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Abstract: The purpose of this paper is to record and analyze induced gamma-band activity (GBA)
(30–60 Hz) in cerebral motor areas during imaginary movement and to compare it quantitatively with
activity recorded in the same areas during actual movement using a simplified electroencephalogram
(EEG). Brain activity (basal activity, imaginary motor task and actual motor task) is obtained from
12 healthy volunteer subjects using an EEG (Cz channel). GBA is analyzed using the mean power
spectral density (PSD) value. Event-related synchronization (ERS) is calculated from the PSD values
of the basal GBA (GBAb), the GBA of the imaginary movement (GBAim) and the GBA of the actual
movement (GBAac). The mean GBAim and GBAac values for the right and left hands are significantly
higher than the GBAb value (p = 0.007). No significant difference is detected between mean GBA
values during the imaginary and actual movement (p = 0.242). The mean ERS values for the imaginary
movement (ERSimM (%) = 23.52) and for the actual movement (ERSacM = 27.47) do not present
any significant difference (p = 0.117). We demonstrated that ERS could provide a useful way of
indirectly checking the function of neuronal motor circuits activated by voluntary movement, both
imaginary and actual. These results, as a proof of concept, could be applied to physiology studies,
brain–computer interfaces, and diagnosis of cognitive or motor pathologies.

Keywords: electroencephalography; gamma-band activity; motor areas; imaginary motor tasks;
actual motor tasks; event-related synchronization; power spectral density

1. Introduction

The synchronization of neuronal firing in the 20–200 Hz range is known as gamma-band activity
(GBA) and can be divided into two bands, low (30–60 Hz) and high (60–200 Hz) [1,2]. GBA is generated
in most brain structures, at a retinal level, and in the olfactory system. The principal neurotransmitters
involved in its generation are glutamate (excitatory), acetylcholine and gamma-aminobutyric acid
(inhibitory); GBA is linked to cerebral functions such as perception, attention, memory, consciousness,
synaptic plasticity and motor control [3].

Neurophysiological studies have documented that in subjects at rest or performing motor tasks
GBA in the 30–90 Hz frequency range appears in extensive areas of the brain [4]. Furthermore,
movement-related GBA has been proposed as the integrator of sensory and motor processes during
movement preparation and control [5].

GBA in voluntary movement (actual or imaginary) can be evaluated using intracranial electrodes [6]
or electrocorticography (ECoG) [7–11]. These invasive methods, however, are largely inapplicable in
standard clinical practice.
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Several papers describe GBA recorded using non-invasive, low-cost and easily accessible methods
such as conventional surface electroencephalograms (EEGs). The evaluation of activity in the gamma
band using EEG records for actual, but not imaginary movements, was investigated in [12–17].

Motor imagery may be defined as a dynamic state during which representations of a given motor
act are internally rehearsed in working memory without any motor output [18]. In this mental task
subjects are instructed to imagine themselves moving without performing that movement so without
muscle activation. The available evidence indicates that actual and imaginary movements share a
substantial overlap of common functional circuits [19].

Previous papers describe the analysis of the GBA obtained during an imaginary movement from
EEG recordings employing invasive methods (ECoG) [11,20].

Advances in obtaining GBA non-invasively during imaginary movement using conventional EEGs
are presented in Table 1. These papers analyze various frequency intervals, use differing imaginary
movement paradigms and employ a high number of EEG channels.

Table 1. Studies analyzing GBA non-invasively during imaginary movement using conventional EEGs.

Authors Number of
Subjects Channels Frequency

Range Imagined Movement Main Conclusions

Khan and
Sepulveda, (2010)

[21]
5 64 32–48 Hz

Wrist: extension,
flexion, pronation, and

supination.

An average recognition rate of
approximately 89% was achieved
in four movement types between

the left and right wrists.

Kiroi et al., (2012)
[22] 8 14 31–45 Hz

55–70 Hz

Flexion or oscillatory
movement of the arm
at the elbow, clenching

of the hand.

Increase in activation levels,
particularly in the central areas of

the cortex.

Smith et al., (2014)
[23] 10 54 70–150 Hz Finger movement

imagery.
Significant power increase was

observed during motor imagery.

Korik et al., (2018)
[24] 12 41 28–40 Hz Imagined 3D limb

movement.

The power spectral density
contributes to the encoding of
movement-related information

during arm movement.

Lazurenko et al.,
(2018) [25] 24 17 30–48 Hz and

52–70 Hz

Imaginary hand, leg,
and tongue
movements.

