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Clinical Genome Data Model 
(cGDM) provides Interactive  
Clinical Decision Support for 
Precision Medicine
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In light of recent developments in genomic technology and the rapid accumulation of genomic 
information, a major transition toward precision medicine is anticipated. However, the clinical 
applications of genomic information remain limited. This lag can be attributed to several complex 
factors, including the knowledge gap between medical experts and bioinformaticians, the distance 
between bioinformatics workflows and clinical practice, and the unique characteristics of genomic 
data, which can make interpretation difficult. Here we present a novel genomic data model that 
allows for more interactive support in clinical decision-making. Informational modelling was used as 
a basis to design a communication scheme between sophisticated bioinformatics predictions and the 
representative data relevant to a clinical decision. This study was conducted by a multidisciplinary 
working group who carried out clinico-genomic workflow analysis and attribute extraction, through 
Failure Mode and Effects Analysis (FMEA). Based on those results, a clinical genome data model 
(cGDM) was developed with 8 entities and 46 attributes. The cGDM integrates reliability-related factors 
that enable clinicians to access the reliability problem of each individual genetic test result as clinical 
evidence. The proposed cGDM provides a data-layer infrastructure supporting the intellectual interplay 
between medical experts and informed decision-making.

As the field of medicine transitions from experience-based medicine to data-driven medicine, an apparent par-
adigm shift to precision medicine is underway, driven by the development of technologies in fields including 
medical information technology and computer engineering1,2. Genomic information is one of the most critical 
components of precision medicine, given its power to explain individual variability3. However, the practical clin-
ical use of genomic information remains limited because its circulation is suboptimal, with each data processing 
step tending to be independently performed and thus isolated. To narrow this gap, many organisations have 
attempted to identify and develop methods to more effectively link genomic data to clinical information and 
thereby facilitate its use4–6. However, several challenges must be surmounted before realising this goal.

First, a mismatch exists between the structure of genomic and clinical data. Genomic data based on 
next-generation sequencing (NGS) technology is stored as a number of file types at various stages of the bioinformatics  
analysis, with flexible file specifications to accommodate the broad range of research interests in bioinformatics7.  
Raw genomic data can contain up to several tens of gigabytes of sequence information, each stored as a long string 
of data, and therefore cannot be used directly in this form in clinical practice without further processing. Since 
data processing to determine clinical relevance is both computationally intensive and time-consuming, genomic 
information is not readily accessible relative to other types of clinical data. Thus, for precision medicine and per-
sonalised medicine, pre-processed genomic data need to be linked with other clinical information and provided 
at the appropriate time. To resolve this issue, a structured database is needed to store and appropriately manage 
genomic information for easy accessibility.

Second, genomic data have different properties than conventional observational data used in clinical set-
tings. Therefore, genomic data must be clarified by considering procedural dimensions. Since genomic workflows 
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contain a large number of pipelines for information processing, significant differences between the interpretation 
of processed data and data obtained from different information systems relative to the clinical workflow is inev-
itable8. Accordingly, a robust data model is required to serve as an information system to systematically man-
age genomic data, encompassing the detailed processes of data processing, analysis, and filtering. Additionally, 
information on the reliability and accuracy of these analyses results, along with the detailed analytical process 
and equipment used, must also be systematically stored and managed, as it is an essential criterion for clinical 
decision-making9. Moreover, because genomic data is less variable than observational data, information integra-
tion will allow for maximisation of the utility of the collected genomic information for clinical use.

The third challenge majorly hindering the integration of genomic data with clinical information is difficulty in 
mapping the two types of data for medical interpretation. The presence of biomarkers for specific diseases or drug 
reactions is a critical factor in clinical decision-making10. In the case of targeted sequencing, the data processor 
is informed about biomarkers related to the panel prior to analysis. In clinical practice, reannotation of patient 
genetic information according to updated biomarker discoveries from the biomedical research community is 
continuously required at the population level. Thus, a structured data model with consistent data representation 
would enable the rapid adoption of both evolving biomedical knowledge and individual medical records, which 
can be delivered to the point of care through agile data processing. Furthermore, patient genomic data expressing 
specific biomarkers should be readily accessible from the information system along with clinician-confirmed 
interpretations11.

Personal-health status can be converted to a composition of multi-layered, multi-dimensional digitalised 
information for utilisation in an information system that facilitates handling big data (Fig. 1). Indeed, vast 
amounts of data and associated metadata from multiple medical measuring technologies, such as laboratory tests 
or imaging studies, have already been successfully merged in clinical information systems. Overall, although 
genomic information represents the most sound and intensive health-related signals provided by the human body 
throughout life, the weak links to medical practice highlighted above contribute to its underutilisation in clinical 
decision-making. Therefore, it is necessary to effectively link and integrate clinical information with personal 
genomic information, helping to accelerate the shift to personalised medicine.

