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Abstract
Understanding mental processes in complex human behavior is a key issue in driving, representing a milestone for

developing user-centered assistive driving devices. Here, we propose a hybrid method based on electroencephalographic

(EEG) and electromyographic (EMG) signatures to distinguish left and right steering in driving scenarios. Twenty-four

participants took part in the experiment consisting of recordings of 128-channel EEG and EMG activity from deltoids and

forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm mod-

ulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent

EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-

synchronization resulting from the non-ecological task to detect the steering side using cross-correlation analysis with the

ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-

ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-

correlation patterns discriminate the steering side earlier relative to the single EMG signal. This hybrid system overcomes

the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy, and adaptability, thus

adding to the EMG the characteristic predictive power of the cerebral data. These results prove how it is possible to

complement different physiological signals to control the level of assistance needed by the driver.
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Introduction

Recent advances in sensing and control techniques have

made it possible to design cars with a large set of features

that can take control of specific aspects of the driving task

(e.g., cruise control, autonomous driving) or provide

information to the driver to support specific maneuvers

(e.g., lane departure). Because driving is a complex

behavior involving interrelated motor and cognitive ele-

ments such as attention, visuospatial interpretation, visuo-

motor integration, and decision making (Calhoun et al.

2002; Calhoun and Pearlson 2012), to achieve ever-higher

levels of driver support, it is important to investigate and

characterize the related brain processes underlying the

driver’s actions.

In the years, several attempts were made to characterize

the neural correlates of driving in scenarios with different

levels of ecology and neural variables, spanning from

hemodynamic (Walter et al. 2001; Spiers and Maguire

2007; Mader et al. 2009; Calhoun and Pearlson 2012;

Schweizer et al. 2013), to magneto- (Fort et al. 2010;

Sakihara et al. 2014) and electrophysiological activity

(Schier 2000; Haufe et al. 2011, 2014; Gheorghe et al.

2013; Khaliliardali et al. 2015; Kim et al. 2015; Zhang

et al. 2015; Brooks and Kerick 2015; Brooks et al. 2016;

Garcia et al. 2017; Vecchiato et al. 2018, 2020). In par-

ticular, these latter studies show the possibility of using

electroencephalography (EEG) to decode the driver’s

cognitive processes in simulated and real car scenarios with

the ultimate goal of predicting the upcoming action.

Although the success in the classification of salient driving
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events such as braking (Haufe et al. 2011, 2014; Kim et al.

2014, 2015; Hernández et al. 2018; Wang et al. 2018; Teng

et al. 2018; Lin et al. 2018; Nguyen and Chung 2019) and

steering (Gheorghe et al. 2013) actions, the level of accu-

racy is still moderate. Most importantly, the detected

neurophysiological features are elicited just around a few

milliseconds before the upcoming driving event, making it

difficult to implement electronic assisting devices. In fact,

despite the noteworthy advancement of recent years, there

are still several technological and psychophysiological

issues that limit the utilization of the EEG for the real-time

identification and monitoring of brain-related activity in

driving scenarios. For instance, most EEG sensors remain

uncomfortable to place and keep on the head of people who

are not used to such recordings, leading to an increase of

artifacts and the corruption of the recorded brain signals.

Factors such as attention, memory load, and competing

cognitive processes (Gonçalves et al. 2006; Käthner et al.

2014; Calhoun and Adali 2016), as well as user’s indi-

vidual characteristics such as lifestyle, gender, and age

(Kasahara et al. 2015) influence brain dynamics producing

significant intra- and inter-subject variability (Saha and

Baumert 2020; Saha et al. 2021). The low signal-to-noise

ratio returned by raw EEG data requires a range of con-

ceptually very different and computationally expensive

algorithms to extract significant temporal and frequency

EEG features (Müller et al. 2004; Lotte et al. 2007, 2018;

Krusienski et al. 2011; Bellotti et al. 2019). Hence, the

computing hardware and software must warrant a suffi-

ciently high performance and low latency to preserve the

earliness of prediction. For these reasons, it is not always

useful to rely on EEG-based predictions alone (Wöhrle

et al. 2017). These aspects motivate the need to identify

other robust physiological features tackling increased noise

due to environmental characteristics and the interaction

among neural processes (Lohani et al. 2019). The final aim

is to foster the utilization of neurophysiological measure-

ments in experimental settings closer to everyday life

activities.

In this sense, surface electromyography (EMG) provides

a non-intrusive way of measuring muscle activation and is

an appropriate technique when assessing active steering

systems (De Luca 1997; Ahlström et al. 2019). It opened

new perspectives in ergonomics and provided new tools for

analyzing the neuromuscular system in working environ-

ments. It is experiencing a growing interest in medical and

research applications thanks to the recent availability of

novel low-end commercial products increasing the weara-

bility relative to EEG sensors allowing to perform longer

recording sessions more comfortably (Gazzoni et al. 2016;

Milosevic et al. 2017). Previously, EMG recordings have

been used to assess the function of the upper limb muscles

during car driving (Jonsson and Jonsson 1975; Liu et al.

