112, 113, 121, 132 and 136 showed significant NO-inhibitory activities, while
115, 116 and 119 had no obvious NO-inhibitory activities. Derivatives 46 and 136 exhibited the most
potent NO-inhibitory activities and were even comparable to a steroid drug. Additionally, 46 and 136
significantly decreased LPS-induced TNF-α and IL-6 synthesis and iNOS and COX-2 expression via
the NF-κB pathway.

Wang et al. synthesized a series of ocotillol-type derivatives (Figure 11) [55–57]. Compound 144
had a protective effect on the lung function of experimental model mice with hormone-resistant asthma
caused by non-typeable Hemophilus influenzae and improved their hormone resistance. Compounds 58
and 145–149 had inhibitory effects on the IL-6 expression and promoting effects on the IL-10 expression in
the serum of rats induced by chronic obstructive pulmonary disease (COPD) caused by cigarette smoking.

Based on the present research of ocotillol-type derivatives, a preliminary SAR of their
anti-inflammatory effects is summarized, as shown in Figure 12. The 24(R)-configuration is preferred for
the anti-inflammatory activity. An oxime at C-3 is preferred for good inhibitory activity of LPS-induced
NO synthesis. Boc-amino groups seem to be preferred to inhibit the activity of LPS-induced NO
synthesis than amino groups at C-3. A hydrogen donor at C-12 is preferred to inhibit LPS-induced NO
synthesis. A fatty acid or amino acid group at C-3 has inhibitory effects on the expression of IL-6 and
promotes the expression of IL-10 in the serum of a rat model of COPD induced by cigarettes.
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Figure 10. Synthesis of ocotillol-type derivatives 110–143. Reagents and conditions: (a) PCC, CH2Cl2,
r.t.; (b) Hydroxylamine hydrochloride, pyridine, 80 ◦C; (c) NaCNBH3, TiCl3, AcONH4, MeOH, r.t.;
(d) n-Hexanoic acid, EDCI, DMAP, r.t.; (e) NaBH4, i-PrOH, r.t.; (f) NaBH4, MeOH, r.t.; (g) Ac2O,
CH2Cl2, r.t.; (h) trifluoromethanesulfonic acid tert-butyldimethylsilyl ester (TBS-OTF), lutidine, r.t.;
(i) KOH, MeOH, THF, r.t.; (j) Boc-amino acid, EDCI, DMAP, CH2Cl2, r.t.; (k) TFA, CH2Cl2, r.t.;
(l) O-benzotriazole-N,N,N’,N’-tetraMethyl-uroniuM-hexafluorophosphate (HBTU), NEt3, DMF, r.t.;
(m) TFA, CH2Cl2, r.t.
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Figure 11. Synthesis of ocotillol-type derivatives 144–149. Reagents and conditions: (a) Boc-amino
acid, DMAP, EDCI, CH2Cl2, r.t.; (b) TFA, CH2Cl2, r.t.; (c) aliphatic acid, DCC, EDCI, CH2Cl2, r.t.

Figure 12. SAR of ocotillol-type derivatives with anti-inflammatory activity.

3.3. Anticancer Effects of Ocotillol-Type Derivatives

The antitumor effect of ocotillol-type derivatives is mainly concentrated in the ocotillol monomer or in
substances directly extracted from plants; thus, there are few reports on its structural modification [58,59].
172 (Figure 13A) showed effective antitumor-promoting activity on a mouse hepatic tumor and
mouse skin [60,61]. A series of ocotillol-type derivatives had been studied for their cytotoxic activity
against HeLa, A549 and MCF-7 cancer cells. Pharmacological experiments on HeLa cells showed
that ocotillol-type derivatives had cytotoxicity. Among them, compounds 5, 152 and 173 (Figure 13A)
possessed good activities with IC50 values of 11.53 ± 0.49 µM, 4.58 ± 0.66 µM and 19.84 ± 1.10 µM
toward HeLa cells, respectively [62]. Compounds 162, 163, 167 and 166 showed reduced cell viabilities
toward HeLa cells at 48.59%, 47.39%, 52.82% and 59.02% at 100 µg/mL, respectively [63].

