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Introduction
Consistently occupying a leading position in cancer statistics, 
lung cancer poses an ongoing and severe public health challenge.1 
Within this context, lung adenocarcinoma (LUAD) has emerged 
as a significant subtype, representing a substantial proportion of 

lung cancer cases. Characterized by a high likelihood of distant 
metastasis and a mean overall survival (OS) of under 5 years, 
LUAD presents a formidable threat.2 The limitations and side 
effects associated with traditional treatments such as surgery, 
radiotherapy, and chemotherapy further complicate the clinical 
management of this condition.3 Therefore, there is an urgent 
need for the development and implementation of reliable 
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ABSTRACT

Objectives: Lung adenocarcinoma (LUAD), a predominant form of lung cancer, is characterized by a high rate of metastasis and recur-
rence, leading to a poor prognosis for LUAD patients. This study aimed to identify and rigorously validate a highly precise biomarker, Cath-
epsin L (CTSL), for the prognostic prediction of lung adenocarcinoma.

Methods: We employed a multicenter and omics-based approach, analyzing RNA sequencing data and mutation information from public 
databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The DepMap portal with Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR/Cas9) technology was used to assess the functional impact of CTSL. Immunohistochem-
istry (IHC) was conducted on a local cohort to validate the prognostic significance of CTSL at the protein expression level.

Results: Our findings revealed a significant correlation between elevated CTSL expression and advanced disease stage in LUAD patients. 
Kaplan–Meier survival analysis and Cox regression modeling revealed that high CTSL expression is associated with poor overall survival. 
The in vitro studies corroborated these findings, revealing notable suppression of tumor proliferation following CTSL knockout in cell lines, 
particularly in LUAD. Functional enrichment revealed that CTSL activated pathways associated with tumor progression, such as angiogen-
esis and Transforming growth factor beta (TGF-beta) signaling, and inhibited pathways such as apoptosis and DNA repair. Mutation analysis 
revealed distinct variations in the CTSL expression groups.

Conclusion: This study highlights the crucial role of CTSL as a prognostic biomarker in LUAD. This combined multicenter and omics-
based analysis provides comprehensive insights into the biological role of CTSL, supporting its potential as a target for therapeutic interven-
tion and a marker for prognosis in patients with LUAD.
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biomarkers to guide specific treatment plans for LUAD, with the 
aim of improving patient outcomes.

A defining feature of contemporary medicine in this cen-
tury is the transformative understanding of the biological land-
scape of cancer.4 The advent of cancer biomarkers has 
revolutionized patient care, offering a tailored approach to 
treatment.5 This evolution has rendered the process of cancer 
malignant transformation more discernible, leading to the 
development of innovative methods for combating the dis-
ease.6 Advancements in high-throughput sequencing technol-
ogies have been instrumental in the identification of pivotal 
genes associated with LUAD.7 This technological progress 
opens new avenues for the discovery of groundbreaking bio-
markers and therapeutic targets.

Cathepsin L (CTSL), a cysteine protease family member, is 
pivotal for lysosomal degradation of intracellular and endocy-
tosed proteins, intracellular protein breakdown, and SARS-
CoV-2 infection processes.8,9 CTSL upregulation is frequently 
observed in a variety of human cancers and contributes to 
oncogenesis, tumor progression, invasion, and poor patient 
prognosis.10-12 Moreover, the significant association of CTSL 
with cancer-related osteolysis detrimentally impacts both the 
quality and length of life of cancer patients.13

Reports on CTSL in LUAD have been sporadic. Han and 
colleagues, in a preclinical study, demonstrated that EMT 
induced by CTSL upregulation was linked to chemotherapy 
resistance in A549 cells.14 Additionally, higher expression lev-
els of CTSL are correlated with shorter OS in patients with 
lung cancer and may indicate a poor response to immunother-
apy.15 To further our understanding of the role of CTSL in 
LUAD, our study is the first to utilize a comprehensive 
approach combining multicenter, multiomics data with our 
local cohort. This systematic and comprehensive methodology 
aims to explore the potential of CTSL as a biomarker in 
LUAD. Previous studies have been limited to single-omic 
analyses and lack validation with clinical samples from their 
respective centers. Our integrated approach provides a more 
holistic view of the implications of CTSL in LUAD.