2012; Gao et al. 2014). The main findings are that the

prime movers are primarily a consequence of steering

direction while the stabilizing or fixating muscles are pri-

marily constant, returning that the key muscles correlated

to steering are the triceps brachii, the deltoids, pectoralis

major, and infraspinatus (Pick and Cole 2006; Liu et al.

2012; Gao et al. 2014). In particular, it is well known that

the whole deltoid muscle acts in the abduction of the arm,

and there is a synergy between the anterior portion of the

muscle and the contralateral posterior portion when mov-

ing the steering wheel. More specifically, the anterior

portion serves to rotate the steering wheel contralaterally

and the posterior portion to rotate it ipsilaterally (Jonsson

and Jonsson 1975). EMG can be a reliable method for

action prediction because it has limited sensitivity to

environmental disturbance (Bi et al. 2019). Compared to

EEG, surface EMG can be easily acquired and processed

and provide useful information on the movement that the

person is executing. Despite the advantages mentioned

above, EEG and EMG exhibit different temporal properties

concerning a movement onset: changes in the EMG can

only be observed close to the actual movement onset, while

it is possible to detect EEG motor biomarkers earlier (Bai

et al. 2011; Wöhrle et al. 2017; Trigili et al. 2019).

It has been demonstrated that voluntary movements

generate changes in the alpha and beta ranges of the EEG

spectrum (Pfurtscheller and Lopes da Silva 1999) and that

such rhythms are in turn related to modulations of the EMG

activity (Hari and Salenius 1999). Recent works have

focused on the synchronization between rhythmical activ-

ity in the motor cortex and muscular activity employing

cortico-muscular coherence, which is usually observed

during periods of muscular contraction and has been

reported in several studies involving both EEG and MEG

(Conway et al. 1995; Boonstra et al. 2009; Cheyne 2013;

Rizzo et al. 2020). Current approaches to cortico-muscular

coordination focus on associations and synchronous acti-

vation between individual brain rhythms at specific cortical

areas (e.g., motor cortex, hippocampus), and peripheral

muscle activity during specific movement tasks or exer-

cises in ecological conditions (e.g., walking and running)

(van Wijk et al. 2012; Cui et al. 2017; Rendeiro and

Rhodes 2018; Li et al. 2019a, 2020; Fauvet et al. 2019). In

such scenarios, the neuromuscular signals are noisier than

those collected in standard laboratory conditions due to

uncontrolled environmental settings, and there is also the

issue of addressing the simultaneous presence of concur-

rent cerebral processes. Finally, on the user side, there is

the need to create comfortable experimental settings to not

pollute the neuromuscular signals with undesired compo-

nents due to the experienced fatigue of wearing biomedical

sensors on the head and several parts of the body. To

overcome issues with both EEG- and EMG-based control
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methods, a combination of both systems, building on each

signal’s advantages and diminishing the limitations of

each, might be a promising strategy (Lalitharatne et al.

2013). It would then be optimal to identify the cerebral

features of interest in standard laboratory settings and then

look for neuromuscular invariants in more ecological set-

tings with higher recording complexity. In this way, offline

analysis performed on data collected in standard settings

would inform the online pipeline to implement to extract

neuromuscular features of interest.

Following this reasoning, we propose a hybrid method

to distinguish left from right steering in a driving simulator

based on EEG and EMG signals collected during steering

actions. While using EEG and EMG signals in steering

decoding would certainly add predictive power relative to

unimodal recordings, such a strategy is hurdled by the

complexity of combining the two acquisitions during real-

life driving. However, a potential solution could be to first

identify in a preliminary recording the steering-related

EEG features and then use such information during real

driving to increase the predictive power of the steering

action based solely on the EMG acquisition.

We used two experimental scenarios to demonstrate this

possibility: first, participants were required to perform

stand-alone steering wheel movements; successively, we

used a driving simulator that represents a step forward

towards recording the continuous EEG signals in the real

car in natural traffic conditions. This difference between

the experimental conditions led us to adopt the terms ‘‘non-

ecological’’ and ‘‘ecological’’ steering task. We hypothe-

sized that the electrophysiological correlates of the non-

ecological steering could assist the steering action detec-

tion in the ecological condition.

Starting from these premises, we first investigated brain

and muscular activity underlying steering behavior during

the non-ecological steering task. This procedure allowed us

to identify the EEG correlates of steering without con-

founding effects. Then, we correlated such features with

the EMG activity collected during a session of driving

simulation to extend the validity of the non-ecological

cerebral signatures to a more ecological steering task. This

double task approach enabled to (i) take advantage of

multimodal recordings exploiting the information carried

by both neural and muscular data, and (ii) solve ergonomic

issues related to the simultaneous acquisition of different

signals.