Sensorimotor and associative
areas of both hemispheres were
actively involved in imaginary

and actual movements.

Veslin et al., (2019)
[26] 12 14 35–45 Right and left elbow

movements.

Similar activity was obtained in
the gamma band during the

preparation and execution of both
actual and imaginary movements.

Acquiring the EEG signal in the gamma band is problematic. The EEG signal is generally
contaminated by interferences from physiological signals (electrocardiogram (ECG), electromyogram
(EMG), electrooculogram (EOG), etc.) and non-physiological artifacts (power line noise, electronic
devices, etc.) [27]. Moreover, due to the 1/fn nature of the EEG spectra, the decrease in power with the
increase in frequency [28] makes it more difficult to obtain responses in the gamma band than in other
lower EEG frequencies.

Multichannel EEG systems make it possible to obtain spatial resolutions and apply signal
separation algorithms, such as Independent Component Analysis (ICA) [29], so as to obtain responses
in the gamma band. However, the setup process is tedious (attaching the electrodes, adjusting the
impedance) and participants find the system uncomfortable. In recent years, research has been
conducted into use of monochannel EEG systems in brain–computer interfaces (BCI´s) [30] (analyzed
band: 0.5–10 Hz), [31] (steady-state visual evoked potentials), sleep studies [32,33], etc. However,
to our knowledge, a single-channel system for detecting activity in the gamma band has not been
implemented in imaginary movements.

The authors of this paper hypothesize that it is possible to analyze EEG activity in the gamma
band during both actual and imaginary movements using a simple and quantifiable method easily
applicable in daily practice.
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Possible applications of a system with these characteristics may be the implementation of BCIs or
in the study of diseases that affect cognitive or motor functions.

The advantage of a BCI can be focused on the implementation of a communication system [34],
real-time control of peripherals as robots [35–37] or emotion recognition, among other. Many of the
current BCI based on the detection of EEG imaginary movements (for a review [38]) analyze the
alpha/beta EEG band, usually using several channels. The success of motor imagery BCI in translational
applications is established in three learning pillars: at the machine, subject, and application level [39].
Some BCI´s multichannel works that analyze the gamma band can be referenced: [40] (19 EEG
channels) [41] (21 channels), or [42] (128 channels).

Cognitive [43] and motor [44] functions affect the activity of the gamma band; consequently, a
single-channel EEG system may be interesting for clinical use in the study of Alzheimer’s disease [45,46],
depression [47], schizophrenia [48], etc. and also in some cortical diseases (traumatic vascular pathology
and degenerative lesions).

The primary purpose of this paper is to obtain and analyze gamma activity in the 30–60 Hz
frequency range caused by motor activity using a simplified EEG recording taken while performing
an imaginary and actual motor task. The secondary purpose is to compare that activity during the
imaginary motor task with the GBA obtained during the actual motor task.

2. Material and Methods

2.1. Participants and Experiment Description

All subjects were over the age of 18, have been informed about the details of the investigation and
signed the informed consent according to a protocol approved by the local ethics committees of the
University of Alcalá (Spain) and compliant with the tenets of the Declaration of Helsinki.

The study cohort for this experiment comprised 12 subjects (3 females and 9 males; mean age =

28.7; range = 21–47). All sample subjects were healthy and free of medical, neurological (including
craniocerebral trauma and epilepsy) and psychiatric disease. None of the subjects were taking medicinal
products and none had a record of alcohol or drug abuse or dependency.

According to the Edinburgh Handedness Inventory [49] were identified 9 right-handed subjects,
2 left-handed subjects, and 1 ambidextrous subject.

Details of the methodology employed in the experiment and in acquisition and analysis of the
data in the EEG recordings have been published previously [17]. In brief, each subject is seated facing
a computer monitor. They are positioned at a distance of 0.8 m and rest their forearms on a table with
the palms of their hands facing downward. The experiment comprises 3 steps:

1. Basal recording. Participants keep their eyes fixed on the center of the screen (to prevent eye
movement; they also try not to blink) and refrain from performing any motor or specific mental
activity. A total of 18 min of basal activity are recorded, divided into 3 parts (each 6 min long) with
a rest of approximately 1 min between each. This step is the first performed by the participants.

2. Imaginary motor task. An on-screen cue triggers the imaginary motor task, thereby obtaining in the
EEG trace the motor GBA induced by that imaginary movement. The imaginary task consists of
simulating, without muscle activation, rapid extension of the wrist followed by brief relaxation.
This phase lasts approximately 40 min.

3. Actual motor task. The subjects perform an actual motor task with the same characteristics and
duration of imaginary motor task.