Methods
Data processing

This research began with acquiring RNA sequencing (RNA-
seq) data, mutation details, and clinical information for Lung 
Adenocarcinoma (TCGA-LUAD) and pan-cancer cohorts, 
sourced from the UCSC Xena database (https://xenabrowser.
net/datapages/). To further substantiate our findings, LUAD 
datasets from the GEO database (http://www.ncbi.nlm.nih.
gov/geo/), namely GSE50081, GSE31210, and GSE68465, 
were collected. These datasets are listed in Supplemental Table 
S1. To convert Ensembl IDs to SYMBOL IDs within the 
RNA-seq datasets, we employed the R packages clusterProfiler 
and org.Hs.eg.db (version 3.17.0).16 For the microarray data, 
batch effects were adjusted through the ComBat function 

within the sva R package.17 After obtaining these datasets, we 
retained the LUAD samples only. Additionally, only samples 
with both gene expression and follow-up information were 
included in subsequent analyses.

Statistical analysis

Prognostic analysis in this study involved calculating Hazard 
Ratios (HR) using Kaplan–Meier (KM) analysis, coupled with 
time-dependent Receiver Operating Characteristic (ROC) 
curve assessments. The “survival” R package was employed for 
KM analysis and Cox regression modeling. The “survivalROC” 
R package was used to determine the Area Under the ROC 
Curves (AUC).18 Specifically, Cox regression models were 
built using the coxph function from this R package to investi-
gate the association between gene expression and clinical out-
comes. The significance of the Kaplan–Meier survival curves 
was determined through the log-rank test.

In assessing the relationships between variables, Spearman 
correlation analysis was employed to calculate correlation coef-
ficients. When comparing two continuous variables, we uti-
lized either the Wilcoxon rank-sum test based on the 
distribution characteristics of the data.

Immunohistochemistry (IHC)

In this investigation, LUAD tissue microarray (TMA) were 
obtained from Shanghai Zhuoli Biotech Company. The TMA, 
identified as ZL-Luc601, contained 31 validated LUAD tissue 
samples, each accompanied by relevant clinical data. The acqui-
sition of these samples was approved by the Ethics Committee 
of Shanghai Zhuoli Biotech Company (approval number 
SHLLS-BA-22101102), with written informed consent 
acquired from each participant for the use of their samples in 
this study.

For the immunohistochemistry protocol, detailed method-
ologies are outlined in our previously published paper,19 with a 
summary provided herein. Antigen retrieval was performed on 
tissue slices or TMAs using a citrate antigen retrieval solution. 
This was followed by blocking the endogenous peroxidase 
activity with a 1% H2O2 solution and applying nonimmune 
goat serum for blocking. Tissue slices were incubated overnight 
at 4°C with the primary antibody, followed by a 30-minute 
room temperature incubation with a biotinylated secondary 
antibody. This was succeeded by a 15-minute room tempera-
ture incubation with streptavidin-conjugated horseradish per-
oxidase (HRP). The HRP activity was visualized using 
diaminobenzidine tetrahydrochloride (DAB), and nuclear 
staining was conducted using haematoxylin. The scoring of 
immunoreactive cells was categorized as 0 (0%), 1 (1-10%), 2 
(11-50%), and 3 (>50%), while staining intensity was visually 
scored and graded as 0 (negative), 1 (weak), 2 (moderate), and 
3 (strong). The specific antibody employed in this study was 
the anti-CTSL antibody (Immnoway, YT5124).

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Functional enrichment analysis

We explored the relationship between CTSL expression and 
the expression profiles of all mRNAs, utilizing the Spearman 
correlation method for analysis. To pinpoint functional enrich-
ment and establish connections with Hallmark pathways, the 
“clusterProfiler”16 R package was employed. This method ena-
bled us to detect and highlight biologically significant path-
ways that may be associated with CTSL expression.

Assessing CTSL dependency

Our investigation into the dependency of various tumor cell 
lines on CTSL was conducted through the Dependency Map 
(DepMap) portal, specifically leveraging CRISPR data 
(https://depmap.org/portal/). The analysis encompassed two 
main modules within the DepMap resource: “Perturbation 
Effects” and “Predictability.” These modules were critical in 
providing a comprehensive analysis of gene dependency and 
co-dependency. Key to this analysis was the utilization of the 
“Achilles_gene_effect.csv” and “sample_info.csv” files from the 
DepMap dataset. These files provided the necessary data for a 
thorough assessment of CTSL’s role across different tumor cell 
lines.

The landscape of mutation

In our genomic analysis, we quantified all base substitutions, 
insertions, and deletions within the coding regions of targeted 
genes. The top 10 genes exhibiting frequent mutations were 
identified as driver genes using the “maftools” R package.20 
Corresponding to the expression levels of CTSL, we delineated 
the mutation landscapes for these genes across two distinct 
sample groups, considering a P-value <.05 to indicate signifi-
cant differences. To identify critically amplified and deleted 
genomic regions, we employed the Genomic Identification of 
Significant Targets in Cancer (GISTIC) 2.0 pipeline. This 
enabled us to construct a mutational landscape map for Copy 
Number Alterations (CNA), highlighting amplifications and 
deletions in the top 5 genes based on copy number variations. 
We further examined and compared the expression of each 
gene across groups categorized by varying CTSL expression 
levels. For visualization purposes, the “ComplexHeatmap” R 
package21 was utilized, providing a clear and comprehensive 
representation of these genomic differences.