Toward this goal, we aimed to develop a clinical genome data model allowing for enhanced interactive sup-
port in clinical decision-making, which minimises the possibility of misinterpretation at the point of care, due 
to formal and procedural heterogeneity related to the production process. We began by redefining the obstacles 
to the spread of genomic information into routine care, including problems relating to the reliability of measure-
ments that could cause hesitation in clinical decision-making and data structural problems that have hindered 
integration of genomic data into existing information systems. From a clinical perspective, we focussed on 
clarifying not only the problem of heterogeneous data structure issues but also reliability-related factors. In this 
context, we operationally defined a bioinformatics process not as a “measurement”, but rather as a “production” 
requiring transition a physical form of existence to a human-interpretable representation. Thus, informational 
modelling based on workflow analysis was used as a ground knowledge for a communication scheme between 
sophisticated bioinformatics products and a representative component of data, which is essential for a proper 
clinical decision.

Figure 1.  Data-level linkage structure between conventional HIS and GIS. From a software engineering 
perspective, a comprehensive hospital information system comprises components that represent separated 
data collection routes and distinguishing characters of the data. We suggest the concept of GIS to illustrate the 
implementation of the cGDM. This architecture supports both information and functional integration, even 
with existing clinical information systems.
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Results
This section primarily consists of Failure Mode and Effects Analysis (FMEA) results and entity-attribute model-
ling. FMEA output is presented in two diagrams: a dataflow diagram that focusses on the derivation of the con-
tents of the genetic test based on NGS sequencing technology, and an information process map that extends the 
viewpoint to the level of clinico-genomic context. At this step, the protocol entity of the former dataflow diagram 
was subclassified to reveal the procedural dimension in information processing. Moreover, the set of attributes 
involved in each step of information transfer was identified. Finally, the cGDM are suggested as a result of struc-
tured data modelling based on the attribute set.

Dataflow diagram based on an NGS workflow.  A workflow diagram was derived in order to illustrate 
the data flow in which the genomic information inherent in the human body is converted to a genomic test result. 
(Fig. 2.) At this stage, the clinical view is minimised, with both the flow of information and the process of analys-
ing the specimen after the sample collection across experimental laboratory and computational analysis drawn 
on a large scale.

The subtypes of processed variant information in the parallel structure, used to cope with the growing body of 
knowledge in bioinformatics, are listed at the bottom of Fig. 2. Variant information can be called in multiple types 
depending on the perspective and purpose of the analysis. For example, there are four types of genetic variation: 
single nucleotide variation (SNV), small insertion/deletion (InDel), copy number variation (CNV), and translo-
cation/fusion. There are predictive biomarkers as well such as microsatellite instability (MSI) and tumour muta-
tion burden (TMB). As the amount of NGS technology-based knowledge increases, more subclasses representing 
novel perspectives can be added. Scalable data modelling to support the differentiation of knowledge over time 
is essential not only for expressiveness, but also for reducing the burden of information systems maintenance.

In summary, we linked the separate offline workflows at this step that occurred in different places until 
genomic data could be provided as processed data. The workflow diagram provided the basis for detailed analysis 
and discussion.

Extending the NGS process under a clinico-genomic context.  After establishing consensus on a 
larger scale, we extended the flow of information to the clinical context in detail. At this stage, the standpoint of 
the workflow analysis was clinical decision making. Hence, the workflow diagram started with a clinical deci-
sion. We extended the flow between several actions in the clinico-genomic context involving multiple entities 
identified, and detailed analysis was performed. In this process, the output data file format and detailed processes 
for handling output files, along with the tools required for linking to external knowledge databases, are also 
described.

The working group discussed mechanisms for extraction of the entity-attribute set which would avoid prob-
able information distortion and omission. We considered that the genomic data model for clinical use should be 
the knowledge communication scheme, thus preserving its reliability-related factors. At a minimum, the genomic 
data model must provide sufficient information to decide whether the confidence level of the genomic test result 
justifies its consideration as clinical evidence. For this function, failure was defined as that which causes mis-
interpretation or non-use of the genomic data for clinical decision. The process of producing clinical evidence 
from genomic data at the bioinformatics area (Fig. 3) shows a pattern that is a series of repeated representations 
of information converted by reference knowledge bases and data processing rules. Thus, failure modes can be 
classified as incomplete specifications in three meta-categories: origin, reference, or symbol. Due to the nature of 

Figure 2.  Data flowchart based on a next-generation sequencing workflow. The objects shown in this diagram 
are classified into three class types- ‘Action’, ‘Information’, and ‘Entity’. ‘Action’ was first posted with respect to 
what occurred in each expert domain and the resulting ‘Information’ was displayed as a result of each action. 
Finally, ‘Entity’ was defined as the captured information class at each stage of the workflow. Subtypes of ‘Variant 
Information’ were drawn scalable to accommodate the potential extension of subclasses.
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the semantic interpretation, any fragmentation of symbol causes not only loss of information but also assignment 
information to direct the origin12,13.