Therefore, we aimed to characterize the EEG–EMG

coupling associated with the natural and self-initiated

execution of steering actions while driving. To this end, we

took advantage of the independent component analysis

(ICA), which separates mixed EEG signals into maximally

independent activities, each characterized by a precise

scalp topography and a corresponding generator pattern,

typically modeled as patches of cortical pyramidal cells

(Delorme et al. 2012). This strategy also allowed us to

avoid field spread caused by the large distance between

sensors and neural sources and by the spatial blurring effect

of the skull on the scalp’s potential distribution of EEG

signals (Schoffelen and Gross 2009). Thus, we expect to

identify reliable, independent components whose topogra-

phy indicates the involvement of motor circuits, whose

reactivity precedes the steering action, and is correlated

with the muscular activity of the deltoids. Should the EEG–

EMG coupling be modulated across the two types of action

participants perform (i.e., left and right steering), this

would prove that such a hybrid method can be used to

discriminate and predict motor intentions associated with

natural driving behavior.

Material and methods

Participants

Twenty-four participants (6 females, M: 22.8 ± SD:

2.0 years of age) participated in this experiment. They

verbally declared that they were right-handed and had a

normal or corrected vision, no history of neurologic or

psychiatric disorders, and no daily medications. They all

have a driving license obtained from the Italian state

authority for motor vehicles. None of them had driving

experience on professional racetracks. They gave written

informed consent to participate in the study consisting of

two consecutive sessions comprising a non-ecological

steering task and a following ecological steering task.

Approval for the study was obtained by the local Ethical

Committee (comitato etico Unico per la provincia di

Parma).

Experimental scenarios

Non-ecological steering task

Participants seated in front of a computer screen at a dis-

tance of 1 m and were instructed to turn at a quiet pace the

steering wheel (Logitech G25) on the right or the left

according to a traffic sign randomly presented on display

after 1 s from an attentional cue (i.e., a white cross). Par-

ticipants who performed the steering within 2 s from the

traffic sign received an error message and repeated the trial.

According to this rule, 88 correct trials have been collected

for each participant, equally distributed between left and

right steering actions. Synchronization between the visual

stimulation, participant’s behavior, and EEG data was

realized using timestamps sent by a photodiode placed in

front of the screen to capture the task events through white
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labels onto a black background. Figure 1 shows the

experimental setup (panel A) and the time-course of the

task (panel B).

Ecological steering task

Participants were seated in a driving simulator composed

of the RSeat RS1 Assetto Corsa Special Edition (seat) and

Thrustmaster T500 RS (steering wheel and pedals). A

video game (Assetto Corsa—Kunos Simulazioni) was

displayed on a Samsung 40’’ 5300 class LED TV posi-

tioned 1 m from the participant’s seat (vertical field

view = 27.4�, horizontal field view = 46.8�). The car used

for the experiment was an Alfa Romeo Mito with an

automatic transmission. First, participants were asked to

get familiar with the environment and the setup by driving

for a lap on the Monte Erice track (downloadable at http://

assettocorsa.club/mods/tracks/monte-erice.html). After-

ward, they performed a single lap on the Coste Loop track

(part of the Assetto Corsa software), maintaining the right

lane with no particular constraints. They were asked to

drive naturally, as they would do in their own car. This

circuit simulates a part of the Garda Lake coastal road. No

other vehicle was present on both tracks. During the

experiment, we collected data related to the steering wheel

angle. The synchronization among all the recording devices

was implemented with the Lab Streaming Layer (LSL) as

described in our previous work (Vecchiato et al. 2018).

Figure 1 reports the experimental setup (panel C) and the

Coste Loop track (panel D).

Behavioral data collection and analysis

The steering wheel signals were collected during the non-

ecological and ecological tasks and segmented in trials

[- 2000, 2000] ms around the steering onset. In order to

identify the steering onset in the non-ecological task, we

consider the first part of the trial returning wheel angles

above the threshold of ± 2�. Of this segment, the time bin

corresponding to the point of maximum distance computed

Fig. 1 Pictures of the experimental setups related to the non-ecological (panel A) and ecological (panel C) steering task. Panel B shows the

timeline of the events during the non-ecological task. Panel D presents the road profile of the track used in the ecological steering task
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from the steering curve and the segment joining the first

and last trial sample was identified as the steering onset

(see Supplementary Material for a schematic representation

of the procedure). When uncertainty in the movement onset

arose, we discarded the trial (around 3.5%). This procedure

also served for epoching the EEG and EMG signals col-

lected during the non-ecological task into [- 2500, 2500]

ms trials around the steering onset.

Instead, in the ecological task, the steering onset was

determined by quantizing the steering wheel angle signal.

The quantization was realized partitioning the wheel signal

with a step of 0.125 between its minimum and maximum.

This step was developed to verify that the area-under-the-

curve for original and quantized signals differed less than

5%, and their correlation coefficient was above 99%. The

quantized signal was binarized setting at 1 all values

greater than 0 (in absolute value) and clustered. The

steering onset was determined as the time bin corre-

sponding to the transition between zeros and ones. With

such procedure, we identified 94.58 ± 31.12 right and

79.08 ± 23.85 left steering trials.

Moreover, the steering wheel signal collected during the

ecological task was also segmented during the non-steering

intervals in [- 2000, 2000] ms overlapping trials of 1 s,

thus identifying 163.71 ± 103.55 trials.

