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Abstract
Background In ulcerative colitis (UC), the molecular mechanisms that drive disease development and patient response to 
therapy are not well understood. A significant proportion of patients with UC fail to respond adequately to biologic therapy. 
Therefore, there is an unmet need for biomarkers that can predict patients’ responsiveness to the available UC therapies as 
well as ascertain the most effective individualised therapy. Our study focused on identifying predictive signalling pathways 
that predict anti-integrin therapy response in patients with UC.
Methods We retrieved and pre-processed two publicly accessible gene expression datasets (GSE73661 and GSE72819) of UC 
patients treated with anti-integrin therapies: (1) 12 non-IBD controls and 41 UC patients treated with Vedolizumab therapy, 
and (2) 70 samples with 58 non-responder and 12 responder UC patient samples treated with Etrolizumab therapy without 
non-IBD controls. We used a diffusion-based signalling model which is mainly focused on the T-cell receptor signalling 
network. The diffusion model uses network connectivity between receptors and transcription factors.
Results The network diffusion scores were able to separate VDZ responder and non-responder patients before treatment better 
than the original gene expression. On both anti-integrin treatment datasets, the diffusion model demonstrated high predictive 
performance for discriminating responders from non-responders in comparison with ‘nnet’. We have found 48 receptor-TF 
pairs identified as the best predictors for VDZ therapy response with AUC ≥ 0.76. Among these receptor-TF predictors pairs, 
FFAR2-NRF1, FFAR2-RELB, FFAR2-EGR1, and FFAR2-NFKB1 are the top best predictors. For Etrolizumab, we have 
identified 40 best receptor-TF pairs and CD40-NFKB2 as the best predictor receptor-TF pair (AUC = 0.72). We also identi-
fied subnetworks that highlight the network interactions, connecting receptors and transcription factors involved in cytokine 
and fatty acid signalling. The findings suggest that anti-integrin therapy responses in cytokine and fatty acid signalling can 
stratify UC patient subgroups.
Conclusions We identified signalling pathways that may predict the efficacy of anti-integrin therapy in UC patients and 
personalised therapy alternatives. Our results may lead to the advancement of a promising clinical decision-making tool for 
the stratification of UC patients.
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Background

Ulcerative colitis (UC) is a multifaceted, chronic, immune-
mediated inflammatory disorder. UC exhibits inflamma-
tion in the mucosa and submucosa, ranging from the rec-
tum, and can spread to proximal segments of the colon 
[1–4].The patients may undergo periods of remission and 
relapses [5]. The immunopathogenesis of UC features 
exaggerated immune response inducing epithelial damage, 
microbial dysbiosis, abnormal activation of lymphocytes, 
and infiltration of innate immune cells [6]. The aetiology 
of UC is multifactorial and potentially caused by genetic, 
immunological, microbial, and environmental factors [3, 
6]. Given the nature of the disease aetiology, there is no 
single effective therapy for all UC patients. Thus, the use 
of ineffective UC therapies for moderate-severe cases con-
stitutes a significant burden on the healthcare system [7, 
8].

Standard conventional therapies for UC are sulfasala-
zine, mesalazine (5-ASA), and corticosteroids for the 
mild-to-moderate disease activity. Some UC patients 
are unresponsive or intolerant to the standard therapies 
[4, 9–11] which have prompted the development of new 
drugs that target tumour necrosis factor (TNF), leukocyte 
adhesion, JAK-STAT pathway, IL-12 and IL-23, T-helper 
cell (Th)-1 polarisation, or T-cell activation [12, 13]. UC 
immunopathogenesis involves the altered immunoregu-
latory activity by crosstalk between T cell subsets that 
modulate inflammation [6, 14]. An example of T-cell 
directed therapy for IBD is a gut-selective anti-α4/β7 
integrin heterodimers monoclonal antibody, Vedolizumab 
(VDZ). Integrin α4/β7 is expressed on immune cells such 
as T-cell(s). VDZ selectively inhibits the adhesion of inte-
grin α4/β7 to the mucosal vascular address in cell adhe-
sion molecule 1 (MAdCAM-1) which is expressed in the 
lamina propria [15–18]. Targeting integrin α4β7 prevents 
the influx of T-cells to the lamina propria, thereby sup-
pressing the gut inflammation [19–21].