Immunotherapy response evaluation

We utilized the online tool “BEST” (https://rookieutopia.com/
app_direct/BEST/) to forecast patient responses to immune 
checkpoint blockade (ICB) therapy.22 The transcriptomic 
expression profiles were compared among patient groups with 
different levels of CTSL expression and varied immunotherapy 
outcomes. For the immunotherapy cohort, samples were strati-
fied according to optimal CTSL expression cut-off values for 
KM survival analysis.

Results
Multicenter data indicate that CTSL is an 
unfavorable prognostic factor in LUAD

This study, outlined in Figure 1, involved the collection of mul-
tiomic data from the TCGA and three large-sample LUAD 
datasets from the GEO, specifically from Japan (GSE31210), 
Canada (GSE50081), and the United States (GSE68465). 
Our analysis identified CTSL as a potential biomarker for 
LUAD. Subsequent validation through immunohistochemical 
analyses in a local cohort, multi-omics evaluations, and pan-
cancer assessments confirmed that CTSL was an adverse prog-
nostic factor in LUAD.

Initially, to assess the prognostic significance of CTSL in 
LUAD, KM survival analysis was conducted across multicenter 
cohorts. Considering various prognostic endpoints (OS, pro-
gression-free interval [PFI], disease-free survival [DFS], and 
progression-free survival [PFS]), groups with higher CTSL 
expression had poorer prognoses in LUAD patients than those 
with lower CTSL expression (Figure 2A–G, P < .05). Both 
univariate and multivariate Cox regression analyses were sub-
sequently performed. The results indicated that the signifi-
cance of CTSL in multivariate Cox regression was not 
statistically significant only in the GSE31210-OS (hazard 
ratio [HR] = 1.438, P = .22) and GSE50081-DFS (HR = 1.471, 
P = .194) datasets. In contrast, in the other datasets, higher 
CTSL expression levels were independently associated with 
increased risk in patients with LUAD (Figure 2H and I, 
P < .05).

IHC of CTSL in the local cohort

To substantiate the findings obtained from public datasets, we 
performed an IHC assay on our local cohort. This step was 
pivotal for confirming the prognostic significance of CTSL in 
LUAD at the protein expression level using a tissue microar-
ray. Our findings, as depicted in Figure 3A, revealed a pre-
dominant cytoplasmic localization of CTSL. Notably, elevated 
CTSL expression was correlated with advanced disease stage 
(Figure 3A). KM survival analysis further revealed that high 
CTSL expression was indicative of an unfavorable prognosis 
in terms of OS (Figure 3B). Time-dependent ROC analysis, 
as shown in Figure 3C, revealed that the CTSL had a signifi-
cant ability to predict third- and fifth-year survival (3-year 
AUC = 0.85, 5-year AUC = 0.91). This in-depth analysis high-
lights the crucial role of CTSL as a prognostic marker for sur-
vival outcomes in LUAD patients.

CTSL as a prognostic factor in multiple solid 
tumors

Our research initially highlighted the significant prognostic 
role of CTSL in LUAD. To explore whether CTSL’s predictive 
capability extends beyond LUAD, we performed a comprehen-
sive pan-cancer analysis. Using the TCGA database, we 

https://depmap.org/portal/
https://rookieutopia.com/app_direct/BEST/
https://rookieutopia.com/app_direct/BEST/
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examined 32 different cancer types. Our findings revealed 
increased CTSL expression in various cancers, including uveal 
melanoma (UVM), skin cutaneous melanoma (SKCM), kidney 
renal papillary cell carcinoma (KIRP), sarcoma (SARC), and 
diffuse large B-cell lymphoma (DLBC). Conversely, a reduc-
tion in CTSL expression was noted in Esophageal Carcinoma 
(ESCA), Rectum Adenocarcinoma (READ), Colon 
Adenocarcinoma (COAD), Stomach Adenocarcinoma 
(STAD), Cervical Squamous Cell Carcinoma and Endocervical 
Adenocarcinoma (CESC) (Figure 4A). Univariate Cox regres-
sion analysis (Figure 4B) identified CTSL as a risk factor for 
several tumors, which may affect OS, PFI, or both, including 
glioblastoma multiforme (GBM), ESCA, head and neck squa-
mous cell carcinoma (HNSC), low-grade glioma (LGG), liver 
hepatocellular carcinoma (LIHC), lung squamous cell carci-
noma (LUSC), STAD, kidney chromophobe (KICH), and 
prostate adenocarcinoma (PRAD). Interestingly, CTSL 
appeared to act as a protective factor in UVM and kidney renal 
clear cell carcinoma (KIRC). These observations suggest that 
the role of CTSL is not only related to LUAD prognosis but 
also extends to other solid tumors, highlighting its broader pre-
dictive significance.