EEG and EMG data recording and pre-processing

Continuous EEG was recorded in the non-ecological task

using the 128-channel Geodesic EEG System (Electrical

Geodesics, Inc., Eugene, OR, USA) and the HydroCel

Geodesic Sensor Net. Consistent positioning was achieved

by aligning the Sensor Net with skull landmarks (nasion,

vertex, and pre-auricular points). Using high-input impe-

dance amplifiers (Net Amps300), low-noise EEG data was

obtained with sensor-skin impedances maintained below 50

kX. The signal was digitized at a sampling rate of 500 Hz

(0.01 Hz high-pass filter) and recorded with a vertex ref-

erence, the impedance of which was kept below 10 kX.
Impedances were checked and adapted at the beginning of

the ecological steering task. EEG data were exported in

raw format using NetStation software (Electrical Geo-

desics, Inc., Eugene, OR, USA) and then imported into

MATLAB to perform the following analysis with

EEGLAB v14.1.2 (Delorme and Makeig 2004). The pre-

processing comprised line noise removal, bad channels

interpolation (1.1 ± 1.1), and common average reference.

EEG data were segmented into epochs [- 1.5, 11.5] s

around the presentation of the steering traffic sign to con-

sider both the pre-stimulus activity and the one associated

with self-paced movements dynamic extending beyond

10 s. Artifacts were rejected by applying a semi-automatic

procedure to detect abnormal trends and spectra. On

average, we discarded 11.4 ± 7 trials. Clean EEG datasets

comprised 37.6 ± 3.7 left and 37.7 ± 3.3 right steering

trials.

Continuous EMG data in both non-ecological and eco-

logical steering tasks were acquired using the Neuro-

electrics Enobio. EMG signals were sampled at 500 Hz

from the left and right deltoids, left and right forearm

extensor digitorum as among the main muscles involved in

steering actions (Pick and Cole 2006; Lohani et al. 2019)

and later imported and processed in MATLAB environ-

ment (R2018b, The Mathworks, Natick, MA). EMG data of

the non-ecological task were segmented into epochs

[- 1.5, 11.5] s around the presentation of the steering

traffic sign (as done for the EEG data). In contrast, EMG

data of the ecological task were segmented into two data-

sets: (i) epochs [- 2.5, 2.5] s around the onset of the

steering action, as well as (ii) 1 s overlapping epochs of

[- 2.5, 2.5] during non-steering intervals. Line noise of the

first 5 harmonics of 50 Hz was suppressed using a spec-

trum estimation technique (Mewett et al. 2001).

To summarize, we have two different segmentations

related to the non-ecological ([- 1.5, 11.5] s around the

steering sign presentation) and ecological conditions

([- 2.5, 2.5] s around the steering onset). We used dif-

ferent time scales in the results to account for analyses

purposes.

EEG data analysis and results related to the ecological

steering task were provided as Supplementary Material.

EMG and EEG data analysis

EEG independent component and clustering analysis

We performed an ICA to identify and separate neuro-

physiological brain activities from other noise sources. On

average, we identified 5.9 (± 2.1) independent components

(ICs) per subject for a total of 147 EEG ICs. These brain-

related IC were identified through equivalent dipole source

localization (DIPFIT2) and the utilization of the SASICA

EEGLAB plugin (Chaumon et al. 2015). Cluster analysis

was performed to group components according to their

scalp topographies via the K-means algorithm (Lloyd

1982). The dimension of the cluster space was set to 109,

which is the minimum number of good EEG channels

remaining across participants after pre-processing. The

correlation Squared Euclidean distance is the metric used

for minimization measure was chosen to compute cluster

centroids using the following formula:

d x; cð Þ ¼ x � cð Þ x � cð Þ0;

where x is the vector identifying the single-subject scalp

map and c is a centroid. The number of clusters was chosen

by a bootstrap-based method, leading to the computation of
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a stability index (Ben-Hur et al. 2002; Salvador and Chan

2004) and identifying 5 clusters. The rationale of using this

data-driven analysis was to identify those brain compo-

nents related to steering actions. Hence, the cluster analysis

allowed grouping those EEG ICs related to different

cerebral processes, while the statistical comparisons

between left and right conditions allowed identifying the

cluster reacting to steering actions. Details related to the

pre-processing pipeline, ICA, and clustering can be found

in our previous work (Vecchiato et al. 2018).

Time–frequency analysis

For each EMG signal and EEG IC within the identified

clusters, we computed the event-related spectral perturba-

tion (ERSP) as time–frequency decomposition using

Morlet wavelets (Makeig et al. 2004). We used frequencies

that increased from 2 to 200 Hz in 198 linearly spaced

steps for the EMG data, with the number of wavelet cycles

increasing from 3 to 60 in linear steps. We used frequen-

cies that increased from 2 to 40 Hz in 38 linearly spaced

steps for the EEG data, with the number of wavelet cycles

increasing from 3 to 12 in linear steps. Then, dB conver-

sion was performed with a single-trial baseline normal-

ization using the [- 0.5, - 0.1] s time window before the

steering sign presentation for the non-ecological steering

task and the interval of [- 2, 2] s for the ecological

paradigm.

This procedure allowed us to investigate EEG and EMG

correlates of steering actions in both time and frequency

domains.

