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We present a technique to fit 𝐶2 continuous parametric surfaces to scattered geometric data points forming frontiers delimiting
physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number
of operations in modeling. While the fitting of 𝐶2 continuous parametric curves to scattered geometric data points is quite trivial,
the fitting of 𝐶2 continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be
assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present
a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is
subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping.The resulting polygonal mesh is then
regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in
the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse
heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with
surfaces that are 𝐶

2 continuous.

1. Introduction

High-resolution in vivo imaging has become an essential tool
for the practice of modern day medicine. As a matter of
fact, hospitals have upgraded their infrastructure to acquire
and visualize terabytes of digital medical data and to make
these data readily available to the clinician. Prompted by this
success, more and more clinicians introduce cutting edge
technology in diagnosis. We can say we witnessed the rise of
what we have come to term computational medicine.

In this trend, among various options to capitalize on
the wealth of medical data is the simulation of biophysical
processes.This option is particularly appealing as it equips the
clinician with advanced means to make elaborate interpreta-
tions from data collected non- or semi-invasively, which can
potentially lead to a better understanding of the molecular
mechanisms of diseases, detection of trends in a population,
and risk/benefit analysis of various therapeutic options.

A major facet of computational medicine is the recon-
struction of image-based computer models of physiologic
structures, for example, tissue, organs, and limbs, in order to
effectively interfacewith the clinician. In cardiology, we count
a number of contributions in heart model reconstruction [1–
5] that enable us to be optimistic in terms of practical clinical
applications in the near future. Clearly, the same applies to
neuroscience [6–8].

A very important step in the reconstruction of image-
based models is the mathematical description of surfaces
bounding the physiologic structure of interest. Here our goal
is to generate a compact 𝐶

2 continuous representation of
surfaces.We elect to use dimension 3 (3 physical coordinates)
and codimension 2 (2 parametric coordinates) parametric B-
splines. Such surfaces have a number of advantages for mod-
eling; that is, they are compact and facilitate the calculation of
areas, volumes, curvatures, crests, tangent planes, and many
other operations which are useful by themselves and essential
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in several modeling phases, like mesh generation, application
of boundary conditions, and coupling with several field
equations.

While the fitting of curves to scattered geometric data
points is quite trivial, the fitting of surfaces to scattered
geometric data points is not. Surface fitting is problematic
because a unique parametric coordinate should be assigned
to each geometric data point, and the precision of the fit
is quite sensitive to the distribution of these parametric
coordinates. To our knowledge, there are no documented
techniques to assign unique parametric coordinates and to
distribute them in a manner that guarantees a precise fit.

There has been significant work on this question. So far
two different approaches have been proposed. In the first
approach, the surface in question is the zero level set of a
three-dimensional function that is fitted to the data. This
avoids the mapping of the geometric data onto a parametric
plane since the function in question is defined in the same
space as the original image. Most algorithms have been
implemented with polygonal surfaces, but could also be
implemented with B-splines [9].

The second approach, deformable models, deforms an
initial template model until it matches the target geometric
data points. The technique initially introduced by Kass et al.
[10] has been given considerable attention.The contributions
of McInermey and Trezopouloz [11, 12] and Yoo [13] are par-
ticularly remarkable to the subject. The template model can
be defined with a polygonal or parametric B-Spline surface,
and various rules can be used to guide the deformations, for
example, intensity gradient, point-to-surface signed distance,
mechanical properties of the surface, inertia in displacement,
and others like energy, which depends on the physics of the
problem. In a version of this approach, the conventional rules
to guide deformation (e.g., intensity gradient) are replaced
by a function based on the comparison of pixel intensity
with the average intensity of pixels inside and outside regions
delimited by the displaced boundary [14]. This version is
particularly robust (no manual assistance required) in the
presence of noise and low contrast. Although this advantage
comes at the expense of an additional computational load due
operations performed on all image pixels at each iteration,
which may be acceptable in a number of cases. Finally, see
Park et al. [15] for a recent extensive application, and the
review of image segmentation byMa et al. [16] for a summary
of applications.

Here we propose a different approach, that is, a direct fit
of codimension 2 parametric B-splines to a polygonal surface
extracted from a segmented image. After its extraction, the
polygonal surface is projected onto a parametric plane. The
projection preserves vertex connectivity and ensures a one-
to-one mapping between the physical and parametric spaces.
Afterward, the projected polygonal surface is regularized
for polygonal area and edge length. The spatial variation in
polygonal area and edge length is quantified by a function, the
minimization of which governs the regularization. Finally,
from this point parametric surface fitting, constrained or not,
is quite trivial. The main advantages of our technique are its
accuracy and computational simplicity.

The method is applied to an X-ray computerized tomog-
raphy scan of a mouse heart. The results show that 𝐶2 con-
tinuous parametric surfaces with only 9 × 9 degrees of
freedom can accurately fit convoluted geometries like the
endocardial surface of the heart.

2. Methods

2.1. Acquisition of TestMedical ImagingData. Anadultmouse
heart is excised, Langendorff perfused, fixed in diastole, and
then embedded in vegetal grease. It is subsequently imaged
with an X-ray laboratory scanner (SkyScan) at 7.5𝜇m reso-
lution. A computerized tomography (CT) scan is generated
with 720 projections. Each projection is integrated over 1.8 s.
The background is subtracted; the signal is compensated
for fluctuations and converted on a logarithmic scale. The
signal is finally postprocessed with a modified Feldkamp
tomographic reconstruction algorithm [17]. See Methods in
Bayer et al. [18] for more details on the specimen preparation
and CT imaging.

The same heart is also imaged for tissue microstructure
with a laser scanning confocal microscope. To this end, the
heart is sliced every 20 𝜇m along its short axis with a vibro-
tome. Each slice is stained for myofibrils with rhodamine
phalloidin. They are subsequently imaged with a Zeiss 510
META confocal microscope. The images are acquired on
optical planes separated by 5 𝜇m. Further details on staining
and imaging are given in Slamani et al. [19]. Acquisition at
this high resolution requires assembling the images in order
to appropriately visualize the physiologic structure, which we
perform with a Fourier transform [19, 20].

2.2. Polygonal Surfaces Extraction. The CT data is composed
of gray scale images (pixel intensities 0–255) stacked along the
long axis of the heart.They comprise a total of 860 planes.The
contrast is excellent, and the edges of the heart cavities, as well
as the epicardium, are simply delineated with thresholding.
Specifically, all voxels crossing a threshold intensity of 100
are labeled as edge voxels. The external faces of these voxels
(quads) constitute the polygonal surface we project onto the
parametric plane.

When we need to extract a triangulated surface for
visualization purposes, or because a very high precision is
required, we extract it from the boundary voxels with the
marching cube algorithm of Lorensen and Cline [21], along
with modifications introduced by Lewiner et al. [22].

We denote the set of vertices and triangles or quadri-
laterals generated from the surface extraction by 𝑉(𝑥, 𝑦, 𝑧)

and𝑇(𝑉) or𝑄(𝑉), respectively.Then the inverse connectivity
vertices-triangles 𝑉(𝑇) or vertices-quads 𝑉(𝑄) is generated.
Finally, a graph of the nodes 𝐶(𝑉) (table of vertices adjacent
to a vertex) is readily generated from the connectivity table
𝑇(𝑉) or 𝑄(𝑉).