Knocking out CTSL inhibits LUAD cell viability

To elucidate the functional impact of CTSL in vitro, we used 
CRISPR/Cas9 datasets for the targeted knockout of CTSL in 
various cell lines. Analysis conducted with DepMap revealed 

that negative scores on the gene effect scale (dependency 
scores) are indicative of reduced cell proliferation and survival 
subsequent to the depletion of a specific gene. As depicted in 
Figure 5A, the knockout of CTSL manifested differential 
effects across cell lines, with a majority displaying dependency 
scores below zero. This trend suggests a predominant inhibi-
tory influence on cellular growth (Supplemental Table S3). In 
particular, the LUAD cell line NCIH1573 showed the most 
pronounced dependency (Figure 5B). NCIH1573 is a type of 
adherent cell that originates from a 35-year-old female who 
was diagnosed with stage 4 LUAD. It is derived from tumor 
cells of soft tissue prior to radiation therapy. Furthermore, 
Figure 5C shows that the top ten lung cancer cell lines exhib-
ited the most significant sensitivity to CTSL depletion, under-
scoring their vulnerability to its absence.

Functional enrichment analysis of CTSL

Given the prognostic importance of CTSL in cancer, along 
with its in vitro oncogenic effects, our research aimed to explore 
its underlying biological functions. We employed GSEA 
focused on hallmark pathways to characterize the activity pro-
file of CTSL. Figure 6 shows that CTSL predominantly acti-
vated several pathways critically associated with tumor 
progression, such as angiogenesis, hedgehog signaling, TGF-
beta signaling, epithelial‒mesenchymal transition, and hypoxia. 
Concurrently, CTSL was found to suppress a number of classi-
cal pathways, including apoptosis, mTORC signaling, DNA 

Figure 1.  Flowchart.
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Figure 2.  CTSL is an unfavorable biomarker in LUAD: (A–G) Kaplan–Meier survival analyses for CTSL in different LUAD datasets, (H) univariate Cox 

regression, and (I) multivariate Cox regression assessing CTSL in multi-center datasets.
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Figure 3.  IHC of CTSL in local LUAD cohort: (A) representative staining images of CTSL in patients with varying prognoses within the LUAD cohort, (B) 

Kaplan–Meier survival curves depicting OS in LUAD patients, categorized into low (n = 11) and high (n = 20) CTSL expression groups, and (C) time-

dependent receiver ROC analysis evaluating the predictive accuracy of CTSL for 3-year and 5-year OS in LUAD patients.
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Figure 4.  Pan-cancer analysis of CTSL: (A) expression levels of CTSL in TCGA pan-cancer and (B) univariate Cox regression assessing CTSL 

expression in PFI and univariate Cox regression assessing CTSL expression in OS across different tumor types.
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repair, and those related to the cell cycle. This dual role of 
CTSL, both in the activation and suppression of key pathways, 
offers a strategic direction for our subsequent mechanistic 
investigations into the role of CTSL in cancer biology.

Role of CTSL in the genomic landscape of LUAD 
mutations

While our preceding analyses focused primarily on the tran-
scriptome, we explored the role of CTSL at the mutation 
level in LUAD (Figure 7). Within the TCGA-LUAD 
cohort, the top ten genes exhibiting high mutation rates in 
tumor samples included TP53, TTN, MUC16, APOB, 
ASXL3, HMCN1, CNTNAP5, PKHD1, NF1, and SCEP1 
(Figure 7A). Notably, TP53, TTN, and MUC16 had 

mutation frequencies of 49%, 45%, and 39%, respectively. 
Differential analysis based on CTSL expression levels 
revealed that genes such as TP53, APOB, and FRAS1 pre-
sented a relatively high mutation frequency in the 
high-CTSL-expressing group (Figure 7B). With respect to 
copy number variations (CNVs), the most commonly ampli-
fied genomic regions were at 1q22-Amp and 1q21.3-Amp, 
affecting up to 80% of the samples. Additionally, the most 
frequent CNV losses were 9q21.3-Del, 9q23-Del, and 
13q12.11-Del, with frequencies of 60%, 59%, and 58%, 
respectively. However, no significant differences were 
observed between the high and low CTSL expression groups 
in terms of CNVs (Figure 7B). These findings suggest that 
CTSL may be more closely associated with gene mutations 
than with changes at the CNV level in LUAD.