We conducted workflow analysis to extrapolate general descriptors of the related attributes with the goal 
of preserving information during production and delivery processes from clinical intention to clinical uti-
lisation. Figure 3 provides a more detailed data-level view, including how genomic information is realised as 
clinical evidence in a case based on a structured data model. The structured genome data model can support a 
report via presentation on a variety of transcription forms (report forms), which are optimised for initial intent. 
Furthermore, additional utilisation paths are accessible in the clinical-information system. As shown in Fig. 3, 
data-level integration helps the amplification of the incidental utilisation. (Supplementary Fig. 3) To illustrate, 
consider a patient who orders whole-genome sequencing to screen for cancer biomarkers at their first visit. When 
the patient receives a prescription for antibiotics a year later at a visit for other symptoms, that same genomic 
test result can be re-used from a pharmacogenomics perspective for safer and more efficient drug prescription. 
The clinical decision support system plays a vital role by just-in-time display of the matching information with 
pre-defined rule and knowledge-based processing6,14,15. A computational genome data model is a prerequisite for 
this implementation15–17. Finally, we introduce a logical data model in the next step of the study.

The cGDM.  Logical data structuring with the entity-attribute model.  Finally, the cGDM was designed as 
an entity-attribute model consisting of 8 entities and 46 attributes (Fig. 4). For a structured data model of the 
identified clinico-genomic attributes, logical modelling was conducted to ensure data-level linkage with conven-
tional primary clinical databases. In order to define the entity-attribute model based on the action and collected 
data, tool/processor classes and the attributes of each class from Fig. 3, we define 3 types of classes as protocol 
and related attributes (Table 1). Since the cGDM is designed to support data-level integration with the existing 
system, only the minimum subject identifier is defined as ‘linkage identifier to clinical information’. To represent 
the procedural dimension, which is stressed in the study, we combined two workflow analyses on different scales. 
For example, the entity ‘Protocol’ as a part of the procedural dimension is explicitly represented in Fig. 2, then 
expressed again as a list of lower steps in Fig. 3. Since clinical observation is typically considered as the collection 
of events18, the logical composition of the date/time and actor identifier related to the clinico-genomic context 
were declared.

The derived classes and entities in Table 1 were used to declare final entities and attributes in the cGDM 
(Fig. 4). The mapped Actions and Action-related classes (Collected Data and Tool/Processor) are categorized 
into subdomains and related attributes for each step in Table 1. In Table 1, an action and its result are grouped 
into one step, and the related attributes are represented by the attributes classified in the corresponding step. 
For normalization, related attributes are categorized to create one or more new groups called entities for each 
step, and they are the basis for defining ‘Entities’ in the Entity-Attribute model (Fig. 4). For example, ‘Physical 
information according to coordinate system’ is one of the three subdomains of the action ‘Sequence Annotation’. 
It can include an attribute set include an attribute set (Cytogenic location, Codon, Exon) representing physical 

Figure 3.  Failure mode identification: mapped next-generation sequencing process extended to a clinico-
genomic context. In the bioinformatics area (cyan background), information may be distorted by the 
insufficient representation of origin, processing rule, and external reference. To prevent this failure, 
identification and semantics, related attributes are listed under the boxes. In the clinical area (yellow 
background), the data model functions as a communication scheme for the collaborative process implemented 
in the hospital information system. Data-level integration facilitates just-in-time queries and reuse of data.
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location information for each variant. However, this “Physical information according to coordinate system” can 
be a subdomain in other steps besides “Sequence Annotation”. And even though it is the same subdomain, the 
related-attribute set may be different depending on which step or action. In summary, each step identified in the 
entire clinico-genomic process can include multiple entities, and one entity can be related to multiple steps. Even 
in the same entity, the configuration of related attribute as a factor affecting each step may vary from step to step.

Enhancing the reliability of genomic data by the cGDM.  We conducted additional analyses to evaluate whether 
the cGDM can represent sufficient information scale to access the reliability of delivered information. We classi-
fied three selected examples of errors that often occur in genomic data processing into two distinct types: insuf-
ficient information scales and multiple names for the same variant. We then checked whether process errors of 
these types could be covered by the cGDM.

Insufficient information scale to detect clinically significant genetic variation.  In this category, we discuss two typ-
ical errors: the absence of RefSeq accessions and versions in Human Genome Variation Society (HGVS) nomen-
clature, and nonexistence in human genome reference assembly. Both are cases in which the information scale is 
insufficient for the detection of clinically significant genetic variations.