VDZ can be used as primary biologic therapy after fail-
ure of the standard therapy and also as a secondary therapy 
for UC patients showing primary non-response, loss of 
response, or intolerance to anti-TNFα (Infliximab) therapy. 
It can also be used for the maintenance of clinical remis-
sion and is considered a safer yet less efficacious alterna-
tive to infliximab [22]. VDZ reduces inflammation in the 
gut tissue as the gut expresses vascular cell adhesion mol-
ecule 1 (MADCAM1) and vascular cell adhesion molecule 
1 (VCAM1) molecules [23, 24] In contrast anti-TNFα is 
associated with systemic immunosuppression [25]. About 
30% of UC patients fail to respond to VDZ and suffer tis-
sue damage, and leukocyte-driven inflammatory activity 
which is associated with TNF-dependent pathways [15]. 

Other targeted treatment alternatives are Ustekinumab 
and Tofacitinib. Ustekinumab is a monoclonal antibody 
biologic targeting both IL-12 and IL-23 to reduce chronic 
inflammation [26] while Tofacitinib works as an inhibi-
tor which targets the JAK-STAT pathway by inhibiting 
phosphorylation and activation of JAKs to decrease the 
inflammatory response [27]. Ultimately, non-responders 
may require surgical interventions [28]. Therefore, it is 
important to identify non-responding patients as early 
as possible during disease development to provide better 
therapy alternatives.

Our major objective is to seek patient-specific networks 
that separate VDZ treatment responders and non-responders. 
In our recent work, we could successfully stratify infliximab 
responder vs non-responder patients using cytokine signal-
ling network diffusion rates [29]. In this study, we imple-
mented a diffusion model to discriminate UC patients (VDZ 
responders vs non-responders) to construct patient-specific 
subnetworks.

Methods

Data source

To identify VDZ related studies, a public dataset search on 
Gene Expression Omnibus (GEO) was performed using 
the keywords ‘Vedolizumab’ and ‘Ulcerative colitis’. The 
only hit found was GSE73661 containing Affymetrix Gene-
Chip Human Gene 1.0 ST arrays of UC patients before and 
after treatment with VDZ or IFX, and non-IBD controls 
for 178 samples [17]. This dataset contains patients who 
were recruited from two phase 3 VDZ trials (GEMINI & 
LTS) (Table 1). Biopsies were taken at week (W) 0 before, 
and W6, W12, and W52 after VDZ treatment giving a total 
of 124 colonic mucosal biopsies. The sampling location 
includes UC left-sided colitis/pancolitis biopsies collected 
at the edge of ulcers (if present) or at the most inflamed 
colon segment (absence of ulcers). The colonic biopsies 
for histological healing assessment were scored using the 
Geboes index [30, 31]. For endoscopic healing assessment, 
Mayo subscore was used [32] before and after treatment. 
VDZ-treated UC patients were classified as responders 
(n = 14) and non-responders (n = 27) (Table 2) based on the 
colonic healing sub-score of Geboes index for histological 
assessment.In this study, patients treated with VDZ all had a 
previous history of treatment with IFX. We used 112 VDZ-
treated patient samples and 12 non-IBD control samples in 
the analysis. In this dataset, 27 patients did not respond to 
therapy (non-responder) while 14 had responded (responder) 
to VDZ therapy (Table 2). We also used a publicly avail-
able RNAseq dataset (GSE72819) of another anti-integrin 
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biologic (Etrolizumab) containing UC patients with baseline 
biopsies (Table 4). This dataset contains a total of 70 sam-
ples with 58 non-responder and 12 responder UC patient 
samples but no non-IBD controls.