Figure 5.  Knocking out CTSL displays negative dependency score: (A) knocking out CTSL by CRISPR/Cas9 in different human cancer cell lines, (B) 

identification of the top 10 cancer cell lines exhibiting heightened sensitivity to CTSL knockout, and (C) identification of the top 10 lung cancer cell lines 

exhibiting heightened sensitivity to CTSL knockout.
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CTSL is associated with the immunotherapy 
response

Immune checkpoint inhibitors (ICIs) have become a pivotal 
treatment modality for LUAD. Following the identification of 
CTSL as a prognostic factor in LUAD, we explored its associa-
tion with the immunotherapy response. In the anti-PD-1/

PD-L1 cohorts of Cho and Kim, both NSCLC patients, ele-
vated CTSL expression was correlated with improved out-
comes. Specifically, patients in the responder group presented 
increased CTSL expression levels, and the AUC for the ability 
of CTSL to predict treatment response exceeded 0.7 (Figure 
8A and B). Furthermore, similar trends were observed in other 
cancer cohorts treated with immune checkpoint inhibitors; 

Figure 6.  Functional enrichment analysis.
Top 10 Hallmark pathways depicting activation and suppression by CTSL.
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high CTSL expression was linked to better outcomes. Although 
the P values from the KM survival analysis did not reach statis-
tical significance, there were notable differences in survival 
rates between the two groups (Figure 8C–E). These findings 
suggest that CTSL has prognostic value not only in postopera-
tive LUAD patients but also as a potential biomarker for pre-
dicting response to immunotherapy.

Discussion
Lung cancer continues to be the leading cause of cancer-
related deaths worldwide, despite significant advancements 
in diagnosis and treatment modalities.23,24 LUAD, the most 
common form of lung cancer, is characterized by substantial 
morphological heterogeneity and comprises tumor cells 
across a broad spectrum of histological subtypes.25,26 Through 
comprehensive bioinformatics analysis of big data, we identi-
fied candidate genes correlated with poor prognosis in 
patients with LUAD. This approach enables the prediction 
of target genes that may play crucial roles in the molecular 
progression of lung cancer, thus guiding the implementation 
of gene therapy in clinical settings. Capitalizing on these 

extensive data repositories, our study identified CTSL as a 
promising biomarker for LUAD.

CTSL, a ubiquitously expressed lysosomal endopeptidase, 
functions primarily in the terminal degradation of intracellular 
and endocytosed proteins.24,25 Recent studies have highlighted 
the role of CTSL in the entry mechanism of SARS-CoV-2 
into host cells, in which it cleaves the receptor-bound viral 
spike protein, facilitating viral activation and infection.27 
Furthermore, in the realm of cancer research, CTSL has been 
the subject of several studies. Its upregulation has been observed 
in various cancers, including ovarian, breast, prostate, lung, gas-
tric, pancreatic, and colon cancers.10,11,14,28-30 Notably, increas-
ing evidence suggests a correlation between CTSL expression 
and cancer grade and stage. Its potential role in advancing 
tumor progression and metastatic aggressiveness has also been 
proposed. Previous research has demonstrated a significant 
association between increased CTSL expression and reduced 
OS in patients with lung cancer and its contribution to chemo-
therapy resistance in vitro.12,31 Additionally, during tumor 
immunotherapy, elevated CTSL expression has been identified 
as an indicator of poor response.15 However, these findings 

Figure 7.  Mutation landscape: (A) heatmap presents an integrated genomic landscape of high and low CTSL expression and (B) mutational differences in 

FMGs of CTSL expression subgroups.
*P < .05. **P < .01.
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have offered a somewhat one-dimensional view of CTSL in 
LUAD, lacking comprehensive validation through multiomics, 
multicenter, and local cohort validation. Our current research 
endeavors to fill this gap, providing a more holistic understand-
ing of the role of CTSL in LUAD.

Our study revealed that CTSL serves as a detrimental prog-
nostic factor not only in the TCGA-LUAD cohort, which pre-
dominantly consists of American patients, but also in Japanese, 

Canadian, and our local Chinese cohorts. This uniformity in 
the role of CTSL across various ethnic backgrounds highlights 
its potential as a universal biomarker for LUAD prognosis. 
Interestingly, while CTSL serves as a negative prognostic fac-
tor in surgical intervention cohorts, it acts as a protective factor 
in immunotherapy cohorts. These results corroborate those of 
previous studies. This study revealed that CTSL is especially 
differentially expressed in myeloid cells. CTSL-related genes 

Figure 8.  CTSL is a biomarker for therapy response in LUAD: (A and B) therapy response analysis of CTSL in LUAD anti-PD-1/PD-L1 cohorts and (C–E) 

therapy response analysis of CTSL in ICI cohorts.