Pharmacological results indicated that ocotillol-type derivatives had anticancer potential, and the
configurations at C-20 or C-24 and the number of glycosyl units at C-3 could have an important
influence on the cytotoxicity in vitro. There are only a small number of studies on ocotillol-type
derivatives with anticancer activity, and thus, there is an opportunity to increase the number of
ocotillol-type derivatives with anticancer activity.
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3.4. Reversal of Multidrug Resistance in Cancer by Ocotillol-Type Derivatives

Ocotillol enhanced doxorubicin-induced cell death in p53 wild-type cancer cells [64]. Additionally,
doxorubicin has a strong anticancer effect, but dose-dependent cardiotoxicity limits its clinical
applications. Ocotillol-type ginseng reduced plasma creatine kinase and creatine kinase-MB isoenzyme
levels and helped to reduce cardiotoxicity [65–68].

Wang et al. proved that ocotillol-type ginsenosides were substrates of P-glycoprotein (P-gp), and
the pharmacological effects of ocotillol were the result of decreased efflux of digoxin across Caco-2 cell
monolayers. In vivo experiments on mice showed that the inhibition of the 24(R)-epimer on P-gp was
stronger than its counterpart [69]. This suggested that ocotillol-type ginseng may be a new type of
drug resistance reversal agent.

Pharmacological experiments showed that 110 significantly reversed the resistance of ABCB1-
overexpressing SW620/Ad300 and HEK/ABCB1 cells to paclitaxel and vincristine (Figure 13B). A further
mechanistic study showed that 110 reversed ABCB1-mediated MDR by competitively inhibiting the drug
efflux function of ABCB1 [70]. On this basis, Ren et al. synthesized a series of derivatives (Figure 13B).
Compounds 175–177, 185, 192, 194 and 203 have demonstrated a promising capability to reverse drug
resistance, with compound 176 showing slight superiority [71,72]. Importantly, a xenograft model of
KBV200 cells in nude mice showed that oral 176 significantly enhanced the inhibitory effect of paclitaxel
on tumor growth. The inhibition of paclitaxel in vivo is 17.9%, while the inhibition of paclitaxel with 176
is 53.75%. In vitro, mechanistic studies suggested that 176 could inhibit P-gp-mediated rhodamine123
efflux function via stimulation of P-gp-ATPase activity (Figure 14A). This indicated that ocotillol-type
amide derivatives were substrates of P-gp, and it also showed that ocotillol-type amide derivatives
were excellent drug resistance reversal agents.

Ocotillol ester derivatives with Boc-amino groups also have drug resistance reversal activity
(Figure 13B) [73]. Compared with the positive drug verapamil, compounds 206–212 showed good
paclitaxel enhancing effect on KBv200 cells at a concentration of 10 µM. Generally speaking, compare
with amide derivatives, ester derivatives are prone to hydrolysis in vivo; therefore, ester derivatives may
not have drug resistance reversal activity in vivo. Compared with compounds 174–180 and 206–212,
amide bond and ester bond have no effect on its activity in vitro, and almost all of these compounds
with Boc-amino showed good drug resistance reversal activity, suggested that ocotillol-type derivatives
containing Boc-amino group should be further enriched. Moreover, Bi et al. synthesized ring-A fused
aminothiazole derivatives of ocotillol, compounds 215 and 216 possessed a remarkable multidrug
resistance reversal activity higher than verapamil (Figure 13B). SAR of ring-A fused aminothiazole
derivatives needs further research [74].