Refseq accessions and versions for HGVS nomenclature. In the first example, a genetic biomarker has the 
potential to be clinically utilised for diagnosis, prognostics, and prevention19,20. The conventional way to represent 
genetic biomarkers is by protein-level HGVS nomenclature, which describes amino-acid sequence changes21,22. 
According to standard nomenclature recommendations of the HGVS, a RefSeq accession and version number 
are required, followed by information on amino-acid sequence changes. However, since the expression has usu-
ally been used without the accompanying reference sequence information upon which the numbering system is 
defined, this incomplete representation leads to a misinterpretation of the results for use in real clinical settings. 
For example, the BRAF V600E mutation is the most common driver in melanoma23. This BRAF mutation is 
represented as ‘NP_004324.2:p.V600E’ with the corrected version of the nucleotide sequence, but was formerly 
expressed as ‘NP_004324:p.V599E’ based on the nucleotide sequence missing a codon in exon 124. Because V600E 
is recognised as a biomarker in the majority of publications, V599E without reference sequence information has 
been detected as a distinct mutation. To reduce such discrepancies, the proposed cGDM implements a more 
complete set of elements: the RefSeq accession, version number, and amino acid changes. Since the purpose of 
the cGDM is to eliminate ambiguity in information delivery, the set of attributes needed to point out a particular 
mutation is declared. Thus, the cGDM enables more reliable query result suggestions, even when the inputted 

Figure 4.  The Clinical Genome Data Model: Structured data modelling with entities and attributes. The cGDM 
is designed as a logical data model of 8 entities and 46 attributes. The objects and related attributes derived 
through FMEA are integrated into a logical data model through abstraction and normalisation.
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Seq.

Class

Related Attribute EntityAction Collected Data Tool/Processor

1 Sample Collection

Institution Identifier Subject 
Identifier Test Identifier (Order ID 
or Accession No)

Linkage Identifier to Clinical 
Information

Submission Date Timeline Information

Medical Institution Actor Information

Clinician

2 Specimen

3 Machine Sequencing Test Description Experiment Related 
Information

Type of Sequence

Platform technology

Sequencer

Collection Date Timeline Information

Sequencing Institution Actor Information

Experimenter

4 Read File

5 Alignment Position Reference allele 
Alternative allele Chromosome

Physical(Location) 
information according to 
coordinate system

Analytics Institution Actor Information

Bioinformatician

6 Initial 
Alignment File

7 InDel Realignment Position’
Physical(Location) 
information according to 
coordinate system

/ Reference allele’

Base Recalibration Alternative allele’

Chromosome’

Base quality(>Q20) Quality Check information

(Average) Depth of coverage

Mapping Quality (%Mapped reads)

Received Date Timeline Information

Analytics Institution Actor Information

Bioinformatician

8 Adjusted 
Alignment File

9 Variant Calling Hetero-/Homozygosity Genotype Expressions

Phasing information

Missing

Analytics Institution Actor Information

Bioinformatician

10 Variant Caller Tool Pipeline information

Step

Parameter

Origin Data source

Version

Build

Parameter

11 Variant File

12 Sequence Annotation Gene (HGNC Gene Symbol, Entrez 
ID, Ensembl ID)

Variant Descriptive 
Expressions

Variant (HGVS(genomic, coding, 
protein change + version), dbSNP, 
dbVar)

Cytogenetic location
Physical(Location) 
information according to 
coordinate system

Codon

Exon

ClinVar, COSMIC ID Functional Annotation

Continued

https://doi.org/10.1038/s41598-020-58088-2


7Scientific Reports |         (2020) 10:1414  | https://doi.org/10.1038/s41598-020-58088-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

search term is fragmented. Supplementary Figure 2 demonstrates a scenario in which a clinician performs a 
semantic query on a melanoma patient in a cGDM system. Importantly, the cGDM links the extracted annotation 
information to the results that the clinician would like to retrieve.

Human genome reference assembly. In the second example, the most popular way to determine genetic vari-
ants in standard NGS analyses is resequencing, which identifies variations by aligning reads against the reference 
genome sequence25,26. However, this often causes assembly errors. Since a variant position designates a relative 
location based on a given reference sequence, the data sources to which the reads are aligned are necessarily 
required. For example, the genomic position of BRAF V600E, chr7:140453136 A > T (GRCh37), is shifted into 
chr7:140753336 A > T (GRCh38) as that the significant reference coordinate has changed. Therefore, the cGDM is 
designed to specify the reference data sources, including assembly, version, and origin, greatly reducing reference 
compatibility problems induced by fragmented information.

Unnormalised representation of genetic variants.  Non-unique expression of insertion and deletion. The second 
main error type involves the standardised representation of genetic variants, for which we exemplify issues arising 
due to the multiple names associated with the same insertions and deletions in databases. Variant Call Format 
(VCF) is a file format that allows for a flexible representation of different types of variations. Since each variant 
caller reports in a slightly different manner, the same variant could be represented in non-unique ways27. These 
inconsistencies across tools hamper the robust identification of clinically significant variants28. Thus, a specifica-
tion for the unified representation of genetic variants is in high demand. For example, chr10:11805838 C > CT and 
chr10:11805838 CG > CTG represent the same insertion, even though they are not represented by the same text 
string. To overcome the issue, when importing VCFs into the cGDM, the representation of variants is converted 
into their minimal representation via tools such as vcflib vcfallelelicprititives or GATK LeftAlignAndTrimVariants. 
This process establishes consistency between internal and external representations and provides a standardised 
variant representation to ensure accurate and consistent identification of clinically significant variants.