2.3. Polygonal Surface Projection onto a Parametric Plane.
Direct parametric surface fitting requires that we first assign
a unique parametric coordinate to each of the 𝑁 vertices
of 𝑉(𝑥, 𝑦, 𝑧). We achieve this by projecting the polygonal
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surface onto a 𝑢 − V parametric plane; 𝑢 ∈ [𝑢min, 𝑢max], V ∈

[Vmin, Vmax]. The projection assigns parametric coordinates
V(𝑢, V) to each vertex in 𝑉(𝑥, 𝑦, 𝑧). We then refer to the
projected surface by 𝑇(V) or𝑄(V). To project the polygonal
surfaces, the user selects a region to map onto the polygonal
surface, which is delimited by 4 anchor points joined by
4 segments. Each of the 4 anchor points are mapped to
one corner of the parametric plane, and the vertices on the
segments joining them are equidistributed along the edges
Γ ∈ [Γ

𝑎
, Γ
𝑏
, Γ
𝑐
, Γ
𝑑
], that we label 𝑎−𝑑while following a boolean

order, that is, 𝑢min, 𝑢max, Vmin, Vmax. We denote the set of
indices of the vertices mapped to the edges of the parametric
plane by 𝑔. The region inside the 4 segments is mapped onto
the parametric plane. The rule employed to perform a one-
to-one mapping is deduced from the function

𝜗 (u, k) =

𝑁−1

∑

𝑛=0

𝑀
𝑛
−1

∑

𝑚=0

(𝑢
𝑛
− 𝑢
(𝑛)

𝑚
)
2

+ (V
𝑛
− V(𝑛)
𝑚

)
2

, (1)

where (u, k) denote the 𝑢 and V parametric coordinates of
the vertices of 𝑉(𝑥, 𝑦, 𝑧). Throughout this paper we denote
vectors and matrices by lower- and uppercase bold letters,
respectively. Therefore, the parameter 𝑀

𝑛
is the number of

adjacent vertices to vertex 𝑛 with coordinates (𝑢
𝑛
, V
𝑛
). The

𝑀
𝑛
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𝑛
, V
𝑛
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(𝑛)

𝑚
, V(𝑛)
𝑚
. These

indices correspond to line 𝑛 in the graph 𝐶(𝑉).
The function 𝜗(u, k) expresses for each vertex

of 𝑉(𝑥, 𝑦, 𝑧) the sum of squared distance to its neighbors.
The Min{𝜗(u, k)} with respect to (u, k),
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(2)

leads to the matrix systems

A𝑢u = c(𝑢) AVk = c(V). (3)

Since we fix the coordinates of the vertices along the edges
of the parametric plane, the lines and columns of (3)
corresponding to indices 𝑔 are moved to the right hand side,
which lead to the reduced matrix systems

Â𝑢û = ĉ(𝑢) ÂVk̂ = ĉ(V). (4)

Since Â𝑢, ÂV are nonsingular, this matrix system generates
a one-to-one mapping. The coordinates obtained in this
manner correspond to a distribution where each vertex tends
to be at an equal distance from all its immediate neighbors.
This confers interesting properties to the map, but does
not mean all points are equidistant from one another. This
property is desirable at the expense of additional processing.

Note the particular structure of the matrices Â𝑢, ÂV.
First, they are sparse and the number of nonzero coefficients

in each line is given by the number of neighbors in the
parametric plane.Thediagonal is𝑀

𝑛
, 𝑛 ∈ [0,𝑁−1], 𝑛 ∋ 𝑔 and

the off diagonal elements are −1. The matrices are diagonally
dominant, and thus positive definite. Furthermore, since the
coefficients are constant we need only to store in memory
their diagonal. Such matrices have a small condition number
and can be readily solved with a conjugate gradient method.

When the point cloud is really dense, we may sometimes
need to postprocess the map to avoid a collision between
vertices. If the bounding box of two segments intersects in the
parametric plane, we replace the endpoint on each segment
closest to the intersection by their intersection. Finally, when
segments sharing one vertex are nearly parallel, we fuse them.
Note that such postprocessing is necessary only when the
point cloud is really dense. In most applications this can be
avoided by decomposing the reconstruction.

2.4. Regularization of a Polygonal Mesh. While the mapping
of the polygonal surface to the parametric plane is a one-to-
onemapping, this does not guarantee the size of the polygons
(triangles or quadrilaterals) to be regular. Irregularity in
size dramatically affects the quality of the final parametric
surface fit because areas that are extensively compressed in
the parametric plane are given less weight, if not totally
ignored, in the fit. This may be alleviated by increasing the
number of elements of the final parametric surface, but this
does not solve the problem.

We address this problem by regularizing the polygons of
themesh for area and edge length. To do so,we borrow amesh
regularization concept introduced by Jacquotte in [23]. The
concept consists of adjusting the grid-point coordinates in a
manner thatminimizes polygonal element deformationswith
respect to a reference element.

First, we define a transformation or a mapping from the
space 𝜉 − 𝜂 to the parametric space 𝑢 − V,

T (𝜉, 𝜂) = [𝑈 (𝜉, 𝜂) , 𝑉 (𝜉, 𝜂)] , (5)

where 𝑈(𝜉, 𝜂), 𝑉(𝜉, 𝜂) are two functions mapping the 𝜉, 𝜂

coordinates of a reference element defined on 𝜉, 𝜂 ∈ [−1, 1]

to the (𝑢, V) coordinates of the parametric plane, respectively.
The reader is referred to Appendix A for details regarding
the construction of mapping functions for both quadrilateral
and triangular meshes. The transformation T(𝜉, 𝜂) maps a
reference quadrilateral to a mesh element according to solid
mechanics, where the element deformation gradient is given
by

∇T (𝜉, 𝜂) = [
𝑈
𝜉

𝑈
𝜂

𝑉
𝜉

𝑉
𝜂

] , ∇ = [
𝜕

𝜕𝜉
,

𝜕

𝜕𝜂
] , (6)

and the subscripts indicate derivative with respect to this
variable. Note from (6), the deformation gradient is also the
JacobianmatrixJ of the mapping between the 𝜉−𝜂 and 𝑢−V
spaces. This quantity is precisely what we wish to minimize;
that is, a regularization is nothing else than aminimization of
the variation in element deformation. However, performing
this minimization over the 𝑢 − V parametric domain is not
trivial. For the function to reach the condition we are looking
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for, that is, V(𝑢, V) having polygons with quasi-equal areas
and edges length in the parametric plane, the function should
be convex with one minimum reflecting that condition.
This implies our measure of deformation to be invariant of
rotation, since rotation does not change area and edge length.

Jacquotte in [23] addressed this problem by minimizing
the Matrix H = J𝑇J with respect to three invariants. From
this point, our approach differs from Jacquotte’s approach
since we find new parametric grid coordinates (u, k) satis-
fying,

(u, k) : Min{

𝑁
𝑒
−1

∑

𝑒=0



J
𝑒
−
Adj (J𝑒)

|J𝑒|

𝐹,Ω
𝑒

} , (7)

where𝑁
𝑒
is the number of elements in the polygonal surface,

J𝑒 is the Jacobian of element 𝑒, Adj{⋅} is the adjugate, | ⋅ | is
the determinant, Ω

𝑒
is the domain of an element in the 𝜉 − 𝜂

plane, and ‖ ⋅ ‖
𝐹
Ω

is a modified Frobenius norm

‖(⋅)‖
𝐹,Ω

= ∑

𝑖

∑

𝑗

∫

Ω

[(⋅)
𝑖,𝑗

(Ω)]
2

𝑑Ω, (8)

which needs to be introduced because the matrix coefficients
are a function of (𝜉, 𝜂). Recall, the rightmost term is nothing
else thanJ−1. The motivation for this condition is that when
the reference element is subjected only to a translation,J = 𝐼.
In this case J = J−1, and condition (7) is strictly met. The
modified Frobenius norm ofJ −J−1 increases with scaling,
and changes slightly with rotation.Thus, the minimization of
(7) tends to keep all elements shapes closed to the reference
one.

2.5. Constrained Parametric Surface Fitting. The final surface
is represented with a codimension 2, dimension 3 parametric
B-Spline. The parametric plane is subdivided into 𝑁

𝑏𝑥
× 𝑁
𝑏𝑦

elements of equal size. This subdivision defines (𝑁
𝑏𝑥

+ 1) ×

(𝑁
𝑏𝑦

+ 1) junction points that we term the control points.
Functions𝑋(𝑢, V), 𝑌(𝑢, V), 𝑍(𝑢, V)mapping the 𝑢 − V space to
the 𝑥 − 𝑦 − 𝑧 space, one for each of the (𝑥, 𝑦, 𝑧) coordinates,
respectively, are defined with an expansion of codimension
2 B-Splines, one B-spline 𝐵

𝑠
(𝑢, V) for each control point,

“𝑠” indexing them. To the control points defined in the
parametric plane, we add a row and a column at each end so
the elements bordering the parametric plane have the same
degree of freedom as the elements inside the plane. Thus,
the total number of control points is (𝑁

𝑏𝑥
+ 3) × (𝑁

𝑏𝑦
+ 3).