Cross-correlation analysis

To identify the possible time lag between the EEG signals

recorded in the non-ecological task and the EMG signal

recorded in the ecological task, we computed the bi-di-

mensional cross-correlation between the corresponding

time–frequency panels using the xcorr2 function provided

by Matlab, which is based on a bi-dimensional convolution

between the two input matrices. In particular, for each

subject and steering condition in the non-ecological task,

we extracted the EEG mask identified within the time–

frequency panel around [8, 20] Hz and [- 1.5, - 1] s

before the steering onset (e.g., left non-ecological steering),

whose dimension is 13 9 50 (frequency x time). Then, we

performed the bi-dimensional cross-correlation trial-by-

trial for each subject between such EEG mask and the

EMG time–frequency panel within the time range [- 1, 2]

s (e.g., left ecological steering), whose dimension is

198 9 300. The output of this calculation is a matrix of

dimension 210 9 349, from which we discarded the first

12 rows related to non-significant frequencies. Hence, the

final cross-correlation matrix used for the following sta-

tistical analysis had dimension 198 9 349.

The specificity of the resulting cross-correlation patterns

for the steering actions was addressed by computing the

same analysis using the EMG trials related to non-steering

intervals as defined in the previous section. In particular,

EMG non-steering trials were randomly assigned to left

and right pseudo-steering conditions with a half split

technique: for each of 300 iterations, non-steering trials

were divided into two sets, only one of these subsets was

used to create the left and right pseudo-steering conditions.

Then, for each iteration, we computed the cross-correlation

values with the EEG mask resulting from the analysis of

the non-ecological dataset. Finally, we also tested the

specificity of the cross-correlation patterns for the direc-

tionality of the steering by adopting a shuffling procedure.

For each of 300 iterations, we created the pseudo-left and

pseudo-right conditions by randomly assigning EMG trials

from the original left and right steering datasets to the two

pseudo-steering conditions and then computing the cross-

correlation values.

This procedure allowed us to estimate the contribution

of the EEG mask in predicting the EMG activity of the

single muscles (i.e., deltoids and forearms extensors) and

experimental conditions (i.e., left vs. right steering, steering

vs. non-steering, steering vs. shuffled-steering).

Statistical analysis

To discriminate the EEG and EMG activity in both non-

ecological and ecological tasks, the corresponding time–

frequency panels were compared using dependent sample

t-statistics and non-parametric permutation testing, cor-

rected for multiple comparisons by weighted cluster mass

correction with randomization of 1000 and a statistical

threshold of 0.05 (Hayasaka and Nichols 2004; Maris and

Oostenveld 2007). The statistical comparison between left

and right EEG IC ERPSs in the non-ecological task allows

identifying and extracting the time–frequency EEG fea-

tures associated with steering actions and is used for the

following cross-correlation analysis. The significance of

the t-statistics computed to test the specificity for steering

and directionality was assessed by comparing the observed

statistics to the statistical properties of the null-hypothesis

distribution. Hence, the observed test statistic values were

converted into Z scores, and then the corresponding

p-values were computed and reported (Cohen 2014).

This procedure allowed us to assess the significance of

the predictive power of the EEG mask for steering actions

and directions.
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Results

Non-ecological steering task

For each cluster of EEG ICs, we performed the non-para-

metric permutation test to compare the ERSP between the

two steering conditions (i.e., left vs. right) in the time

window of [- 2, 2] s relative to the onset of the event. The

analysis revealed a statistically significant difference onset

only for cluster 3, highlighting a de-synchronization of the

mu rhythm around 1.5 s before the left steering. This

cluster is populated by 24 ICs belonging to 16 subjects

(illustrated in the Supplementary Material). Figure 2 shows

the scalp topography of such a significant cluster along

with the modulation of the related time–frequency activity

during left (panel A) and right (panel B) non-ecological

steering with the corresponding t-statistics (panel C).

Centroid maps with the corresponding time–frequency

panels of the non-significant EEG IC clusters are illustrated

in the Supplementary Material.

Figure 2 also shows the ERSP of the EMG activity for

the left (panels D, E) and right deltoids (panels G, H)

during the left (panels D, G) and right (panels E, H)

steering. Specifically, when comparing these signals

between left and right steering, we observed the significant

broadband increase of the muscular activation of the left

deltoid during the right steering (panel F), as well as the

symmetrical broadband increase of activity of the right

deltoid during the left steering (panel I). Analogously,

when comparing these signals between left and right del-

toids, we observed the significant broadband increase of the

muscular activation of the right deltoid during the left

steering (panel J), as well as the symmetrical broadband

increase of activity of the left deltoid during the right

steering (panel K). The statistical comparisons of the

muscular activation of the two forearm extensors did not

return significant differences in the EMG broadband as the

two deltoids (see Supplementary Material, Figure S3); thus

they are not considered in the following analysis.

Variations of the wheel angle for the left and right

steering were represented with the white signals within

each corresponding panel of Fig. 2.