12	 Cancer Informatics ﻿

are involved mostly in complement and coagulation cascades, 
immune response activation, cytokine-mediated signaling 
pathways, etc., according to functional analysis. Moreover, the 
CTSL high-expression group had higher StromalScore, 
ImmuneScore, and ESTIMATEScore, indicating enrichment 
of immune components and increased immune activity in the 
population.15 The interaction between PD-1 and PD-L1 leads 
to the suppression of T cells, causing tumor immune escape, 
which can be blocked by anti-PD-1/PD-L-1.32 One hypoth-
esis is that CTSL enhances the immune response, which is 
equivalent to enhancing the function of anti-PD-1/PD-L-1. 
Moreover, high-CTSL patients tend to have a greater tumor 
mutation burden (TMB), and a previous study suggested that 
patients with a higher TMB might respond better to anti-
PD1/PD-L1 therapy.33 This observation suggests that, at an 
early stage, high CTSL expression predicts worse outcomes 
than low CTSL expression does; however, patients with high 
CTSL expression postsurgery might benefit more from prior-
itizing immunotherapy. This discovery could facilitate the 
development of more personalized treatment strategies for 
patients.

Moreover, CTSL also emerged as an indicator of poor prog-
nosis in a range of solid tumors in our pancancer analysis. Acting 
as a cysteine protease, CTSL might be involved in a series of 
common pathways that are not confined to LUAD. We further 
explored the expression pattern of CTSL among various cancer 
types. Next, we explored the influence of CTSL on tumor cells. 
The knockout of CTSL not only affects lung cancer cell prolif-
eration but also inhibits the growth of various cancer cell lines 
within the DepMap project. Remarkably, the dependency scores 
for the NCIH1573 LUAD cell line were among the highest. 
The functional enrichment analysis in our study suggested that 
the oncogenic effect of CTSL in LUAD may be attributed to 
the activation of pathways such as angiogenesis, Hedgehog 
signaling, TGF-beta signaling, epithelial‒mesenchymal transi-
tion, and hypoxia. These pathways reveal that CTSL might 
affect cell proliferation, invasion and metastasis. The generation 
of blood vessels is also involved in tumor growth. In tumor cells, 
CTSL can be largely produced and augment the invasive/meta-
static potential of cancer cells through direct degradative prote-
olysis of several components of the extracellular matrix (ECM) 
and basement membrane. In the nucleus, CTSL-processed 
CCAAT-displacement protein/cut homeobox (CDP/Cux) 
exhibits enhanced DNA-binding properties, which in turn con-
fers a replicative and metastatic advantage. CDP/Cux promotes 
proliferation by accelerating the S phase of the cell cycle.13 
These findings offer a comprehensive perspective on the role of 
CTSL in the context of LUAD.

Overall, we can view the comprehensive potential therapeutic 
implications of targeting CTSL in lung adenocarcinoma treat-
ment. It is involved in several aspects of tumor development, 
such as invasion and proliferation, while it also acts in modulat-
ing the immune response and tumor microenvironment. Thus, 

breakthroughs in both tumor biology and targeted therapy are 
needed. All these potential therapeutic implications may propel 
personalized therapy to distinguish CTSL levels among patients.

Limitation
It is important to acknowledge some limitations in our current 
study. For example, the analysis results derived from DepMap 
lack validation through in vivo and in vitro assays. Additionally, 
elucidation of the underlying mechanisms of CTSL in LUAD 
warrants further investigation in future research endeavors. In 
the future, further research on the molecular biology and 
immune profile of CTSL is needed. We hope to validate our 
conclusions clinically based on a large-scale study.

Conclusion
Overall, our results align with and build upon those of previous 
studies, establishing a foundation for further research to explore 
the broader implications of CTSL in different cancer types.

Abbreviations
AUC	 area under the curve
CDP	 CCAAT-displacement protein
CESC	� cervical squamous cell carcinoma and 

endocervical adenocarcinoma
CNA	 copy number alteration
CNV	 copy number variation
COAD	 colon adenocarcinoma
CRISPR	� clustered regularly interspaced short palin-

dromic repeats
CTSL	 Cathepsin L
Cux	 cut homeobox
DAB	 diaminobenzidine tetrahydrochloride
DepMap	 dependency map
DFS	 disease free survival
DLBC	 diffuse large B-cell lymphoma
ESCA	 esophageal carcinoma
GBM	 glioblastoma multiforme
GISTIC	� Genomic identification of significant targets 

in cancer
HNSC	 head and neck squamous cell carcinoma
HR	 hazard ratio
HRP	 horseradish peroxidase temperature
ICB	 immune checkpoint blockade
ICI	 immune checkpoint inhibitor
IHC	 immunohistochemistry
KICH	 kidney chromophobe
KIRC	 kidney renal clear cell carcinoma
KIRP	 kidney renal papillary carcinoma
KM analysis	 Kaplan–Meier analysis
LGG	 lower grade glioma
LIHC	 liver hepatocellular carcinoma
LUAD	 lung adenocarcinoma
LUSC	 lung squamous cell carcinoma