Parametric surface fitting consists in finding the coefficients
𝜁
(𝑥)

, 𝜁
(𝑦)

, 𝜁
(𝑧) of the expansion

𝑋 (𝑢, V) =

𝑠

∑

𝑠=0

𝜁
(𝑥)

𝑠
𝐵
𝑠
(𝑢, V) ,

𝑌 (𝑢, V) =

𝑠

∑

𝑠=0

𝜁
(𝑦)

𝑠
𝐵
𝑠
(𝑢, V) ,

𝑍 (𝑢, V) =

𝑠

∑

𝑠=0

𝜁
(𝑧)

𝑠
𝐵
𝑠
(𝑢, V) ,

(9)

𝑠 = (𝑁
𝑏𝑥

+ 2) × (𝑁
𝑏𝑦

+ 2) such that the distance between the
geometric data points and points on the surfacewith the same
parametric coordinate is minimized.

The 𝐵
𝑠
(𝑢, V) are indexed according to a boolean order, 𝑢-

coordinate first then the V-coordinate. They are built with a
tensor product of elementary 1-D B-Splines,

𝐵 (𝑢, V) = b (𝑢) ⊗ b (V) . (10)

At control point “𝑛” of a one-dimensional axis, we define the
elementary B-spline by

𝑏(𝑢)
3
=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
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3
− 𝑢
3
)

48
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+ 𝑢
𝑛+1
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− 𝑢
𝑛+1

)
,
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𝑏
1
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2
+ 3𝑢
3
)
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+ 𝑢
𝑛
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𝑛
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,
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𝑛
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,

𝑏
2
(𝑢) =

(23 + 15𝑢 − 3𝑢
2
− 3𝑏𝑢

3
)

48
,

𝑢 = 2𝑢 −
(𝑢
𝑛
+ 𝑢
𝑛−1

)

(𝑢
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for 𝑢
𝑛−1

< 𝑢 > 𝑢
𝑛
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𝑏
3
(𝑢) =

(1 + 3𝑢 + 3𝑢
2
+ 3𝑢
3
)

48
,

𝑢 = 2𝑢 −
(𝑢
𝑛−1

+ 𝑢
𝑛−2

)

(𝑢
𝑛−1

− 𝑢
𝑛−2

)
,

for 𝑢
𝑛−2

< 𝑢 > 𝑢
𝑛−1

,

(11)

where it should be clear that the support (range where the
function is nonnull) of an elementary 1D B-spline extends
over 4 segments, and the support of a 2-D B-spline over 4 × 4
elements. The B-Spline (1-D or 2-D) and its first 2 derivatives
vanish at the border of the support. This way any linear
combination remains 𝐶

2 continuous. More information on
B-splines can be found in Bartels et al. [24].

Least square fitting for this case is quite trivial. It consists
to find 𝜁(𝑥), 𝜁(𝑦), 𝜁(𝑧) that minimizes

‖x − 𝑋 (u, k)‖
2
,

y − 𝑌 (u, k)2,

‖z − 𝑍(u, k)‖2,
(12)

with x, y, z being the vectors of 𝑥, 𝑦, 𝑧 coordinates of
the geometric data points. This leads to solving 3 matrix
systems, each of small dimension. Excellent results were
obtained with 9 × 9 elements. In addition, the matrices are
sparse with nonnull coefficients in each row and are well
conditioned as a result of the regularization.Thus, they can be
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readily solved with an iterative method like the Generalized
Mimimal Residual (GMRES) [25, Chapter 6].

For practical reasons the fit is constrained in two ways.
First, we impose a degree of stiffness to the surface. Second,
we sometimes require the parametric surface to exactlymatch
a predefined contour. After visual inspection a user may wish
to limit the excursion of a surface in zones not having enough
geometric data points. This can be done by imposing the
surface to be more stiff. The second constrains allows to
decompose of the reconstruction of a complex physiological
structure. This version of our reconstruction technique does
not allow imposing 𝐶

1 continuity at the junction between
parametric surfaces, but this could be added by extending the
treatment presented in Appendix B.

Stiffness is added by constraining the fit with curvature
and twist. In this case the objective function to optimize the
𝑥-component becomes

Θ
𝑥
= (1 − 𝜆) ‖x − 𝑋 (u, k)‖2

+ 𝜆∫

Ω
𝑝

(𝑋
2

𝑢𝑢
+ 2𝑋
2

𝑢V + 𝑋
2

VV) 𝑑Ω
𝑝
,

𝜆 ∈ [0, 1] ,

(13)

Ω
𝑝
: parametric plane, and similarly for the (𝑦, 𝑧) compo-

nents.
To clamp the parametric surface along any of its edges,

we fit the contour with a codimension 1 B-spline. The
codimension 1 B-spline should have exactly the same number
of control points as the codimension 2 B-spline along the axis
of the clamp. Also, the parametric segments should be exactly
the same length as the sides of the quads of the codimension
2 B-splines along the axis of the clamp. To guarantee an
exact clamp, we remove some coefficients from the expansion
of the codimension 2 B-spline and fix them with algebraic
relations that guarantee the parametric surface to match the
codimension 1 B-spline along the clamped edge. Details of
this calculation are given in Appendix B.

2.6. Distance Metrics. We assessed the performance of our
fitting algorithm by measuring the distance between the
target geometric data points and the model surface. For
a data point “𝑛” in 𝑉(𝑥, 𝑦, 𝑧), the distance between this
point and the model 𝐷

𝑛
(𝑢, V) is the closest distance from

this point to the model surface. Determination of minimal
distance by sweeping points on the parametric surface can
be time consuming and even inaccurate since the surface
can undergo significant excursion between the sampled data
points. On the other hand, bicubic B-Splines are too complex
for analytical determination of minimal distance.

Here we explore the flexibility of the parametric surface
representation to tackle this problem. First, we seek the
minimal distance along 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and V = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

coordinate lines, 4 in each direction on any element. The
derivatives

𝜕𝐷
2

𝑛
(𝑢, V)

𝜕𝑢
,

𝜕𝐷
2

𝑛
(𝑢, V)
𝜕V

, (14)

along a V or 𝑢 coordinate line is a 5th degree polynomial.
We find its zeros with an eigenvalue method [26]; that is,
we write a companion matrix, the eigenvalues of which are
the polynomes zeros. The eigenvalues in question are found
with themethod outlined in LAPACK [27, Section 2.4.5].The
companion matrix is transformed into an upper Hessenberg
form, which is subsequently reduced to a tridiagonal form,
the diagonal of which contains the eigenvalues. Our imple-
mentation exploits the sparsity pattern of the companion
matrix which makes the root finding fast, but still accurate.
𝐷
𝑛
(𝑢, V) is evaluated on all roots of the 8 coordinate lines if

the corresponding 𝑢, V coordinate is in the B-spline element.
It is also evaluated on the 4-element vertices.

The search is further refined with a fixed point method,
starting from the closest of the above distances 𝑢

𝑐
, V
𝑐
. The

surface 𝐷
𝑛
(𝑢, V) is approximated (𝐷

𝑛
(𝑢, V)) at 𝑢

𝑐
, V
𝑐
, with

𝐷
𝑛
(𝑢, V) = [(𝑢 − 𝑢

𝑐
) , (V − V

𝑐
)]H [

(𝑢 − 𝑢
𝑐
)

(V − V
𝑐
)
]

+ g [
(𝑢 − 𝑢

𝑐
)

(V − V
𝑐
)
] + 𝐷

𝑛
(𝑢
𝑐
, V
𝑐
) ,

(15)

where H and g are the Hessian and gradient of 𝐷
𝑛
(𝑢, V)

at 𝑢
𝑐
, V
𝑐
. The minimum of (15) is found by solving the

2 × 2 matrix system expressing the minimum condition,
(𝑢, V) → (𝑢

𝑐
, V
𝑐
), whose operation is repeated until |g| < 𝜖, a

predetermined threshold, or when the line segment joining
the current minimum to the new one crosses an element
edges. The final minimal distance is the minimum of the
minimal distance over all elements.

3. Results

3.1. The Cardiac Imaging Data. The test data set (Figure 1) is
an X-ray computerized tomography scan of an excisedmouse
heart fixed in diastole.The data were collected on a laboratory
microscanner (CT) at 7.5𝜇m resolution. See the Methods for
specimen preparation and data acquisition. Figure 1 shows
three sections across this data set: one longitudinal section
perpendicular to the septum and two cross sections along the
short axis of the heart.The right and left ventricles are labeled
RV and LV, respectively.The blue and green lines indicate the
height of the section. The longitudinal section is 1.125mm
from the epicardial surface, and the two cross sections are
2.475mm (blue) and 2.775mm (green) from the atrial apex,
respectively. The distance from the base to the ventricular
apex is 7.050mm, and the diameter at the base is 1.880mm.