Ecological steering task

Figure 3 shows the results related to the analysis of the

EMG signals during the ecological task performed at the

driving simulator. In particular, the upper box presents the

ERSP computed for the EMG signals of the left and right

deltoids during left and right steering actions. The different

panels of this figure are arranged as Fig. 2 to show that the

asymmetrical activation of the two deltoids during steering

observed in the non-ecological task is replicated in the

ecological condition. Specifically, we highlight the signif-

icant broadband increases of the muscular activation of the

left deltoid during the right steering (panels A–C) and the

symmetrical broadband increase of activity of the right

deltoid during the left steering (panels D–F). Analogously,

when comparing these signals between left and right del-

toids, we observed the significant broadband increase of the

muscular activation of the right deltoid during the left

steering (panel G), as well as the symmetrical broadband

increase of activity of the left deltoid during the right

steering (panel H).

The lower box of Fig. 3 shows the results related to the

cross-correlation analysis performed between the EEG

mask gathered during the non-ecological task and the EMG

ERSP panel corresponding to the ecological scenario in the

same steering condition and for each of the two deltoids

(i.e., non-eco EEG in left steering cross-correlated with the

eco EMG in left steering). Here we can observe higher

cross-correlation values associated with the left deltoid

during left steering (panel I) and for the right deltoid during

the right steering (panel M) when compared with the right

(panel J) and left (panel L) steering, respectively. This

pattern is statistically demonstrated with the corresponding

non-parametric analysis (panel K, N). Moreover, such

differences between cross-correlation values are also

observed during left (panel O) and right (panel P) steering

when comparing the left and right deltoid. Strikingly, these

statistics show that significant activations related to the

cross-correlation analysis are detected earlier (magenta

contour in panel Q) relative to the activations of only EMG

ERSP (blue contour in panel Q), for the condition right

deltoid, left versus right steering.

Figure 4 shows the results of the cross-correlation

analysis performed between the same EEG mask gathered

during the non-ecological task, and the EMG ERSP panels

corresponding to the ecological scenario in the non-steer-

ing (upper box) and shuffled-steering (lower box) condi-

tions. Here we can observe low cross-correlation values

associated with all conditions reported on the same scale of

Fig. 3 (lower box). Finally, the corresponding statistics

returned no significant difference for any condition.

Variations of the wheel angle for the left and right

steering were represented with the white (Fig. 3) and black

(Fig. 4) signals within each corresponding panel.

The analysis of the EEG collected during the ecological

steering task did not return any significant cluster related to

cortical components reacting to steering actions. Thus, we

report the corresponding ERPSs and statistical comparisons

in the Supplementary Material.
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Discussion

In the present study, we report that the modulation of the

EEG mu rhythm observed during the motor preparation of

non-ecological steering predicts the muscular activity of

deltoids, thus anticipating subject steering behavior. The

reactivity of such rhythm measured across sensorimotor

areas during the non-ecological steering preparation

anticipates the corresponding action. This result paves the

way for using such a cerebral feature to discriminate

steering actions in the ecological task. We report the

increase of EMG activity of the deltoid anticipating the

contralateral steering in non-ecological and ecological

steering tasks. These results show an asymmetric muscular

Fig. 2 ERSP for the EEG IC and EMG signals collected during the

non-ecological steering task. The first three rows (from the top)

illustrate the ERSP for the left (A, D, G), right (B, E, H), and the

statistical comparison of the two conditions (C, F, I) for the EEG IC,

EMG of the left and right deltoid, respectively. The topography in the

left part of the picture shows the average scalp map related to the

cluster 3 centroid reacting to steering actions. The lower row

illustrates the statistical comparisons of the EMG ERSP between left

and right deltoid during left (J) and right (K) steering. Colorbars

indicate EEG IC and EMG activity variations relative to the baseline

and the corresponding t-statistics. White lines depict the left and right

steering wheel angle profiles (A, B, D, E, G, H). White mask (A–
C) delimits the statistically significant portion of the EEG IC ERSP

panel. Black mask (F, I, J, K) delimits the statistically significant

portion of the EMG ERSP of the corresponding compared panels

(non-parametric t-test, cluster corrected)
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activity of the deltoids beginning before the action onset

remaining steady during the steering execution, i.e., the

coordinated increase of power of the right deltoid and the

corresponding decrease of power of the left deltoid is

associated with the steering action on the left side. Such

findings show that monitoring the two deltoids’ muscular

activity makes it possible to discriminate the steering side

before the action onset while driving in non-ecological and

ecological scenarios. Strikingly, the identified non-eco-

logical EEG feature correlates with the ecological EMG

activity of the deltoids, providing an improvement of the

discrimination power of the steering side during driving

simulation. The comparison between the results related to

the EMG analysis and those concerning the EEG–EMG

cross-correlation returned larger relative timing in favor of

the latter related to the succession of steering events. In

fact, on one side, there is the issue of distinguishing the

anticipatory components due to EEG predicting power

from those which are merely due to computational

accounts, e.g., windowing implied in the cross-correlation

calculation. However, we observe a clear anticipatory

pattern returned by cross-correlation values related to the

succession between left and right steering events. This

change of cross-correlation values is detectable in advance

relative to the single EMG signal.