The two types of problems described above can be solved using the entities and attributes defined in the 
cGDM. In solving the first problem of an insufficient information scale, the primary challenge is securing an 
element set that can convey the complete sense when expressing specific information. In the cGDM, since all fac-
tors causing this problem are represented by an entity-attribute set, no loss of information occurs. In the second 
type of problem, our example highlighted that models can be derived from the same semantics despite different 
nomenclature (syntax) in the stored values.

Detailed considerations made in this section highlight the differences in perspectives between the bioinfor-
maticians and clinicians participating in the working group on the clinico-genomics workflow. The cGDM was 
placed in this interspace for systematic information management, with the application of reliability engineering 
to reduce miscommunication and distortion arising from a difference of viewpoint between experts in different 
fields.

Seq.

Class

Related Attribute EntityAction Collected Data Tool/Processor

Molecular Effect

Variant Type

Functional Domain

Analytics Institution Actor Information

Bioinformatician

13 Annotator Tool Pipeline information

Step

Parameter

Origin Data source

Version

Build

14 Annotated 
Variant File

15 Clinical Annotation ACMG actionable genes Clinical Annotation

FDA qualified biomarkers

User-defined biomarkers

Analytics Institution Actor Information

Bioinformatician

Documentation Date Timeline Information

Table 1.  Extracted classes and related attribute sets from each step of clinico-genomic context for the Entity-
Attribute model. The processes in the clinico-genomic workflow shown in Fig. 2 are listed in order and 
associated with the classes, related attribute sets for each process. This table is an intermediate result between 
the result of FMEA and the final logical model. Derived related attributes are abstracted within each class and 
grouped into entities.
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Validation of the cGDM.  Here, the cGDM was finalized in the form of a logical model, which allows adap-
tation to the diverse development environments of existing heterogeneous clinical information systems. Logical 
model can play an essential role to generalize the complex phenomenon by abstraction and enhance under-
standing core ideas the model deliver between different stakeholders of in the complex system29. Whereas, the 
drawback of this approach is that physical modelling layer is needed in order to the data model implementation 
and validation. Thus, we design a physical data model implemented in a relational database to evaluate the model 
validity for real-world data and to proof of concept how implementation of the cGDM enables interactive clinical 
decision support in clinical information system shown as Fig. 3 (Left side; Clinical decision support system for 
incidental utilization).

Implementation of the real world data.  This physical data model of the cGDM is provided in forms of 
entity-relationship diagram and table (Supplementary Information Table 1; Fig. 2). Also, one-click executable 
data definition language script is also freely accessible on a web page (https://github.com/SNUBI-HyojungKim/
cGDM-Clinical-Genome-Data-Model).

For the data model validation with real-world data, we built pilot databases based on the cGDM and uploaded 
genomic data of over 2,000 patients for multiple diseases, including acute lymphoblastic leukemia, solid cancers, 
and depression cases (Table 2, internal databases). However, the pilot datasets related researches remain undergo-
ing, we have built two representative demo datasets for open source (Table 2, demo databases) 1000 genome CEU 
(Utah Residents with Northern and Western European Ancestry) population dataset for whole genome sequenc-
ing (n = 99, 47.67 GB), 2) TCGA PAAD (Pancreatic Adenocarcinoma) dataset for somatic mutation (n = 155, 
9.41 MB). We believe those well-known public dataset have advantages on data validation issue. Every demo 
datasets and source codes are freely available from at the Github page as mentioned above.

How implementation of the cGDM enables interactive clinical decision support.  One of the major challenges of 
healthcare informatics is supporting clinicians who need to handle constantly evolving knowledge and inher-
ently complex genomic data. Patient genomic data in a static document format or in structured model but in 
which has vague designation of the variant limits functionality of clinico-genomic information system30. The 
cGDM could address the issue by working as a data-level infrastructure for interactive clinical decision support 
along with external knowledge bases (Fig. 5). For the cGDM’s programmability test, we developed a pharmacog-
enomic clinical decision support function running on the cGDM database which reflects the knowledge of the 
IWPC warfarin dosing algorithm. The source code is freely available at https://github.com/SNUBI-HyojungKim/
cGDM-Clinical-Genome-Data-Model. Supplementary Figure 3 illustrates both of logical information flow in 
back-end system and its appearance on the user interface.