The longitudinal view exposes a papillary muscle (red
rectangle) extending from the left endocardial surface to the
aortic valve. The cross section at 2.775mm shows the root of
the papillary muscle. The other section at 2.475mm clearly
delineates a cross section of the papillary muscle which is
detached from the endocardial surface. We believe papillary
muscles play an important role in the initiation of abnormal
beats since cardiac fiber changes rapidly in such region.
Therefore, accurate modeling of these structures is a main
motivation for the geometric modeling technique developed
here.
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Figure 1: Computerized tomography scan of amouse heart fixed in diastole. (a) Longitudinal section of the heart perpendicular to the septum.
(b) Two sections along the short axis of the heart.

Two other masses are visible in the cross section at
2.475mm of the right ventricle. These are probably papillary
muscles thorn during the heart preparation. The injection of
grease, although done at relatively low pressure, may have
damaged the fragile papillary muscles.

Finally, from this image the reader can appreciate the
fact that contrast is excellent. No additional processing was
performed after the tomographic reconstruction; still the
edges of the cavity and epicardium are clearly visible.

3.2. Polygonal Surface Extraction. The ventricular cavities
and epicardium of the heart CT scan of Figure 1 were deline-
ated with a thresholding algorithm. Figure 2 shows the exter-
nal faces of hexahedra with vertices crossing the 100 gray
level. This results in a brick wall texture, but, as shown
in constrained surface fitting below, the polygonal surface
becomes quite smooth when triangles are extracted with a
marching cube algorithm [21, 28] from the hexahedra.

Figure 2(a) illustrates the practicality of geometric model
reconstruction. The two holes in the edges of the right
ventricular cavity are clearly artifacts.They appeared because
we did not have any voxels crossing the prescribed threshold

value. There are limits to CT, which could be compared
to shadows in visible light. The reconstruction problem
is partly a local operation and partly a global one. Local
operations are needed to detect edges in general, but global
information with a priori knowledge of the physiology is
necessary to overcome limitations of local operations. Here
the holes in the frontier of the RV cavity could be filled
with user-assisted operations, which is time consuming.
Alternatively, our approach prescribes rules to fit a smooth
parametric surface on the polygonal surface.The RV displays
this problem since the surfaces bounding the geometry are
close to one another. However, for many problems including
modeling and simulation, a smooth representation along
this edge is quite adequate. Note that this problem could
have potentially been eliminated by thresholding the intensity
gradient instead of the absolute intensity value, or by using a
more elaborate surface extraction method. However, at this
stage the precision is sufficient to meet modeling needs.

As shown in Figure 2(b), when the edges of the structure
imaged are not too close to one another, the surface can
be accurately delineated. For example, we see very well the
endocardial surface of the left ventricular cavity, even in
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(a) (b) (c)

Figure 2: Polygonal surfaces delineating the right ventricular cavity (a) the left ventricular cavity (b), and the epicardium (c) of the mouse
heart shown in Figure 1. The surfaces were extracted automatically by thresholding.

the papillary muscle region despite the fact that it is quite
convoluted.

Finally, the delineation of the epicardial surface is quite
trivial. Thus, as long as the imaging modality offers good
contrast and surfaces are not too close to one another, they
can be delineated relatively accurately with thresholding.

3.3. Polygonal Surface Projection onto a Parametric Plane.
Figure 3 shows𝑄(V) obtained by projecting𝑄(𝑉) of Figure 2
onto (𝑢 − V) parametric planes. Each parametric axis has 100
units, which is arbitrary. For the projections in Figure 3, line
segments of𝑄(V) do not intersect and a one-to-onemapping
was achieved. The epicardial surface is relatively regular and,
as a result, the polygonal mesh generated by the projection
is also relatively regular. The quads are more dense around
the center compared to the periphery, but the difference is
not very large. This is in contrast to the RV and LV surfaces.
In these 2 cases, the density of quads is much larger around
the center. In addition, the RV surface has several epicenters.
The difference in quad density between these epicenters and
the periphery is quite large, which is typical for convoluted
geometries.

The RV and LV polygonal meshes illustrate well the para-
metric surface fitting problem. When we fit a codimension 2
parametric B-spline, the 𝑢− V parametric plane is subdivided
into elements of equal size. A set of geometric data points
is associated to each element based on their position in the
plane. This way, the coordinates of the geometric data points
in high density regions are averaged, and the parametric
surface cannot accurately mold the geometric data points in
these regions. An increase in the number of control points
can alleviate the problem, but does not solve it.

The RV polygonal mesh is particularly interesting,
because the holes in the endocardial surface simply dis-
appeared. This happened because the mapping algorithm
generates a point distribution that expands in a manner to
maximally fill the 𝑢−V parametric plane.The outer boundary

is constrained but not the contours delimiting the holes.Thus,
they are filled during the projection.

3.4. Polygonal Mesh Regularization. In order to accurately fit
a parametric B-spline surface to the geometric data points,
𝑄(V) was regularized with respect to polygon area and edge
length. To this end, we minimized a measure of variation in
polygon deformation with respect to a reference polygon (7).
See Appendix A for the details of this approach.

Figure 4 shows the polygonal mesh of Figure 3 after
regularization.The regularizedmeshes are nowquite uniform
in polygon area and edge length. This is quite remarkable
considering the initial variation in polygon density and the
nonlinearity of the minimization problem. As a result of this
regularization, the mapping is more conformal, and each
element of the polygonal surface is given the same weight in
the parametric surface fit (compare Figure 6 with Figure 5).

The polygon density of the regularized mesh is slightly
higher along a diagonal in the RV surface. In order to
refine regularization, one could reduce 𝜖 in the termination
criteria ‖g‖

2
< 𝜖, though the increased number of iterations

to solve the matrix system could dramatically increase the
computation time (see Appendix A).

A note is in order regarding the computation time associ-
ated to with the regularization. Excluding regularization, the
algorithm is quite fast; the projection and parametric surface
fitting requires solving relatively simple matrix systems, both
of which could be solved in the order of a second. On the
other hand, the regularization is more demanding compu-
tationally since the procedure is iterative and the matrix
expressing the minimization problem needs to be rebuilt at
each iteration (see Appendix A). However, this task is not
very time consuming if the algorithm is well implemented
since most of the operations can be preprocessed.

3.5. Constrained Parametric Surface Fitting. Figures 5–8 show
the parametric surfaces fitted to the geometric data points.
In each panel of Figure 5, the red surfaces are composed
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(a) (b) (c)

Figure 3: Polygonal surfaces (Figure 2), projected onto the (𝑢 − V) parametric plane. The surfaces delineate the endocardial surface of the
right ventricular cavity (a), the endocadial surface of left ventricular cavity (b), and the epicardial surface (c).

(a) (b) (c)

Figure 4: Polygonal meshes shown in Figure 3, regularized for polygons area and edges length.

of a triangle array extracted from the brick wall texture of
Figure 2. The grey surfaces are the codimension 2 B-splines
fitted on the geometric data points of 𝑄(V) of Figure 4. The
fit is performed according to the algorithm presented in the
Methods. Table 1 gives the parameter for the surface fits. All
fits were performed by imposing a relatively low stiffness.
This parameter is assigned by trial and error during visual
inspection. It is convenient to proceed this way since, once the
regularization completed, the fit is practically instantaneous.

As judged by Figure 5, the match between the para-
metric surfaces and the geometric data points is excellent.
Convoluted surfaces, are accurately represented with only
9 × 9 elements, which is remarkable for the LV. Statistics
on the distances between the parametric surface and the
geometric data points are given in Table 2. Considering the
number of polygons in each case (Table 1), this constitutes a
dramatic reduction in the complexity of the representation
and significantly impacts the computational labor of any task
aiming to evaluate geometric information on this physiologic
structure. Note the fit of the epicardial surface seems to be less
accurate; that is, minimal, maximal, and averaged distances
are larger than the one of the left and right ventricular cavities.
However, also remark the variance is larger. The epicardial

Table 1: Parameters of the surface fitting. Number of polygons:
number of polygons in the polygonal surfaces of Figure 2. 𝑁

𝑢
, 𝑁V:

number of elements along the 𝑢 and V coordinates of the parametric
plane. Stiffness: parameter 𝜆 in (13).