The timing of the EEG response identified in this study

is compatible with patterns of event-related de-synchro-

nization (ERD) which are reported to be predictive of the

upcoming action between 1.5 and 1 s before the movement

onset (Neuper et al. 2006). ERD reflects non-phase-locked

EEG changes of oscillatory activity within the alpha and

beta frequency due to sensorimotor events (Pfurtscheller

and Lopes da Silva 1999; Savić et al. 2020). The EEG

component identified during the non-ecological task arises

from the motor areas and may reflect the preparation of

steering actions. The scalp topography that we reported is

reminiscent of the mu rhythm observed in motor and pre-

motor regions (Gastaut et al. 1952; Pfurtscheller et al.

1997). Such electrical activity produces somatotopically

organized de-synchronization during execution, observa-

tion, and imagination of actions (Pineda 2005; Pfurtscheller

et al. 2006; Arnstein et al. 2011; Avanzini et al. 2012).

These regions perform several functions other than body

movements control, such as sensory-motor transformation,

action understanding, decision-making regarding execution

and initiation of action, preparation, and planning of

complex movements (Roland 1984; Rizzolatti and Luppino

2001). Recent literature reports ERD in contralateral sen-

sorimotor cortices during movement preparation of visu-

ally cued movements (Li et al. 2018; Little et al. 2019).

Therefore, we argue that the identified EEG mu rhythm

modulations regulate the motor preparation of the right and

left deltoids for steering actions. In particular, we report

that the mu de-synchronization over left sensorimotor

regions is related to the right deltoid’s activity during left

steering. This would show that left steering involves larger

neural computation than right steering, despite the absence

of significant difference in the steering wheel angle, as

already reported in a previous study (Oka et al. 2015).

Another study also reports the de-synchronization of the

alpha rhythm across sensorimotor regions related to rela-

tive steering angle compensation (Brooks and Kerick

2015), thus showing the relation between such electroen-

cephalographic feature and steering response as already

observed in more simple tasks (Pfurtscheller and Neuper

1994; Stancák and Pfurtscheller 1996).

Analyzing the EMG in the time–frequency domain, we

observe that the maximum muscle activity changes sig-

nificantly due to different steering wheel angles and turning

directions in non-ecological and ecological scenarios. It is

known that the anterior and middle portions of the deltoid

muscle work intermittently during car driving and that their

functioning regulates the contralateral rotation of the

steering wheel, being activated for a duration of around

50% since the initial stage of the action (Jonsson and

Jonsson 1975; Pick and Cole 2006; Liu et al. 2012; Gao

et al. 2014). Specifically, muscle activity is relatively small

when the steering wheel is near its center, but it increases

rapidly as the wheel starts to turn (Gao et al. 2014).

Although EMG was successfully used to identify the

muscles involved in generating and predicting torque at the

steering wheel (Pick and Cole 2006), EMG alone has low

bFig. 3 ERSP for the EMG signals collected from the deltoids during

the ecological steering task (upper box), and cross-correlation results

between EEG IC and EMG data (lower box). Upper box. The first and

second rows (from the top) illustrate the EMG ERSP for the left and

right deltoid during left (A, D) and right (B, E) steering and the

statistical comparison of the two conditions (C, F). The third row

illustrates the statistical comparisons of the EMG ERSP between left

and right deltoid during left (G) and right (H) steering—lower box.

The first and second rows (from the top) illustrate the EEG–EMG

cross-correlation values for the left and right deltoid during left (I,
L) and right (J, M) steering and the statistical comparison of the two

conditions (K, N). The third row illustrated the statistical comparisons

of the EEG–EMG cross-correlation values between left and right

deltoid during left (O) and right (P) steering. The topography in the

left part of the picture shows the average scalp map related to the

cluster 3 centroid reacting to steering actions and used for the EEG–

EMG cross-correlation. Color bars indicate variations of EMG

activity (upper box) and the EEG–EMG cross-correlation (lower

box) relative to the baseline and the corresponding t-statistics. White

lines depict the left and right steering wheel angle profiles (A, B, D,
E, I, J, L, M). Contour mask (C, F, G, H, K, N, O, P) delimits the

statistically significant portion of the corresponding compared panels

(non-parametric t-test, cluster corrected). Panel Q highlights the

significant masks corresponding to the comparisons left versus right

steering for the right deltoid for the EMG ERSP data (blue contours,

F) and EEG–EMG cross-correlation (magenta contours, N). (Color
figure online)
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power in predicting the steering as we report to be limited

to a few hundred milliseconds. Thus, we exploited the EEG

scalp feature to improve steering detection by computing

the cross-correlation between the mu rhythm de-synchro-

nization retrieved during the non-ecological task and the

EMG activity elicited in the ecological scenario. This

procedure allowed us to enlarge the time window in which

it is possible to discriminate the steering action. We

showed that this EEG–EMG coupling is specific for

steering actions and their directionality, returning better

results relative to single EMG signals. Similar findings

were recently reported concerning the use of a hybrid

human–machine interface for gait decoding (Tortora et al.

2020), motor rehabilitation of stroke patients (Sarasola-

Sanz et al. 2017), movement detection of hand-paralyzed

patients (Lóopez-Larraz et al. 2018). All these studies

suggested an increase in the classification accuracy and the

number of commands for human–machine-interfaces

(Hong and Khan 2017).