Lu et al	 13

OS	 overall survival
PFI	 progression-free interval
PFS	 progression-free survival
PRAD	 prostate adenocarcinoma
READ	 rectum adenocarcinoma
ROC	 receiver operating characteristic
SARC	 sarcoma
SKCM	 skin cutaneous melanoma
STAD	 stomach adenocarcinoma
TGF-β	 transforming growth factor β
TMA	 tissue microarray
TMB	 tumor mutation burden
UVM	 uveal melanoma

Acknowledgements
The authors would like to thank the researchers of the publicly 
available data. Our results published here are in part based 
upon data generated by the TCGA Research Network: https://
www.cancer.gov/tcga. The author would thank the TCGA 
Research Network of their work.

Author Contributions
Chao Cai, Jianjiang Xie and Gao Yi were instrumental in for-
mulating the concept and design of this study. The task of 
gathering and analyzing the public datasets was carried out by 
Jianming Lu, Le Zhang, Jiaqi Liang, and Guifang Yu. The 
draft of the manuscript was prepared by Jianming Lu, Jiaqi 
Liang, and Gang Xiao. Additionally, the immunohistochemis-
try work was adeptly completed by Jianming Lu, Zitao He and 
Jiaqi Liang. All authors made significant contributions to the 
development of the article and have given their approval for the 
final version to be submitted.

Availability of Data and Materials
The datasets analyzed during the current study are available in 
public databases. This RNA sequencing (RNA-seq) data, 
mutation details, and clinical information for Lung 
Adenocarcinoma (TCGA-LUAD) and pan-cancer cohorts, 
sourced from the UCSC Xena database (https://xenabrowser.
net/datapages/). To further substantiate our findings, LUAD 
datasets from the GEO database (http://www.ncbi.nlm.nih.
gov/geo/), namely GSE50081, GSE31210, and GSE68465, 
were collected. For any further inquiries, please contact the cor-
responding author.

Ethics Approval
LUAD tissue microarray (TMA) were obtained from Shanghai 
Zhuoli Biotech Company. The acquisition of these samples 
was approved by the Ethics Committee of Shanghai Zhuoli 
Biotech Company (approval number SHLLS-BA-22101102), 
with written informed consent acquired from each participant 
for the use of their samples in this study.

Consent for Participate
The written informed consent has been acquired from each 
participant.

ORCID iDs
Jianming Lu  https://orcid.org/0000-0002-3794-641X
Chao Cai  https://orcid.org/0000-0001-7945-4301

Supplemental Material
Supplemental material for this article is available online.

References
	 1.	 Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin. 

2023;73:17-48.
	 2.	 Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer 

survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 
patients diagnosed with one of 18 cancers from 322 population-based registries 
in 71 countries. Lancet. 2018;391:1023-1075.

	 3.	 Miller M, Hanna N. Advances in systemic therapy for non-small cell lung can-
cer. Br Med J. 2021;375:2363.

	 4.	 Roychowdhury S, Chinnaiyan AM. Translating cancer genomes and transcrip-
tomes for precision oncology. CA Cancer J Clin. 2016;66:75-88.

	 5.	 Huang H, Yang Y, Zhu Y, et al. Blood protein biomarkers in lung cancer. Cancer 
Lett. 2022;551:215886.

	 6.	 Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for 
non-small-cell lung cancer. Nat Med. 2021;27:1345-1356.

	 7.	 Sholl LM. Next-generation sequencing from liquid biopsies in lung cancer patients: 
advances in comprehensive biomarker testing. J Thorac Oncol. 2017;12:1464-1466.

	 8.	 Zhao MM, Yang WL, Yang FY, et al. Cathepsin L plays a key role in SARS-
CoV-2 infection in humans and humanized mice and is a promising target for 
new drug development. Signal Transduct Target Ther. 2021;6:134.

	 9.	 Sun M, Ouzounian M, de Couto G, et al. Cathepsin-L ameliorates cardiac 
hypertrophy through activation of the autophagy-lysosomal dependent protein 
processing pathways. J Am Heart Assoc. 2013;2:e000191.

	10.	 Cui K, Yao S, Liu B, et al. A novel high-risk subpopulation identified by CTSL 
and ZBTB7B in gastric cancer. Br J Cancer. 2022;127:1450-1460.

	11.	 Sudhan DR, Pampo C, Rice L, Siemann DW. Cathepsin L inactivation leads to 
multimodal inhibition of prostate cancer cell dissemination in a preclinical bone 
metastasis model. Int J Cancer. 2016;138:2665-2677.