Discussion
The rapid accumulation of genomic information has led to a paradigm shift in medicine. However, significant bar-
riers remain to overcome for the widespread clinical exploitation of this information. Through multi-disciplinary 
analysis and consideration of this phenomenon, we identified two main causes: first, reliability-related result 
variance among numerous pipelines and processes; and second, the unique data structure of genome informa-
tion. Since these two causes have shared influences, an integrative solution is likely to be more effective than a 
point solution. Moreover, we foresee that GIS will become an essential component of an integrated clinical infor-
mation system in the precision medicine era. In this context, this cGDM could serve as a genomic information 

Table name

Database

Internal database Demo database

Cancer 
Panel Leukemia Depression

TCGA 
COAD

TCGA 
LUAD

1000 Genome 
Phase 3 CEU

TCGA 
PAAD

Row counts 
(per table)

CLINICAL_IDENTIFIER 10 503 1000 459 522 99 155

EXPERIMENT_RELATED_INFORMATION 10 517 1000 459 522 99 155

BIOINFORMATICS_PROTOCOL_RELATED_INFORMATION 10 517 1000 459 522 99 155

GENOMIC_ALTERATION 2733 29,279,631 842,199,347 361,933 318,947 229,525,363 56,159

MICROSATELLITE_INSTABILITY 0 0 0 0 0 0 775

CLINICAL_ANNOTATION 40 267 108 123 97 1 12

QUALITY_CHECK 10 517 1000 0 0 0 0

Data volume (per database) 2MB 8.2GB 144.7GB 48.37MB 42.63MB 47.67GB 9.41MB

Table 2.  Summary of imported genomic data from various data sources in cGDM databases. The databases are 
categorised into internal and demo database. The specifications of the database tables are informed in Table 1. This 
table presents row counts of each database table and data volumes of each database. The internal databases include 
3 private datasets (cancer panel, leukemia and depression) and 2 public datasets (TCGA COAD and TCGA 
LUAD). The demo databases include 2 public datasets (1000 Genome Phase3 CEU and TCGA PAAD). * COAD is 
study abbreviation in the TCGA stands for Colon adenocarcinom a; LUAD for Lung adenocarcinoma.
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representation scheme enabling the intellectual interaction between medical experts and informed decision mak-
ing, ultimately contributing to the enhancement of personal genomic data utilisation at the point of care.

To ensure the convenient and appropriate clinical use of genomic data, medical informatics technology is 
needed as part of the infrastructure supporting the integration of clinic and genomic layers of information31,32 
Given the multi-level and multi-dimensional nature of health, clinicians must perform decision-making for a 
given case based on a collection of segmented data representing a person’s health, including laboratory data, 
imaging, and observation data assessed by experts. Currently, a clinical information system is typically used as a 
core tool for supporting this knowledge in a management process. To broaden perspectives in the era of precision 
medicine, we propose a genome information system (GIS) as an integral component of an integrated clinical 
information system (Fig. 1).

The cGDM can serve as a data-level infrastructure for implementation of the GIS. When decision makers face 
unfamiliar health-status measurements, determining clinical significance and meaning is challenging32,33. The 
cGDM was designed to preserve genomic information at an appropriate information scale and granularity cover-
ing the procedural dimension, which is related to the confidence level as a clinical measurement for clinical appli-
cation. The design of the cGDM allows processed genomic data for a general purpose to be stored and merged 
with existing clinical data, providing outputs in an interoperable data format. Likewise, sequencing analysis, data 
processing, and presentation of processed information can be managed in a form that can be explicitly confirmed. 
Once data are uploaded to the cGDM-based database, they serve as a supportive backbone for any downstream 
functional applications such as report generation or a clinical decision support system. (e.g. Supplementary Fig. 2; 
Fig. 4) To develop a system for the systematic management of genomic data, it is necessary to unify its data struc-
ture with that of other existing components of clinical information systems, ensuring sufficient reliability for 
identifying the original data generation process34.

Conventional systems have focussed on data structure unification issues first, to harmonise heterogeneous 
systems among separate institutions35. By contrast, our model was designed to achieve both clinico-genomic 
knowledge representation accompanied by traceability of the genomic data, to enable determination the clin-
ical significance of a genomic test result provided to a clinician. To allow better assessment of the meaning-
fulness of genomic information, we defined the basis for each attribute and focused on designing an entity set 
that accurately represents the genomic data that are delivered to the target user, without information distortion. 
Furthermore, the cGDM is adaptable as a data-level extension to any existing information system, regardless of 
database system or application platform.

Accumulation of basic, translational, and regulatory science is a prerequisite to implementing personalised 
medicine in routine care36. As a basic science, bioinformatics has witnessed explosive and rapid progress since 

Figure 5.  The conceptual map of a genomic decision support system based on the cGDM. While the 
accumulation of confirmatory knowledge could seem relatively slow compared to the speed of the vast 
discovery of the bioinformatics field, the benefits and impacts the two will have on patients when they are 
seamlessly connected are evident. The cGDM brings this process into computational space.
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the completion of the Human Genome Project. In the context of regulatory science, there are currently several 
ongoing efforts within the bioinformatics and molecular biology domains10–12, with great maturation in the body 
of knowledge during the last decade, including principles and recommendations related to NGS technology. 
These efforts have focussed primarily on the standardisation of bioinformatics protocols and the file structures 
for intra- or interlaboratory communication.