Surface Number of polygons 𝑁
𝑢

𝑁V Stiffness
Right ventricle 374,369 7 7 0.3
Left ventricle 377,863 9 9 0.2
Epicardium 1,013,085 11 11 0.1

surface fromCT is not as smooth as the surface of the cavities.
There are local variations that could not be captured with the
number of elements we used.

The right side of the RV parametric surface is smoother
than the triangulated surface, but this result was desirable.
The computerized tomography and the surface extraction are
not highly accurate in this region since the surfaces nearly
intersect one another. It was judged here that the smooth
surface corrects some of these errors. Note that the holes in
the RV polygonal surface (Figure 5) have been filled in the
parametric surface without any manual interventions. There
is a steep transition in the 𝑥−𝑦−𝑧 coordinates near the holes,
but they are smoothed out by the fit.
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(a) (b) (c)

Figure 5: Parametric surfaces fitted to the 𝑥−𝑦− 𝑧 coordinates of the regularized polygonal meshes shown in Figure 4. (a) Right ventricular
cavity; (b) left ventricular cavity; (c) epicardium. Gray: parametric surface. Red: Surface composed of triangles array generated from the brick
wall texture of Figure 2.

Figure 6: Parametric surface fitted to the 𝑥 − 𝑦 − 𝑧 coordinates of
the RV polygonal mesh before regularization, that is, Figure 3(a).

Table 2: Min., Max., Avg. dist: minimal, maximal, and averaged
distances, respectively. Distances refer to the distance between the
geometric data points and the model surface, as calculated with the
metric presented in Section 2. Rightmost column, variance of the
distances. All distances and variance are in 𝜇m.

Surface Min. dist. Max. dist. Avg. dist. Variance
Right ventricle 0.0334 25.9825 8.0064 15.5450
Left ventricle 0.0214 32.1468 5.2053 16.4575
Epicardium 0.1198 51.9895 13.8509 53.3334

The fit of the LV surface is the most striking. The
reproduction is excellent using only 9 × 9 elements in the
parametric B-spline; this despite the fact that the surface
is quite convoluted. The papillary muscle was accurately
reproduced from its root in the endocardial surface all the
way up to its tip near the aortic valve. Clearly the parametric
surface fit is excellent. On average, the distance between

a geometric data point and the surface is less than 8.0𝜇m,
5.2 𝜇m, and 13.8 𝜇m for the surfaces bounding the RV cavity,
LV cavity, and endocardium, respectively. In addition, we
can observe the triangulated surface crossing in and out the
parametric surface all around due to their proximity.

Figure 6 is a fit of the parametric surface of the RV
polygonal mesh before its regularization (Figure 3). In this
case, the apex is notwell reproduced and important details are
missed along the right side of the RV. In addition, the distance
between the triangulated and parametric surfaces is larger.
In this case, the triangulated and parametric surfaces do not
cross one another as in Figure 5. Without regularization, the
distance between the parametric surface and the geometric
data can be quite large; that is, a convoluted geometry is
smoothed out.

It is interesting to examine several views of the LV cavity
in order to appreciate the accuracy of the reproduction,
despite the convoluted nature of the geometry. Panel (a) of
Figure 7 is a top view of the LV cavity exposing the papillary
muscle. The surface is starting to close in its upper part
because it is getting close to the heart valves. In panels (b)
and (c), we have an outside view of several ridges, cavities,
and protrusions.

Finally, Figure 8(a) shows a cut open view of the LV
endocardial surface. The model includes protrusions, invagi-
nation, and a papillary muscle, while the surface remains
smooth. Clearly, the representation is sufficiently flexible
to generate a realistic model of the heart ventricles, with
as few as 9 × 9 elements. We have not constrained the
fit to the base, but could have done so. With the ability
to constrain the fit on specific contours, we could have
decomposed the geometric reconstruction to address more
complex reconstruction problems.

Figure 8(b) is a confocal laser microscopy image of a
cross-section of the heart near the root of the papillary
muscle.The image was obtained at a 4x enlargement and after
staining the cardiac fibers (see Methods). It illustrates how
complex the subendocardial layer is.The cardiac fibers follow
a feather-like pattern. They are oriented along the periphery
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(a) (b) (c)

Figure 7: Multiple views of the parametric B-Spline surface fitted to the edge of the left ventricular cavity (Figure 2(b)).

(a) (b)

Figure 8: (a) Cut open view of the left ventricular cavitymodel, same as Figure 5(b).The view exposes the papillarymuscle. (b) Laser scanning
confocal microscopy image (4x enlargement) of a cross section of the same heart near the papillary muscle.

in midmyocardium, but fan out as we move toward the
periphery. The fibers enter the large protrusions along their
long axis. In the papillary muscle we observe dots instead of
lines, because at this level the fibers are oriented along the
long axis of the papillary muscle. A detailed histology study
by Robinson et al. [29] corroborates this result. We can also
remark that the fibers are more separated in the protrusions
and papillary muscle, thereby suggesting more collagen in
these areas.Thus, clearly the ventricular walls have a complex
structure. The interested reader is invited to consult Slamani
et al. [19], Poddar et al. [20], and Subramanian et al. [30]
for a high resolution three-dimensional reconstruction of
cardiac fiber orientations based on laser scanning confocal
microscopy data.

4. Discussion

4.1. Motivation for the Developed Technique. What motivated
the developed technique was the specifications for geometric

models employed to study problems in cardiac electrophys-
iology with computer simulations. Now that we illustrated
a reconstruction with our method, we can elaborate on its
application in investigative cardiology.

Several cardiac arrhythmias are initiated by an abnormal
heart beat originating in the ventricles. The initiation site
of these beats remains mysterious for a number of arrhyth-
mias like congenital arrhythmias (e.g., Long QT syndrome),
idiopathic ventricular tachycardias (IVT), cathecolaminergic
ventricular tachycardias (CVT), and many others. It is likely
that the triggering of abnormal beats occurs at sites displaying
steep changes in electrical conduction because such sites
are associated with local changes in propagation velocity,
action potential duration (wave may pivot), and spatiotem-
poral distribution of intracellular calcium. All of which may
favor wavefront and wavetail interactions, and in turn, the
triggering of abnormal beats.

The root of large protrusions, the root of heart valves, the
fascicles, the outflow tract, or any other convoluted region
can display the above mentioned characteristics. There are
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two main reasons for this. First, these sites exhibit rapid
changes in fiber orientation. For example, cardiac fibers are
oriented along the tangent to the heart circumference in
midmyocardium, but along the long axis of the protrusions,
which implies a steep change in cardiac fiber orientation
around the root of the protrusions. Second, inmany instances
these sites have higher collagen density because they play
a structural role. Therefore, there is a need to investigate
the role played by these sites in electrical conduction at a
mesoscopic scale.

Cardiac modeling is definitively a good instrument for
such investigation as it allows reconstructing electrical exci-
tation from the ground up, and then studying the inter-
play between several contributing factors. The technique
presented here offers the flexibility necessary for geometric
heart reconstruction at the mesoscopic scale and all ele-
ments required for the formulation of an accurate electrical
conduction model. Note that to perform simulations, one
should add to the geometry a mathematical description of
fiber and lamina orientations. An interesting technique to
accomplish this, also based on 𝐶

2
parametric representation,

was documented by Bayer et al. [31].