Based on the present research of ocotillol-type derivatives, a preliminary SAR of their multidrug
resistance reversal ability in cancer cells is summarized in Figure 14B. The 24(R)-configuration is
preferred for the reversal of multidrug resistance in cancer. A linear alkyl amide containing a terminal
Boc-protected amine at C-3 shows the best drug resistance reversal activity. Aromatic or heteroaromatic
ring amide is better than linear alkyl amide or linear alkyl amide containing a terminal amine.
Deprotection of Boc-protected amines obviously reduced the MDR reversal ability. A length of six
carbon atoms in the alkyl chain of the linear alkyl amide is preferred, whether the N-terminus is
Boc-protected or not. The ester derivatives and amide derivatives at the C-3 position may show similar
activity trends in vitro.
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Figure 13. (A) Structures of ocotillol-type derivatives 150–173. (B) Synthesis of ocotillol-type derivatives
174–216. Ac = acetyl; Glc = β-d-glucopyranosyl; Xyl = β-d-xylopyranosyl; reagents and conditions:
(a) ROH, HBTU, NEt3, DMF, r.t.; (b) TFA, CH2Cl2, r.t.; (c) DMAP, EDCI, CH2Cl2, r.t.; (d) anhydrous
CH2Cl2, PCC, r.t.; (e) pyridinium tribromide, CH2Cl2, r.t.; (f) thiourea, CH3OH, ref.; (g) Boc-phenyl
alanine, DMAP, EDCI, CH2Cl2, r.t.
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Figure 14. (A) Mechanism proposed for the reversal of multidrug resistance in cancer by ocotillol-type
derivatives. (B) SAR of ocotillol-type derivatives with drug resistance reversal properties in cancer.

3.5. Nervous System Effects of Ocotillol-Type Derivatives

Ginseng is a traditional herb and has been widely used for the treatment of neurological
disorders [75]. In 2013, the protective effect of 109D on a rat model of Parkinson’s disease was studied.
This research showed that 109D had anti-Parkinson activity by inhibiting free radical formation
and stimulating endogenous antioxidant release. Pretreatment based on oral administration of
109D significantly improved the motor balance, coordination and apomorphine-induced rotations in
6-OHDA-lesioned rats [76,77].

Compound 109D had inhibitory effects on the cognitive function of Tg-APPswe/PS1dE9 mice
by inhibiting the expression of amyloid β-protein and amyloid-β-peptide (1–40) in the cortex and
hippocampus, restoring the activities of superoxide dismutase and glutathione peroxidase, and
decreasing the production of malondialdehyde in the cortex [78]. Compound 109D showed a
protective effect against mild cognitive impairment (MCI-like pathological changes) by reducing
the accumulation of advanced glycation end products and expression of the receptor of advanced
glycation end-products [79]. Compound 109D attenuated memory disorders in the Morris water maze
by promoting the transport of amyloid beta A4 and amyloid precursor protein from the cytoplasm to
the plasma membrane and reducing the abnormally high expression of β-site APP cleaving enzyme 1
in the hippocampus and cortex of SAMP8 mice [80].

Compound 109D may also be a candidate for stroke treatment. Compound 109D inhibited the
over-activation of µ-calpain and reduced the calcium calmodulin kinase II-α, reduced the degradation
of sarcoplasmic/endoplasmic reticulum ATPase-2, and alleviated endoplasmic reticulum stress in
transient middle cerebral artery occlusion rats [81]. Additionally, 109D also accelerated the oxygen- and
glucose deprivation-induced promotion of microglial myelin debris phagocytosis and reinforced the
RhoA-ROCK signaling pathway through the regulation of complement receptor 3 [81,82]. Neutrophils
and macrophages are promising targets for the treatment of cerebral ischemia. Compound 109D
inhibited the induction of neutrophils and macrophages to N1 and M1 phenotypes and promoted the
polarization of neutrophils and macrophages to N2 and M2 phenotypes [83].
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Quyen et al. evaluated the antidepressant-like activity of 109C and 218 by a tail suspension test
and a forced swimming test in mice (Figure 15B). The results showed that the stress model caused an
increase of MDA and a decrease of glutathione levels in the mouse brain. This proved that 109C and
218 had antidepressant effects [84].

3.6. Effects of Ocotillol-Type Derivatives on the Cardiovascular System

Ocotillol-type derivatives protect from myocardial ischemic injury by reducing the area of the
myocardial ischemia and the levels of necrosis and lactate dehydrogenase in the serum to enhance the
anti-free-radical actions of heart tissues [85–87]. Bi et al. found that when 4 and its epimer 5 were tested
in cultured myocardiocytes with anoxia/re-oxygen injury, only 4 had protective effects [88]. In 2017,
Yang et al. synthesized an ocotillol-type small-molecule fluorescent probe 217B with anti-myocardial
ischemia-reperfusion injury activity (Figure 15A). This tool may help to understand the mechanism of
how ocotillol-type derivatives protect against myocardial ischemia [89].