Translational science represents the next challenge for the realisation of actual health promotion with per-
sonalised medicine37. In the context of clinico-genomics, translational approaches ultimately target the syntactic 
and semantic interoperability between genomics and clinical practice, to ensure business continuity in terms of 
knowledge management37–39. Previous approaches have stressed a need for structural transformation to overcome 
the currently low adaptation of genomic information for clinical decision-making. However, the other major 
cause, the knowledge gap, has yet to be seriously considered because the solution appears obvious: the education 
of medical experts in bioinformatics principles.

Nevertheless, this raises the question of the specific level of bioinformatics knowledge required in clinical 
practice. Our working group agreed that clinicians do not need to be bioinformatics experts to implement pre-
cision medicine. Preferably, the key is education on how to understand genomic data and confidence levels, and 
then be provided with sufficient information to make clinical decisions. Based on this perspective, we identified a 
previously unrecognised ambiguity related to the knowledge interplay between bioinformatics and medical prac-
tices (Fig. 3). Although the genome is the most concrete type of observational data representing an individual’s 
inheritance, the genomic information delivered to clinicians is rarely transformed to a human-readable form and 
is also rarely a direct representation of the genomic sequence. Instead, this information is more of an intellectual 
product, processed in a purpose-weighted result file structure. Thus, the question of reliability of the genomic 
information must be addressed before it is adopted by the physician, similar to other types of conventional obser-
vational data.

Considering the knowledge gap in this clinico-genomic context, unrecognised ambiguities may occur on each 
side. For example, when linking the outputs of bioinformatics to clinical fields, the indicator of information qual-
ity moves from internal consistency within the same protocol to external consistency between different protocols. 
Thus, to accomplish the final goal of precision medicine, more discussion is needed about how data will cross this 
intermediate space, then about how to best represent and deliver crossover information.

To best of our knowledge, the methodology proposed herein has not yet been applied in the field of genetic 
information processing. FMEA is the most commonly used methodology for determining reliability of manufac-
turing and design processes15–19. We perceive the result of genetic testing not as an output of static measurement, 
but rather as an output of an intellectual production process. When conducting bioinformatics analyses, there is 
no requirement for unification among the processes, since the internal consistency within each process guaran-
tees scientific rigour. Moreover, the flexible data specifications used in the bioinformatics field have the advantage 
of supporting various research applications7, but that advantage becomes an obstacle to data integration for com-
prehensive clinical decision making. In addition, relevant external knowledge, tools, platforms, and analytical 
techniques cannot be unified because they are still under development. Considering this large interdisciplinary 
hyperspace, our approach aims to improve the quality of information delivery while responding to an enormous, 
growing body of knowledge that has yet to be integrated within its own basic-science field. Therefore, the FMEA 
was adopted to derive and clarify a set of metadata designed to prevent information from being distorted.

To facilitate the use of genomic test results in clinical practice, it is essential to integrate genomic data into 
clinical decision support systems regarding data volume and knowledge management6,14,15,17. Data modelling 
is the first and most crucial step in the multi-tiered design of information systems. The final product reliability, 
for example specific clinical decision support algorithms or integrated information systems, is hardly improved 
over the designed reliability on the lower level of architecture (data-level)40. This viewpoint was projected to 
the study design. An important consideration is that the analytic scheme presented here can help to enhance 
clinico-genomic understanding for experts on both the medical and bioinformatics sides of the workflow. (see 
Methods Section) Throughout the development of this method, we focussed on equally weighting the clinical 
perspective and bioinformatics process analysis in the context of business continuity, starting from our initial 
clinical intention through bioinformatics information processing by a knowledge-based protocol, finally offering 
a deliverable and interpretable form to the point-of-care clinician.

The methods, equipment, data processing and analytical techniques for extracting data from targets in nature 
will continue to evolve and accumulate. The cGDM was designed to be flexible and able to readily adapt to tech-
nological changes. However, an eventual failure in responding to these changes cannot be excluded and represents 
a potential limitation of this study.

Several standard models have been generated, based on differences in data scale and technical maturity, prior 
to the development of NGS technology. Thus, we have not considered multi-omics data. Focussing on NGS 
technology-based workflow helped us to determine an optimised information scale and granularity for the clini-
cal level, and to design a model to generalise and process genomic data based on individual patients. The cGDM 
could be extended to be a part of technology-wide data model integration for multi-omics data management.

The data model proposed in this study aims to clarify blind points within the interdisciplinary genomic-clinical 
interface, connecting separated expertise within a single platform to provide a broad perspective that covers the 
information reliability required for clinical evidence. In particular, we have made a novel attempt to adopt the 
FMEA method for a systematic meta-level data design process. Future work will focus on the development of 
functional systems to conduct real-world validation, including a data-upload pipeline from processed genome 
data files, as well as a clinical decision support tools based on the cGDM. Results of this exercise are planned to 
be released in a further study.
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Methods
Material: The production process of bringing genomic information to bedside care.  Here, we 
define a genomic test as a series of team-based information production processes, in which the meaning of the 
information is expanded, represented, and reproduced by reference to an external knowledge base, rather than 
through direct extraction of inherent information. Despite the invariant nature of a personal genome, genomic 
information presented to a clinician may vary according to specific processing protocols adopted7,25,26,41. This 
variability raises reliability issues for the use of genomic test results as clinical evidence42.