4.2. Advantages and Limitations of Our Geometric Modeling
Technique. We have presented a method to fit 𝐶2 continuous
parametric surfaces to scattered geometric data points on
frontiers delimiting physiologic structures. Such surfaces
meet the modeling needs stated above. So far the best way
to generate them was through deformable models or level set
methods. The approach we presented here is more direct and
is likely to perform better. Briefly, once a polygonal surface
is extracted from a segmented image, it is projected onto a
parametric plane.The resulting polygonalmesh is regularized
for polygon area and edge length.Then a parametric surface is
fitted to the projected geometric data points, whose operation
also assigns a unique parametric coordinate to each data
point. The fit requires to adjust the control points of a
codimension 2 B-spline in amanner tominimize the distance
between the geometric data point and points on the surface
with the sameparametric coordinate.The computational load
is relatively small. The projection and parametric surface fit
necessitate solving a symmetric sparse matrix system with
small bandwidth. When the polygonal surface is composed
of quads, Nd × 9 coefficients, Nd: number of data points for
the projection and Nb × 49 coefficients Nb: number of B-
spline coefficients for the fit. These matrix systems can be
solved in the order of seconds. The regularization is the time
limiting step. It requires finding a function minimum. This
is done with an iterative method, where each step includes
the calculation of matrix coefficients and matrix-to-vector
multiplications. The matrix in question is sparse and has a
small bandwidth (dimension:Nd× 9 coefficients with quads).

Our results show it is possible to represent convoluted
geometries in a compact manner with codimension 2 para-
metric B-splines. Specifically, a representation with 9 × 9
elements, or 121 control points, are sufficient to accurately
describe the LV, including protrusions, invaginations, and
even a papillary muscle.

The examination of advantages and disadvantages of this
approach has to be contexted. A reconstruction technique
can serve several purposes, for example, visualize a structure,
detect features, measure areas and volumes, or investigate
the role played by geometry with modeling and simulations.
Obviously, each technique has advantages with respect to the
targeted use. For visualization, when the image is not noisy
and the contrast is high, thresholding with polygonal surface
extraction is simple and fast, which meets the needs of this
task. However, when the image is noisy themanual assistance
required may make the technique too time consuming to
be practical. A deformable model or a level set method
would be more appropriate in this case. When there is too
much noise, or the contrast is low, a technique replacing
or adding to the function to minimize a comparison of
each pixel’s intensity with the averaged intensity of pixels
inside and outside regions delimited by themoving boundary
[14] is quite effective. However, this is done at the cost of
a significant additional computational load. Still, this may
be beneficial considering the manual labor involved by the
alternative. In addition, for many tasks batch processing is
quite acceptable. When one needs to perform measurements
on the geometric reconstruction, as in oncology since the rate
of uptake of a compound may depend on surface and dose
on volume, then a mathematical representation amenable
to such computation offers important advantages. Surfaces
can be easily computed with triangle arrays. Deformable
and level set methods can both provide such representation;
however, the level set method necessitates an additional step
to extract the surface. The calculation of volumes is more
delicate. In this case a parametric representation dramatically
facilitates this calculation. This also applies to the calcula-
tions required in modeling and simulations. Indeed, in this
case the availability of 𝐶

2
continuous surfaces is a great

advantage since in addition to volume, precise calculations
of curvature, distances on curved surfaces, and areas of
curvilinear surfaces are needed. Such representation can be
built with the deformable model or level set methods, but
could significantly complicate the process. Alternatively, it
could be included as a postprocessing operation, but as
explained in the Introduction andMethods, it is not trivial to
generate the𝐶

2
continuous parametric surface even when we

know the frontier of the object in question. This is precisely
the problem our technique addresses.

When the noise level is low and the contrast is high,
which is the case for a large number of medical imaging
modalities, the geometric reconstruction can be performed
with thresholding and polygonal surface extraction followed
with a fit of a 𝐶

2
continuous surface like we did here. The

computational load is minimal, results are obtained rapidly,
and as illustrated here, accuracy is excellent. When the noise
level is high or contrast is low, it would become advantageous
to replace thresholding and polygonal surface extraction
with a deformable model or a level set method. No need
to say automaticity and robustness will come at the price of
significant additional computational load.

Lastly, another limitation of our method is that the com-
putational load rapidly increases with problem size. However,
this can be addressed by decomposing the reconstruction
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problem.Thismeans identifying, from the surface extraction,
critical sections where the geometric model could be split,
then fitting the border of these sections with𝐶

2
codimension

1 parametric B-splines to fit each portion separately by
imposing the fitted surface to match the boundary curves.
This could be further constrained by imposing a continuous
surface normal orientation.

4.3. The Future of Medicine. With the use of imaging and
genomic data, medicine is becoming more and more quan-
titative. This is to our benefice since it has significantly
advanced diagnostics and the optimization of a number of
therapeutic interventions. Nevertheless, there may be even
more with the introduction of advanced computation; that is,
modeling and simulations can provide unprecedented means
to discover mechanisms of diseases.

As stated in “motivation for the technique developed”, we
expect heart geometry and cardiac tissue microstructure to
play an important role in the initiation of fatal arrhyth-
mias. However, this role needs to be precisely discovered.
Considering the unknown, it is appealing to approach this
problem from the population scale, that is, finding in the pop-
ulation trends between symptoms or triggering conditions,
with geometry and microstructure features. Considering the
clinical data and the computational resources available to
date, it is not unrealistic to attempt to tackle the problem this
way.

First, it is common practice for any patient displaying
recurrent episodes of tachycardia or syncopies to have a
CT or MR or both scans. We could perform geometric
heart reconstructions for this population, but this would
require the reconstruction procedure to be automatic. For-
tunately, such problem has been previously addressed. Few
reconstructions are performed for cases displaying different
geometries/microstructures. These reconstructions form an
atlas which constitutes a basis of information that drives
the automatic reconstructions. The approach is based on
the active shape modeling introduced by Cootes et al. [32].
The variance of predefined markers coordinates are captured
in a covariance matrix (our reconstruction method would
facilitate this task). The first few eigenvectors corresponding
to the largest eigenvalues of the covariance matrix provide
axes to guide the constrained deformations. Indeed Frangi et
al. [33] and Zheng et al. [34] built on this concept to develop
elaborate computational infrastructure to reconstruct heart
models automatically. Zheng et al. [34] even supplemented
the technique with learning algorithms to generate classes of
geometric models semiautomatically.

Once the reconstruction is performed at the population
scale, features associated to electrophysiologic properties
could be captured in several parameters.Then based on these
parameters, model categories can be generated automatically
with a classifier. In a subsequent step, correlations could
be drawn between categories and conditions of initiation
of arrhythmias. This specifies a number of parameters for
the performance of elaborate simulations aiming at find-
ing the causes triggering life threatening arrhythmias. The
computational resources required for such an endeavor are

considerable, but available at supercomputer centers. Such
efforts could lead to the systematic discovery of mechanisms
of arrhythmias, and in turn equip clinicians with new means
to prevent life threatening arrhythmias and to optimize
medical devices.

Appendix

A. Numerical Solution of the Grid
Regularization Equation

A.1. Quadrilateral Mesh. Weminimize 𝐹(u, k)
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with respect to (u, k). Above the mapping functions are
described with degree 1 Lagrange polynomials,
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built with tensor product of one-dimensional Lagrange poly-
nomials,

Ψ (𝜉, 𝜂) = 𝜓 (𝜉) ⊗ 𝜓 (𝜂) ,

𝜓 (𝜉) = [𝜓
0
(𝜉) , 𝜓

1
(𝜉)] ,

𝜓
0
(𝜉) =

1 − 𝜉

2
, 𝜓

1
(𝜉) =

𝜉 − 1

2
.

(A.4)

We find this minimum with a fixed point method. To this
end, 𝐹(u, k) is approximated (𝐹(u, k)) around (u

0
, k
0
) with a

multidimensional quadratic

𝐹 (u, k)

=
1

2
(u − u

0
, k − k

0
)
𝑇H (u − u

0
, k − k

0
)

+ g𝑇 (u − u
0
, k − k

0
) + 𝐹 (u

0
, k
0
)

(A.5)

admitting its minimum at

H [
u
k] = g, (A.6)
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whereH and g are the Hessian (also called the Jacobian) and
gradient of 𝐹(u, k) evaluated at (u

0
, k
0
).