Oral administration of compound 4 ameliorated aconitine-induced arrhythmias [90]. Compound 4
reduced the incidence of arrhythmia in mice and shortened the duration time of ventricular tachycardia.
Further research proved that oral administration of compound 4 prolonged action potential duration,
reduced action potential amplitude in ventricular myocytes, reduced L-type calcium peak current
in a dose-dependent manner, and inhibited delayed rectifier K+ channels, but not inward rectifier
K+ channels.

3.7. Other Pharmacological Activities of Ocotillol-Type Derivatives

Ocotillol-type ginsenoside 219 (Figure 15B), discovered from the stems and leaves of Panax
quinquefolium L., increased the production of superoxide dismutase and glutathione, decreased
malondialdehyde production, and increased the expression level of nuclear correlation factor 2 and
heme oxygenase-1 in A549 cells. These results showed that compound 219 significantly inhibited
hydrogen peroxide-induced oxidative stress and had a protective effect on the oxidative damage of
lung epithelial cells [91].

Ocotillol-type ginsenosides have anti-melanogenic activity as 220 showed a good melanogenesis
effect with an IC50 value of 37 µM, but the mechanism of its anti-melanogenic effect is still not clear
(Figure 15B) [92]. Additionally, ocotillol may also have a protective effect against gastric ulcers.
Ocotillol increased the expression of NO, superoxide dismutase, epidermal growth factor and the
epidermal growth factor receptor, and decrease the expression of endotelin-1 and nitric oxide synthase,
which is a similar effect as omeprazole [93]. In addition, ocotillol also has antiviral activity, and it could
enhance the neuronal activity of mice [24,94,95].
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Figure 15. (A) Synthesis of ocotillol-type probe 217B. (B) Structures of 218–220. Glc =β-d-glucopyranosyl;
Xyl = β-d-xylopyranosyl; Rha = α-l-rhamnopyranosyl. Reagents and conditions: (a) 2-[2-(Fmoc-amino)
ethoxy]ethoxy acetic acid, EDCI, DMAP, CH2Cl2, r.t.; (b) DEA, CH2Cl2, r.t.; (c) FITC, Et3N, DMF, r.t.

4. Conclusions and Future Perspectives

In this review, the main chemical modifications of ocotillol-type derivatives and the SARs for their
antibacterial, anti-inflammatory and reversal of multidrug resistance in cancer were summarized. In the
past few years, ocotillol has attracted considerable interest in the medicinal chemistry society owing
to its promising multiple pharmacological activities, especially antibacterial activity. Nevertheless,
ocotillol-type derivatives exhibit limited water solubility, low systemic exposure, slow clearance
and imprecise mechanism of action. Toxicity has greatly hindered its clinical applications [96–102].
To advance ocotillol-type derivatives into clinical therapies, there remain to be several issues and new
directions for future research in the area.

(1) Rational design of new ocotillol-type derivatives with increased water solubility, good ADME.
For example, through polyethylene glycol modification or preparation techniques such as
micronization, solid dispersion, self-microemulsion, inclusion techniques, etc., to improve water
solubility. Formulation design of sustained- or controlled-release system should be used to
maintain an effective blood concentration and decrease side effects.

(2) Ocotillol, an active ingredient in ginseng, has already been proved to have multiple pharmacological
activities; however, its precise molecular targets that responsible for the potent biological activity
are currently not well understood. Therefore, it is important to further design and synthesize a
new ocotillol-type probe to explore possible mechanisms and identify the molecular target.
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(3) Currently, there is still much chemical space to be explored. The main chemical modifications
performed to date have focused on the hydroxyl groups on ring A, while the skeleton structures
and ring C modifications have been limited.

(4) As many of the current studies are limited to in vitro studies, whether ocotillol is effective in vivo
must be validated in the future.

(5) Combination drugs have various significant advantages, including production additive or
synergistic effects, reducing side effects, treatment failure rates and slow down the development
of drug resistance [103]. The development of ocotillol-based combination drugs would be a
useful strategy. For example, the combination of ocotillol with other antibacterial drugs to reduce
treatment failure rates.
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