	12.	 Zhao Y, Shen X, Zhu Y, et al. Cathepsin L-mediated resistance of paclitaxel and 
cisplatin is mediated by distinct regulatory mechanisms. J Exp Clin Cancer Res. 
2019;38:333.

	13.	 Sudhan DR, Siemann DW. Cathepsin L targeting in cancer treatment. Pharma-
col Ther. 2015;155:105-116.

	14.	 Han ML, Zhao YF, Tan CH, et al. Cathepsin L upregulation-induced EMT 
phenotype is associated with the acquisition of cisplatin or paclitaxel resistance 
in A549 cells. Acta Pharmacol Sin. 2016;37:1606-1622.

	15.	 Huang L, Lou N, Xie T, Tang L, Han X, Shi Y. Identification of an antigen-pre-
senting cells/T/NK cells-related gene signature to predict prognosis and CTSL 
to predict immunotherapeutic response for lung adenocarcinoma: an integrated 
analysis of bulk and single-cell RNA sequencing. Cancer Immunol Immunother. 
2023;72:3259-3277.

	16.	 Wu T, Hu E, Xu S, et al. ClusterProfiler 4.0: a universal enrichment tool for 
interpreting omics data. Innovation (Camb). 2021;2:100141.

	17.	 Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for 
removing batch effects and other unwanted variation in high-throughput experi-
ments. Bioinformatics. 2012;28:882-883.

	18.	 Li R, Zhu J, Zhong WD, Jia Z. Comprehensive evaluation of machine learning 
models and gene expression signatures for prostate cancer prognosis using large 
population cohorts. Cancer Res. 2022;82:1832-1843.

	19.	 Zhong C, Long Z, Yang T, et al. M6A-modified circRBM33 promotes pros-
tate cancer progression via PDHA1-mediated mitochondrial respiration regu-
lation and presents a potential target for ARSI therapy. Int J Biol Sci. 
2023;19:1543-1563.

	20.	 Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28:1747-1756.

	21.	 Gu Z, Hübschmann D. Make Interactive Complex Heatmaps in R. Bioinformat-
ics. 2022;38:1460-1462.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://orcid.org/0000-0002-3794-641X
https://orcid.org/0000-0001-7945-4301


14	 Cancer Informatics ﻿

	22.	 Liu Z, Liu L, Weng S, et al. BEST: a web application for comprehensive bio-
marker exploration on large-scale data in solid tumors. J Big Data. 
2023;10:165.

	23.	 Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. 
CA-A Cancer J Clin. 2021;71:209-249.

	24.	 Li C, Shao J, Li P, Feng J, Li J, Wang C. Circulating tumor DNA as liquid biopsy 
in lung cancer: biological characteristics and clinical integration. Cancer Lett. 
2023;577:216365.

	25.	 Lim Z-F, Ma PC. Emerging insights of tumor heterogeneity and drug resistance 
mechanisms in lung cancer targeted therapy. J Hematol Oncol. 2019;12:134.

	26.	 Zhan D, Zheng N, Zhao B, et al. Expanding individualized therapeutic options 
via genoproteomics. Cancer Lett. 2023;560:216123.

	27.	 Zhao M-M, Zhu Y, Zhang L, et al. Novel cleavage sites identified in SARS-
CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection 
and treatment strategies. Cell Discovery. 2022;8:53.

	28.	 Zhang W, Wang S, Wang Q , Yang Z, Pan Z, Li L. Overexpression of cysteine 
cathepsin L is a marker of invasion and metastasis in ovarian cancer. Oncol Rep. 
2014;31:1334-1342.

	29.	 Singh N, Das P, Gupta S, et al. Plasma cathepsin L: a prognostic marker for pan-
creatic cancer. World J Gastroenterol. 2014;20:17532-17540.

	30.	 Sigloch FC, Tholen M, Gomez-Auli A, Biniossek ML, Reinheckel T, Schil-
ling O. Proteomic analysis of lung metastases in a murine breast cancer model 
reveals divergent influence of CTSB and CTSL overexpression. J Cancer. 
2017;8:4065-4074.

	31.	 Cui F, Wang W, Wu D, He X, Wu J, Wang M. Overexpression of Cathepsin L 
is associated with gefitinib resistance in non-small cell lung cancer. Clinic Trans-
lat Oncol. 2016;18:722-727.

	32.	 Niu M, Yi M, Li N, Luo S, Wu K. Predictive biomarkers of anti-PD-1/PD-L1 
therapy in NSCLC. Exp Hematol Oncol. 2021;10:18.

	33.	 Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 
checkpoint blockade-based immunotherapy. Science. 2018;362:eaar3593.