The gradient g(𝑒) ∈ R8 of an element “𝑒”

g(𝑒) = (
𝜕𝐹
(𝑒)

𝜕𝑢
(𝑒)

𝛼

,
𝜕𝐹
(𝑒)

𝜕V(𝑒)𝛼
)

𝑇

, 𝛼 ∈ [0, 3] (A.7)

is calculated taking the derivative of each component of R(𝑒)

𝑟
(𝑒)

0,0
= 𝑈
(𝑒)

𝜉
−

𝑉
(𝑒)

𝜂

(𝑈
(𝑒)

𝜉
𝑉
(𝑒)

𝜂 − 𝑈
(𝑒)

𝜂 𝑉
(𝑒)

𝜉
)

,

𝑟
(𝑒)

0,1
= 𝑈
(𝑒)

𝜂
−

𝑈
(𝑒)

𝜂

(𝑈
(𝑒)

𝜉
𝑉
(𝑒)

𝜂 − 𝑈
(𝑒)

𝜂 𝑉
(𝑒)

𝜉
)

,

𝑟
(𝑒)

1,0
= 𝑈
(𝑒)

𝜉
−

𝑉
(𝑒)

𝜉

(𝑈
(𝑒)

𝜉
𝑉
(𝑒)

𝜂 − 𝑈
(𝑒)

𝜂 𝑉
(𝑒)

𝜉
)

,

𝑟
(𝑒)

1,1
= 𝑈
(𝑒)

𝜉
−

𝑈
(𝑒)

𝜉

(𝑈
(𝑒)

𝜉
𝑉
(𝑒)

𝜂
− 𝑈
(𝑒)

𝜂
𝑉
(𝑒)

𝜉
)

,

(A.8)

with respect to u(𝑒), k(𝑒), that is,

𝜕𝐹
(𝑒)

𝜕𝑢
(𝑒)

𝛼

= ∑

𝑖

∑

𝑗

∫

1

−1

∫

1

−1

2𝑟
(𝑒)

𝑖,𝑗
(

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛼

)𝑑𝜉 𝑑𝜂

𝜕𝐹
(𝑒)

𝜕V(𝑒)𝛼
= ∑

𝑖

∑

𝑗

∫

1

−1

∫

1

−1

2𝑟
(𝑒)

𝑖,𝑗
(

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕V(𝑒)𝛼
)𝑑𝜉 𝑑𝜂,

(A.9)

with

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛼

=

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑈
(𝑒)

𝜉

𝜕Ψ
𝛼

𝜕𝜉
+

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑈
(𝑒)

𝜂

𝜕Ψ
𝛼

𝜕𝜂
,

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕V(𝑒)𝛼
=

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜉

𝜕Ψ
𝛼

𝜕𝜉
+

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜂

𝜕Ψ
𝛼

𝜕𝜂
.

(A.10)

Once g(𝑒) is evaluated, it is added to g with appropriate
embedding based on 𝐶(𝑄).

Similarly, the HessianH(𝑒) ∈ R8 × 8 of an element “𝑒,”

H(𝑒) =
[
[
[
[
[

[

𝜕

𝜕𝑢
(𝑒)

𝛽

(
𝜕𝐹
(𝑒)

𝜕𝑢
(𝑒)

𝛼

)
𝜕

𝜕𝑢
(𝑒)

𝛽

(
𝜕𝐹
(𝑒)

𝜕V(𝑒)𝛼
)

𝜕

𝜕V(𝑒)
𝛽

(
𝜕𝐹
(𝑒)

𝜕𝑢
(𝑒)

𝛼

)
𝜕

𝜕V(𝑒)
𝛽

(
𝜕𝐹
(𝑒)

𝜕V(𝑒)𝛼
)

]
]
]
]
]

]

,

𝛼, 𝛽 ∈ [0, 3] ,

(A.11)

is obtained taking the derivative of (A.9) with respect to
u(𝑒), k(𝑒),

𝜕

𝜕𝑢
(𝑒)

𝛽

(
𝜕𝐹
(𝑒)

𝜕𝑢
(𝑒)

𝛼

)

= ∑

𝑖

∑

𝑗

∫

1

−1

∫

1

−1

2[

[

(

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛽

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛼

)

+ 𝑟
(𝑒)

𝑖,𝑗
(

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛽
𝜕𝑢
(𝑒)

𝛼

)]

]

𝑑𝜉 𝑑𝜂,

𝜕

𝜕𝑢
(𝑒)

𝛽

(
𝜕𝐹
(𝑒)

𝜕V(𝑒)𝛼
)

= ∑

𝑖

∑

𝑗

∫

1

−1

∫

1

−1

2[

[

(

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛽

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕V(𝑒)𝛼
)

+ 𝑟
(𝑒)

𝑖,𝑗
(

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛽
𝜕V(𝑒)𝛼

)]

]

𝑑𝜉 𝑑𝜂,

𝜕

𝜕V(𝑒)
𝛽

(
𝜕𝐹
(𝑒)

𝜕𝑢
(𝑒)

𝛼

) = [

[

𝜕

𝜕𝑢
(𝑒)

𝛽

(
𝜕𝐹
(𝑒)

𝜕V(𝑒)𝛼
)]

]

𝑇

𝜕

𝜕V(𝑒)
𝛽

(
𝜕𝐹
(𝑒)

𝜕V(𝑒)𝛼
)

= ∑

𝑖

∑

𝑗

∫

1

−1

∫

1

−1

2[

[

(

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕V(𝑒)
𝛽

𝜕𝑟
(𝑒)

𝑖,𝑗

𝜕V(𝑒)𝛼
)

+ 𝑟
(𝑒)

𝑖,𝑗
(

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕V(𝑒)
𝛽

𝜕V(𝑒)𝛼
)]

]

𝑑𝜉 𝑑𝜂

(A.12)

with

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛽
𝜕𝑢
(𝑒)

𝛼

= (

𝜕Ψ
𝛽

𝜕𝜉

𝜕Ψ
𝛼

𝜕𝜉
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑈
(𝑒)

𝜉
𝜕𝑈
(𝑒)

𝜉

+ (

𝜕Ψ
𝛽

𝜕𝜂

𝜕Ψ
𝛼

𝜕𝜉
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑈
(𝑒)

𝜉
𝜕𝑈
(𝑒)

𝜂

+ (

𝜕Ψ
𝛽

𝜕𝜉

𝜕Ψ
𝛼

𝜕𝜂
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑈
(𝑒)

𝜉
𝜕𝑈
(𝑒)

𝜂
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+ (

𝜕Ψ
𝛽

𝜕𝜂

𝜕Ψ
𝛼

𝜕𝜂
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑈
(𝑒)

𝜂 𝑈
(𝑒)

𝜂

,

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑢
(𝑒)

𝛽
𝜕V(𝑒)𝛼

= (

𝜕Ψ
𝛽

𝜕𝜉

𝜕Ψ
𝛼

𝜕𝜉
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜉
𝜕𝑈
(𝑒)

𝜉

+ (

𝜕Ψ
𝛽

𝜕𝜂

𝜕Ψ
𝛼

𝜕𝜉
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜂 𝜕𝑈
(𝑒)

𝜂

+ (

𝜕Ψ
𝛽

𝜕𝜉

𝜕Ψ
𝛼

𝜕𝜂
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜉
𝜕𝑈
(𝑒)

𝜂

+ (

𝜕Ψ
𝛽

𝜕𝜂

𝜕Ψ
𝛼

𝜕𝜂
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜂 𝑈
(𝑒)

𝜂

,

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕V(𝑒)
𝛽

𝜕V(𝑒)𝛼

= (

𝜕Ψ
𝛽

𝜕𝜉

𝜕Ψ
𝛼

𝜕𝜉
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜉
𝜕𝑉
(𝑒)

𝜉

+ (

𝜕Ψ
𝛽

𝜕𝜂

𝜕Ψ
𝛼

𝜕𝜉
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜉
𝜕𝑉
(𝑒)

𝜂

+ (

𝜕Ψ
𝛽

𝜕𝜉

𝜕Ψ
𝛼

𝜕𝜂
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜉
𝜕𝑉
(𝑒)

𝜂

+ (

𝜕Ψ
𝛽

𝜕𝜂

𝜕Ψ
𝛼

𝜕𝜂
)

𝜕
2
𝑟
(𝑒)

𝑖,𝑗

𝜕𝑉
(𝑒)

𝜂 𝑉
(𝑒)

𝜂

.

(A.13)

Once evaluated, H(𝑒) is added to H with appropriate embed-
ding as specified by 𝐶(𝑄). The derivatives with respect to
𝑈
(𝑒)

𝜉
, 𝑈
(𝑒)

𝜂
, 𝑉
(𝑒)

𝜉
, 𝑉
(𝑒)

𝜂
are known analytically from (A.8) and

derivatives of Ψ(𝜉, 𝜂) with respect to 𝜉, 𝜂 are linear in 𝜂, 𝜉.
All integrals are evaluated numerically with a Gauss-

Legendre quadrature. We use 5 sampling points in each
direction. The Vectors Ψ and their derivative are evaluated
once and stored in memory. Then the solution proceeds as
follows. Solve (A.6) for (u − u

0
, k − k

0
), (u, k) → (u

0
, k
0
),

rebuild g,H, and keep iterating until ‖g‖
2
< 𝜖.