During the motor activities, the physical conditions for the participants were the same as in the
basal stage, the only difference being that they performed the actual or imaginary activities. Each trial
lasted 2 s and started (at t = 0 s) with display (for 150 ms) of the cue in the center of the computer
monitor. This was followed by a white screen that remained in place until the start of the next trial
(t = 2 s). The motor experiments comprised 5 runs per hand alternated between right and left to
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prevent mental and muscle fatigue and each run comprised 100 trials. For both the imaginary motor
task and the actual motor task, the subjects practiced the exercise in a training session held before the
experiment was conducted.

2.2. Data Acquisition

The EEG signals were acquired with a 32-channel Micromed EEG (Handy EEG SD32) and the
SystemPlus Evolution (Micromed SpA, Treviso, Italy) software, using a 2048-Hz sampling frequency,
band-pass filters from 0.15–537.53 Hz and a 50-Hz notch filter. Electrode impedance was below 10 kΩ.
The experiment was performed in a conventional laboratory with lights turned off and rechargeable
batteries were used in the acquisition equipment to minimize potential alternating current induction at
50 Hz in the EEG power cables [50].

The EEG (active electrodes (C3, C4, Cz), reference (FPz), earth (Pz)) was recorded in continuous
mode using Ag/AgCl electrodes. The electrooculogram was recorded to monitor eye movements.
The electromyogram was obtained using two surface electrodes (active and reference) above the
extensor carpi radialis longus muscle to confirm the movement in the actual motor task and the lack of
movement in the imaginary motor task.

2.3. Data Analysis

The electrophysiological data were analyzed using MATLAB R2017b (The MathWorks Inc. Natick,
MA, USA) and FieldTrip [51].

For analysis of both the basal EEG and during the motor tasks, 2-s segments corresponding to
the trials established in the experiment were used. Band-pass (1 Hz, 100 Hz) and notch filters (band
eliminated: 49–51 Hz) were applied. FieldTrip functions were used to complete signal processing,
obtaining an artifact-free signal that was averaged for each subject and each hand. Finally, all the
subjects were averaged to produce a grand average.

The GBA was quantified as spectral power values for the frequency band (low gamma band:
30–60 Hz, according to the taxonomy defined in [1]) using a multitaper Fast-Fourier transform (FieldTrip
ft_freqanalysis function).

To analyze the GBA, only the Cz channel signals were used, as centrally channels were the least
contaminated by movement and EMG artifacts [52]. Moreover, analyzing one of the central channels
ensures that the implemented system does not depend on a subject’s hand dominance since it is known
that the answer during a motor imagery task differs according to handedness [53,54].

2.4. Calculation of the GBA

The results for the GBA were expressed as the mean power spectral density (PSD) value in µV2.
Based on the mean PSD values, the following parameters were defined:

- GBA during the basal experiment: GBAb.
- GBA during actual motor tasks: GBAac.
- GBA during imaginary motor tasks: GBAim.

The corresponding suffix was added to indicate right hand, left hand or mean of both (-R, -L,
-M). For example: GBAacR indicates the GBA obtained from the actual movement of the right hand;
GBAimL indicates the GBA obtained from the imaginary movement of the left hand; and GBAimM
indicates the mean of the GBA obtained from the imaginary movement of the right and left hands.

2.5. Calculation of ERS for the GBA

Quantification of ERS in imaginary or actual movements was defined as a power increase relative
to the basal state (GBAb). For this purpose, the GBA values of the motor tasks were normalized relative
to the basal activity and expressed as a percentage [55]. For example, Equations (1) and (2) represent
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the ERS values for the means of both hands for the actual movement (ERSacM) and the imaginary
movement (ERSimM).

ERSacM(%) =
GBAacM−GBAb

GBAb
× 100 (1)

ERSimM(%) =
GBAimM − GBAb

GBAb
× 100 (2)

Positive ERS values indicate a power increase in the activity compared to the basal situation. Both
the GBA and the ERS were calculated for each trial and averaged for each hand. The corresponding
suffix was added to indicate right hand, left hand or mean of both (-R, -L, -M). The grand average was
then calculated for all the subjects. Finally, the mean ERS values for the actual movement (ERSacM)
were compared with the mean values for the imaginary movement (ERSimM).

2.6. Statistical Analysis

Statistical tests were performed using the SPSS 25.0 software (SPSS Inc. Chicago, IL, USA).
Normally distributed variables are expressed as mean ± standard deviation; non-normally distributed
variables are reported as median (interquartile range [IQR]).