Here we performed two consecutive recording sessions

to demonstrate the feasibility of exploiting EEG correla-

tions of steering behaviour collected in a standard highly

controlled environment to detect steering action in a more

ecological setting such as a driving simulator. In the first

non-ecological recording session, we extracted ERD as a

neural correlate of the EMG activity of the deltoids pre-

dicting the upcoming steering behavior. In the following

ecological recording session performed at the driving

simulator, we collected the EMG activity of the deltoids.

We showed that the ERD resulting from the previous

session is indeed informative concerning the steering

action in this more naturalistic scenario. As expected, a

large variability characterized the EEG collected during the

ecological steering task, and the statistical analysis did not

return any significant result related to the cerebral steering

component. Indeed, steering actions were reliably dis-

criminated through the analysis of the cortical correlates

associated with the non-ecological task. This evidence

suggests the usefulness of exploiting cortical correlates of

motor preparation of non-ecological actions to predict the

same action in ecological conditions. The non-significant

results of the EEG collected during the ecological steering

task indeed highlight the usefulness of exploiting cortical

correlates associated with the non-ecological task for

steering detection in a more natural condition. From a

methodological perspective, we used the ERSP to

investigate EMG correlates of steering for directly assess-

ing the coupling of cerebral and muscular activations.

EMG features in the time domain, such as Root Mean

Square and Mean Absolute Value, could also be useful for

future analyses implementing online classifiers.

Several recent studies on driving addressed the issue of

steering classification using different EEG features. In

particular, it was assessed the possibility to decode self-

generated actions detecting whether the driver would per-

form a lane change shortly in a simulated highway (Ghe-

orghe et al. 2013). Authors report slow negative EEG

deflections across central areas consistent with the move-

ment-related potentials 500 ms before the lane change,

yielding a classification accuracy of 79% with an average

detection time of 613 ms before the actual steering action.

In another series of studies performed with both driving

simulators and real cars (Zhang et al. 2015), error-related

brain potentials were analyzed to investigate the possibility

of using an external device to be adapted to the driver’s

goal, i.e., assisting in the upcoming steering action. This

strategy was enacted by showing the drivers a visual

stimulus indicating their inference about the next turning

direction when approaching an intersection. Authors report

differences in the EEG response over fronto-central areas

when the directional stimulus does not match the driver’s

intention. Statistical differences between error and correct

conditions were observed between 200 and 600 ms after

feedback, yielding a mean accuracy of the event-related

decoding of 0.68, which indicates the possibility of

extracting meaningful information about the driver’s need

for assistance.

Several studies demonstrated that the combination of

EEG and EMG can improve the reliability of movement

prediction based on a single modality (Vecchiato 2021; Di

Liberto et al. 2021). For example, the prediction of

movement onset based on EEG analysis can be improved

by designing hybrid systems monitoring at the same time

additional peripheral signals depending on the context

requirements. EEG and EMG signals can reliably predict

movements before the action onset, showing that both can

potentially control an electronic device (Kirchner et al.

2014). Different measures could be combined for different

movement stages, e.g., movement planning, the start of the

movement, and movement execution (Novak et al. 2013).

Other investigations were conducted to predict voluntary

movements before their occurrence (Bai et al. 2011) and

vehicle steering (Gomez-Gil et al. 2011) using hybrid

EEG–EMG BCIs. The hybrid strategy was initially intro-

duced in the Brain Computer Interfaces (BCIs) to exploit

the advantages of different physiological signals and

computational approaches to achieve specific goals better

than a conventional EEG-based system (Pfurtscheller et al.

2010; Li et al. 2019b). A hybrid system might predict user

bFig. 4 Cross-correlation results between EEG IC and EMG data

related to non-steering (upper box) and shuffled steering (lower box)

conditions. Same convention as Fig. 3 (lower box). Black lines depict

the butterfly plot of left and right steering wheel angle profiles. Thick

lines represent the average across subjects (thin lines)
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intention with higher accuracy, thus improving the whole

system’s performance or reducing the rate of false positives

(Usakli et al. 2009, 2010; Ma et al. 2015; Hong and Khan

2017). Today such a methodology is used to boost motor

rehabilitation of stroke patients (Sarasola-Sanz et al. 2017),

for the online movement prediction (Kirchner et al. 2014;

Wöhrle et al. 2017), gait decoding (Tortora et al. 2020),

and its application is investigated in other several domains

of bio-robotics (Lalitharatne et al. 2013).

The existence of preparatory electrophysiological

activity elicited before the onset of steering action allows

us to infer the upcoming driving actions in advance. The

reported EEG–EMG coupling is a proof of concept for

utilizing hybrid systems for the detection and online pre-

diction of driving actions, exemplifying how it might be

possible to complement information from behavioral,

physiological, and external sources to control the level of

assistance needed by the driver in that context (Chavarriaga

et al. 2018). The predictive power of the EEG–EMG

coupling demonstrated in a car simulator could be further

investigated in larger sets of actions to extend the validity

of this neurophysiological mechanism beyond driving.
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