A.2. Triangular Mesh. The algorithm for a triangular mesh
is obtained replacing the quad mapping functions with
triangle mapping functions (triangle to triangle). With quads

Ψ is built with a tensor product of elementary Lagrange
polynomials. Instead with triangles,

𝑈
(𝑒)

(𝜉, 𝜂) =

2

∑

𝑖=0

𝑢
(𝑒)

𝑖
Ψ
𝑖
(𝜉, 𝜂) ,

𝑉
(𝑒)

(𝜉, 𝜂) =

2

∑

𝑖=0

V(𝑒)
𝑖

Ψ
𝑖
(𝜉, 𝜂) ,

Ψ
0
(𝜉, 𝜂) = 1 − (𝜉 + 𝜂) ,

Ψ
1
(𝜉, 𝜂) = 𝜉,

Ψ
2
(𝜉, 𝜂) = 𝜂

(A.14)

and one of the bound of integration in the 𝜉 − 𝜂 plane varies
with one variable

∫

𝜂=1

𝜂=0

∫

𝜉=1−𝜂

𝜉=0

𝑓 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂. (A.15)

This is quite conventional in finite element computation.The
reader is referred to a finite element method textbook for
more details on the subject. Indeed a good coverage of the
subject can be found in Huebner et al. [35, Chapter 5]. Then
embedding of the elementary vectors and matrices in the
global matrix is done as specified by 𝐶(𝑇). All the rest of the
algorithm is the same as for the treatment of the quadrilateral
mesh.

B. Imposition of Boundary Conditions on
Codimension 2 B-Splines

Consider the specific case illustrated in Figure 9. The para-
metric plane (𝑢 − V) is subdivided in 7 elements. The control
points (blue) and elements (red) are numbered according
to the directions of the 𝑢 − V axes, 𝑢-ccordinate first then
V. Two additional rows and columns of control points are
added along the edges of the plane to ensure the B-Spline
on boundary elements are represented with the same degrees
of freedom as the other elements inside the plane. When
assigning boundary conditions we fix values on these control
points.

We clamp the edge 𝑢 = 0 of the parametric plane with
a contour ℓ(V). A codimension 1 B-spline is fitted to this
contour. The parametric axis of this B-Spline is displayed
on the left side, with elements and control points number
in orange and green, respectively. This parametric axis is
identical to the edge 𝑢 = 0 of the 𝑢 − V plane, that is, same
length, same number of segments, each of them having the
same length. The reader’s attention is drawn to element 1 of
the contour which corresponds to 7 in the plane. The part
of the codimension 1 B-spline expansion contributing to this
edge ℓ

(1)
(V) is

ℓ
(1)

(V) = 𝜌
1
𝑏
0
(V) + 𝜌

2
𝑏
1
(V) + 𝜌

3
𝑏
2
(V)

+ 𝜌
4
𝑏
3
(V) ,

V = 2V −
V
3
+ V
2

(V
3
− V
2
)
.

(B.1)
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Figure 9: Parametric plane subdivided into 7 × 7 elements. Red
labels: elements number. Blue labels: control points number. The
border of the 𝑢 − V parametric plane is in magenta.

On any horizontal line, b(𝑢 = 0) take the values (1/6, 2/3,
1/6, 0). Thus the part of codimension 2 B-Spline expansion
contributing to this edge is

ℓ
(1)

(V)

=
1

6
𝜁
10
𝑏
0
(V) +

2

3
𝜁
11
𝑏
0
(V) +

1

6
𝜁
12
𝑏
0
(V)

+
1

6
𝜁
20
𝑏
1
(V) +

2

3
𝜁
21
𝑏
1
(V) +

1

6
𝜁
22
𝑏
1
(V)

+
1

6
𝜁
30
𝑏
2
(V) +

2

3
𝜁
31
𝑏
2
(V) +

1

6
𝜁
32
𝑏
2
(V)

+
1

6
𝜁
40
𝑏
3
(V) +

2

3
𝜁
41
𝑏
3
(V) +

1

6
𝜁
42
𝑏
3
(V) .

(B.2)

We Fix the coefficients on the boundary layer of the codi-
mension 2 B-spline such that the coefficients factoring the
same 𝑏

𝑖
(V)𝑖 ∈ [0, 3] in the codimension 1 and 2 B-splines are

identical. This leads to

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜁
10

6

𝜁
20

6

𝜁
30

6

𝜁
40

6

]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[

[

𝜌
1

𝜌
2

𝜌
3

𝜌
4

]
]
]

]

−

[
[
[
[
[
[
[
[
[
[
[
[

[

2

3
𝜁
11

+
1

6
𝜁
12

2

3
𝜁
21

+
1

6
𝜁
22

2

3
𝜁
31

+
1

6
𝜁
32

2

3
𝜁
41

+
1

6
𝜁
42

]
]
]
]
]
]
]
]
]
]
]
]

]

(B.3)

a similar condition applies to the sides of the boundary
elements along 𝑢 = 0. An elementary B-spline on the codi-
mension 1 contour has exactly 3 matching elementary B-
splines on the codimension 2 surface, and their coefficients
should be equal.

The boundary coefficients as determined by algebraic
relation (B.3) for each boundary elements are introduced

in the codimension 2 B-spline, eliminating the boundary
layer from the codimension 2 expansion.The surface is fitted
with this new system of equations. This condition guarantees
the surface to exactly match the contour. As a rule we
reintroduced the boundary layer coefficients in the original
form of the codimension 2 expansion where each 𝜁

𝑠
factors

a 𝐵
𝑠
(𝑢, V). This way all B-spline expansions always have the

same format no matter what boundary conditions have been
imposed to them.

Conflict of Interests

The authors declare that there are no conflict of interests
regarding the publication of this paper.

Acknowledgments

Work is supported by NSF TeraGrig Grant no. BCS110013 to
Jacques Beaumont, and in part by the French Government
through the Agence National de la Recherche (http://www
.agence-nationale-recherche.fr/) program “Investissements
d’avenir” with Grant ANR-10-IAHU-04 and funding pro-
vided by the Whitaker International Program administered
by the Institute of International Education to Jason D. Bayer.
The authors thank Arkady Pertsov professor of Pharma-
cology at SUNY Upstate Medical University, Andrzej Krol
professor of Radiology at SUNY Upstate Medical University,
and Anthony Costantino, research assistant at Binghamton
University for editorial comments.

References

[1] G. Plank, R. A. B. Burton, P. Hales et al., “Generation of histo-
anatomically representative models of the individual heart:
tools and application,” Philosophical Transactions of the Royal
Society A, vol. 367, no. 1896, pp. 2257–2292, 2009.

[2] N. A. Trayanova, “Whole-heart modeling : applications to car-
diac electrophysiology and electromechanics,” Circulation Re-
search, vol. 108, no. 1, pp. 113–128, 2011.

[3] J. V. Tranquillo, J. Hlavacek, andC. S.Henriquez, “An integrative
model of mouse cardiac electrophysiology from cell to torso,”
Europace, vol. 7, supplement 2, pp. S56–S70, 2005.

[4] D. M. Harrild and C. S. Henriquez, “A computer model of nor-
mal conduction in the human atria,” Circulation research, vol.
87, no. 7, pp. e25–e36, 2000.

[5] F. Vadakkumpadan, L. J. Rantner, B. Tice et al., “Image-based
models of cardiac structure with applications in arrhythmia and
defibrillation studies,” Journal of Electrocardiology, vol. 42, no. 2,
pp. 157.e1–157.e10, 2009.

[6] V. J.Wedeen, D. L. Rosene, R.Wang et al., “The geometric struc-
ture of the brain fiber pathways,” Science, vol. 335, no. 6076, pp.
1628–1634, 2012.

[7] M. Lee, W. Cho, S. Kim, S. Park, and J. H. Kim, “Segmentation
of interest region in medical volume images using geometric
deformable model,” Computers in Biology andMedicine, vol. 42,
no. 5, pp. 523–537, 2012.
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