The normality of the results was assessed using the Shapiro–Wilk (W) test. The results
were compared using the dependent t-test (paired-samples t-test) in normal distributions or the
Wilcoxon signed-rank test (Z) in non-normal distributions. A p value below 0.05 was considered
statistically significant.

3. Results

The results of the study are shown in the tables below as the mean of the values for the entire
sample (12 subjects), for each hand and both hands.

First, the results for basal activity (GBAb) were obtained, followed by those for the imaginary
motor task (GBAim) and those for the actual motor task (GBAac). The latter two results are expressed
as right hand, left hand, and mean for both hands. Figure 1 shows the results obtained in a box plot
format. All the GBA values obtained (Table 2) follow a normal distribution, except GBAimL (W = 0.86,
p = 0.049). No significant differences were found between imaginary and actual activity in either the
right hand (p = 0.237), the left hand (p = 0.783) or the mean (p = 0.242).
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Table 2. Analysis of the GBA data obtained.

Action GBA µV2 Comparison of Means

Basal GBAb * 0.0145 ± 0.0076 —–

Right
Hand

GBAimR * 0.0175 ± 0.0098 t(11) = −1.251, p = 0.237
GBAacR * 0.0185 ± 0.0097

Left
Hand

GBAimL 0.0131 (0.0159) Z = 0.275, p = 0.783
GBAacL * 0.0185 ± 0.0104

Mean
Values

GBAimM * 0.0180 ± 0.0101 t(11) = 1.236, p = 0.242
GBAacM * 0.0185 ± 0.0099

* Normal distribution, Shapiro–Wilk test (p > 0.05).

The basal GBA activity is significantly lower relative to the imaginary movement of the right hand
(t (11) = −3.127, p = 0.010), the left hand (Z = −3.059, p = 0.002) and the mean (t (11) = −3.321, p =

0.007). We also found that the basal GBA is significantly lower relative to the actual movement of the
right hand (t (11) = −5.493, p = 0.0001), the left hand (t (11) = −3.752, p = 0.003) and the mean (t (11) =

−4.965, p = 0.0001).
Figure 2 represents the ERS values graphically. The ERSacL (W = 0.895, p = 0.138) and ERSacM

(W = 0.863, p = 0.054) values follow a normal distribution; the other results do not meet the condition
of normality (p < 0.044 in all cases).
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Figure 2. ERS values (%) in the various experiments.

The Wilcoxon signed-rank test finds no significant difference between the ERS values obtained
in the imaginary movements and those obtained in the actual movements for either the right hand
(Z = −1.020, p = 0.308), the left hand (Z = 0.471, p = 0.638) or the mean values (Z = −1.569, p = 0.117)
(Table 3).

In the imaginary movements (ERS), there is no significant difference between right- and left-hand
data distributions (Z = −1.726, p = 0.084). Neither is there any significant difference between the
activity (ERS) for the right and left hands in the actual movements (Z = −0.235, p = 0.814).

In conclusion, our results indicate a significant increase in GBA, relative to basal activity, in
both the actual movements and the imaginary movements for both hands. Furthermore, there is no
significant difference between the imaginary and actual movements in both hands.
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Table 3. Analysis of the ERS data obtained.

ERS ERS (%) Comparison of Means
Wilcoxon Signed-Rank Test

Right
Hand

ERSimR 12.435 (21.124)
Z = −1.020, p = 0.308

ERSacR 28.850 (14.889)

Left
Hand

ERSimL 18.828 (13.578)
Z = −0.471, p = 0.638

ERSacL * 26.972 ± 17.447

Mean
Values

ERSimM 15.983 (14.313)
Z = −1.569, p = 0.117

ERSacM * 27.479 ± 13.256

* Normal distribution, Shapiro–Wilk test (p > 0.05).

4. Discussion

The purpose of this paper has been to obtain and analyze the GBA in the cerebral motor areas by
taking a monochannel EEG recording during an imaginary motor task and comparing that recording
with the GBA obtained during an actual motor task. In this experiment, the basal GBA is significantly
lower than the GBA values obtained during the imaginary and actual movements. Furthermore, no
significant differences (p = 0.117) are observed between the ERS values for the actual and imaginary
movements (ERSimM ≈ ERSacM).