As artefacts from production, genome information processed for clinical use may pose a likelihood of misinter-
pretation due to information distortion, omissions, and fragmented senses. Furthermore, information reliability  
is a critical factor determining the ability of clinicians to utilise the genomic information43. Thus, our approach in 
developing this cGDM for focussed on the multi-dimensional scope of information, including procedural factors, 
derived from NGS technology.

FMEA: An attribute-clarified framework.  FMEA is a systematic prospective risk factor analysis 
approach that predicts and prevents possible errors, improving quality across team-based processes44. When used 
for advanced investigation, the method has advantages enabling exploration of uncertain, unforeseen complex 
workflows at an early stage45,46. Since its introduction in 1963, broad subtype applications of FMEA have been 
performed in broad domains including reliability engineering40,47, behaviour modelling48, software engineering49, 
conceptual design50, and knowledge management and representation51,52. In particular, FMEA has been applied 
as a method of knowledge representation to extract process reliability related attributes and to structure and 
map entities and attributes48,52–54. In this study, the FMEA approach was adopted for workflow analysis and the 
attribute-extracting method.

The working group.  A multidisciplinary expert team was formed from the areas of bioinformatics, medical infor-
matics, and medicine. The participants included three bioinformaticians, two medical informaticians with clinical 
informatics and application expertise, and one medical doctor. The medical doctor has experience in both clin-
ical practice and conducting translational research from the perspective of both biomedical science and clinical 
practice.

Workflow analysis.  Over a period of nine months, process mapping, failure identification, and related attribute 
extraction were conducted using FMEA at over 18 team meetings. Structured data modelling for enhancement 
of data accessibility was then conducted using a logical data model, with the attribute set derived from the FMEA 
workflow diagram.

We chose the conventional FMEA workflow analysis40,47 and adapted it for cGDM development. Conventional 
FMEA consists of two main steps. First, the failure mode is identified through (1) assembling a multi-disciplinary 
team with at least one expert from each domain over the target production process, (2) combining components 
and process function in order to derive a workflow diagram, and (3) listing the modes that may lead to failure 
at each step. The second part involves modifying the process itself with consideration of priority, including (1) 
evaluating the severity and occurrence ranking of each failure mode and (2) proposing a modified workflow or 
audition guideline.

In this study, risk estimation and priority-scoring steps were not designed, since our purpose was to review 
the fragment of metadata composition that may cause unintended information distortion or misinterpretation.

Logical data modelling.  Data models are the basis of computation ability for intelligent information  
systems55. The database design process can generally be divided into logical and physical database design56. The 
physical data model requires a clear and specific description over logical design, which depends on the existing 
development environment. Thus, we designed this cGDM as a logical data model based on the FMEA results to 
support data-level integration with any existing clinical information systems.

Logical data modelling methods are comprised of abstraction and normalisation. Database abstraction refers 
to aggregation and generalisation that occur at the points of intersection57. We first abstracted the attributes 
derived from FMEA and expressed the factors corresponding to each step in the workflow. Then, normalisation 
was performed to prevent duplication and inconsistency of data elements considering their names, scale and 
relations.

Demo datasets for the real-world data implementation.  Two of representative public accessible 
datasets are selected for the development of the demo databases: The 1000 Genomes Project of the International 
Genome Sample Resource (IGSR) with population code “CEU” (Utah Residents with Northern and Western 
European Ancestry)58, the pancreatic cancer data from The Cancer Genome Atlas (TCGA_PAAD)59.

Collected datasets were VCF and MAF file format and Extract-Transformation-Load (ETL) process of the 
genomic data was performed by two bioinformaticians with Python 2.7.16. ANNOVAR 2016Oct2460 version 
was used as a clinical annotation tool for 1000 Genome Project CEU dataset. The result datasets were imported 
in a table within the MySQL server database by two medical informaticians. We ran the SQL scripts in MySQL 
5.6.46 on a Server with 8GB of RAM and an NVIDIA tesla c1060 / Quad core CPU running run on CentOS Linux 
release 7.7.1908. The final outputs took the form of SQL tables and functions61–63.
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Data availability
The description of the internal datasets and demo datasets used in this work are summarized in Table 2. The 
internal datasets are available from the corresponding author on reasonable request. All public data utilized in 
this work are TCGA COAD, TCGA LUAD, TCGA PAAD (https://portal.gdc.cancer.gov/) and 1000 Genome 
Phase 3 CEU (https://www.internationalgenome.org/category/phase-3/). TCGA PAAD and 1000 Genome Phase 
3 CEU are built in forms of the cGDM DB and shared as demo databases (available at https://github.com/SNUBI-
HyojungKim/cGDM-Clinical-Genome-Data-Model). This repository contains Data-Definition-Language 
(DDL), two demo databases based on cGDM containing public data and a PGx CDS example source code in the 
case of IWPC warfarin dosing.
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