No previous papers analyze GBA using a combination of a single-channel (Cz) EEG and our
stimulation and analysis frequency paradigm. Obtaining GBA during imaginary motor tasks using a
conventional 64-channel EEG is described in [21], who analyze the 32–48 Hz EEG band, intending to
discriminate wrist movement imagery. The purpose of the paper is to implement a brain–computer
interface and it does not report ERS values. In a study by [22], greater GBA activity is observed during
the imaginary movement than during the actual movement. This contrasts with our results, in which
we found greater activity in the actual movement (ERSacM (%) = 27.479 ± 13.256, ERSimM (%) = 15.983
(14.313), with no significant difference). This contradiction may be due to the use of different types of
movement, a different number of EEG channels and analysis of different gamma-band frequencies.

As is the case in our study, [23] observe significant increases in the power of the GBA during
finger movement imagery. However, it does not report numerical values that would make it possible
to compare results.

In [25] the authors observe that actual and imagery movements active sensorimotor and associative
areas of both hemispheres, especially at 52–70 Hz band. They also found differences in activity between
the actual movement and the imaginary movement in the frequencies analyzed (30–48 Hz: p = 0.000;
52–70 Hz: p = 0.011) in the temporal–parietal–occipital zone.

Works [24,26] likewise describe an increase, relative to basal activity, in the gamma band in both
the imaginary movement and the actual movement. In addition, they do not find any difference in
GBA between the actual movement and the imaginary movement. These papers, however, do not
report overall numerical data for GBA since they focus on its anatomical location. In our case, the
results express PSD values in the form of ERS to simplify their quantification for clinical purposes.

As regards the GBA obtained during imaginary movement using invasive methods [11,20], the
results are not comparable with ours because in these previous studies they were obtained directly
from the cerebral cortex (ECoG) without attenuation of the signal-to-noise ratio or the muscle artifacts
found in a conventional EEG.

The GBA values we obtained during actual movement, however, are comparable with those of
previous papers, the results of which are as follows: ERS ≈ 10–20 % [13,14] and ERS ≈ 20–30 % [17]
and have values similar to ours (ERS ≈ 20–28 %).

Based on our study, it can be concluded that the ERS values for the imaginary and actual tasks
do not show any significant difference (ERSimM ≈ ERSacM, (p > 0.05)). Activation of the same
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cortical areas during the actual and imaginary movements has been demonstrated in previous papers.
The motor imagery belongs to the same category of processes involved in the programming and
preparation of actual actions, the difference being that in this latter case, execution would be blocked at
the corticospinal level. It can be assumed that the motor imagery shares the same neuronal mechanisms
responsible for preparing and programming actual movements [18]. This hypothesis can be confirmed
by experimentation e.g., using neuroimaging techniques to map cerebral activity during the imaginary
movements, which reveals an activation pattern similar to that of execution of an actual action [56].
During the imaginary movement of the hand, there is an increase in the power of the gamma bands
relative to the resting state (ERS), producing a significant overlap in spatial distribution (cortical areas)
with the actual movement [11].

5. Conclusions

In this paper, we have developed a proof of concept that could confirm the viability of detecting
gamma-band activity in imaginary and actual motor movements in environments compatible with
clinical practice, doing so using a single EEG channel and without the need for a shielded chamber room.

Possible improvements to this experiment could include increasing the number of subjects and
making the sample more homogeneous in terms of age and manual laterality (e.g., recruiting equal
numbers of right-handed, left-handed, and ambidextrous subjects). It would also be beneficial to
instruct subjects to close their eyes during the experiment and use an auditory stimulus or a non-cued
paradigm (self-paced condition), making continual hand movements to avoid blinking artifacts.

At signal processing level, it would be convenient to implement some method for physiological
artifact identification and removal in EEG registers (see [57] for a review). Consequently, it is intended to
evaluate the detection capacity of GBA using artifact reduction techniques in single-channel acquisition
systems, designed to eliminate some particular type of interference (e.g., ocular movements [58]) or
more generalists ones [59].

This paper shows a proof of concept that explains the way to extract the gamma-band activity by
a simple motor experiment (real or imaginary). It is not a method to discriminate between GBAim
and GBAac, nor between the anatomical origin of the GBA (right or left hemisphere). However, this
method could be used to create protocols applicable to BCI´s that can take advantage of both GBAim
and GBAac, as in the distinction between imaginary movements of hands versus feet. Moreover, more
variety of BCI codes could be created using the GBA signal obtained from both cerebral hemispheres.

If the results of this paper were confirmed in more exhaustive studies, gamma-band detection of
imaginary movements could be used in the implementation of BCI´s, supporting the evaluation of
cognitive functions in some cortical diseases (traumatic vascular pathology and degenerative lesions)
or for use in assessing the pathology of motor areas, following up rehabilitation processes.
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