Treatment groups classification

Samples were classified into pre-resistant, post-resistant, 
pre-responder, and post-responder groups (Table 2). Sam-
ples collected at week (W) 0 from patients who did not 
respond to VDZ at W6, W12, and W52 were labelled as 
VDZ pre-resistant. Samples collected at W6, W12, and W52 
from patients who did not respond to VDZ were labelled 
as VDZ post-resistant. Samples collected at week 0 from 
patients who did respond to VDZ at W6, W12, and W52 

were labelled as VDZ pre-responders. Samples from patients 
who did respond to VDZ at W6, W12, and W52 were 
labelled as VDZ post-responders. Response in this context 
refers to endoscopic healing at any of the after-treatment 
time points (W6, W12, and W52) [17].

Gene expression data pre‑processing

Data pre-processing was done using quantile normalisation. 
We annotated the gene expression matrix with matching 
gene symbols available in the metadata of the Affymetrix 
platform (https:// doi. org/ 10. 18129/ B9. bioc. hgu13 3plus2. 
db). Non-coding genes, e.g. microRNAs, pseudogenes, and 
lncRNAs, were filtered from gene expression data. The final 
expression matrix contains row values with gene symbols 
and columns with patients’ sample IDs.

Transcription factor (TF) identification

We used pandaR [33] to identify important TFs that poten-
tially regulate the gene expression in the UC. The gene IQR 
(geneIQR > 0.30) was calculated on the gene expression 
to remove genes with low variance across the samples. To 
identify the TFs using pandaR, we input protein–protein 
interaction information using comPPI [34] and regulatory 
circuits [35] for the regulatory motif binding information 
in several tissues and cell types. The motif binding set was 
retrieved from regulatorycircuits.org representing CD4 
and CD8 immune cells as relevant T-cell specific immune 
responses. We selected CD4 and CD8 regulatory circuit 
because it contains cell types which are surface markers for 

Table 1  Baseline characteristics of the patient treated with vedolizumab *

Baseline Characters�cs UC_VDZ (n=41) non-IBD_controls (n=12)
Age (years) - Median (IQR) 40.5 (32-49.4) 68.2 (59–72.7)

)8.84/2.15(02/12)%(elamef/elaM 6/6 (50/50)
Dura on of disease (years) - Median (IQR) 10.2 (4.4–14.6) NA
Extent of disease
UC le�-sided coli s/pancoli s (%) 18/23 (43.9/56.1) NA
Histology (Geboes score) (2-5(%)) 41 (100) NA
Mayo Score (2-3 (%)) 41 (100) NA
Median (IQR) - total Mayo score (2-3(%)) 10 (8–11) NA
Concomitant medica�on -no. (%)

AN)7.07(92setalycilasonimA-5
Cor costeroids 17 (41.5) NA
Methotrexate 1 (2) NA
Azathioprine/6-mercaptopurine 7 (17.1) NA
Prior an -TNF treatment -no. (%) 0 (0) NA
Ac ve smoking (%) 5 (12.2) 0 (0)

*Data adapted from Arijs et al. 2018 [17]

Table 2  VDZ response dataset including the number of controls, 
responder, and non-responder patients. The patient samples were 
classified into pre-resistant, post-resistant, pre-responder, and post-
responder groups at the given time of biopsy of W0 and W (6–52), 
respectively

Patient classification Number 
of patients 
(n = 41)

Non-responder patients
  • Pre-resistant (patient biopsies) at W0
  • Post-resistant (patient biopsies) at W (6–52)

27
32
49

Responder patients
  • Pre-response (patient biopsies) at W0
  • Post-response (patient biopsies) at W (6–52)

14
09
22

Controls 12

https://doi.org/10.18129/B9.bioc.hgu133plus2.db
https://doi.org/10.18129/B9.bioc.hgu133plus2.db


1324 International Journal of Colorectal Disease (2022) 37:1321–1333

1 3

T-cell. We used the threshold for pandaR result with a score 
cutoff > 0.01. The result is obtained from pandaR containing 
TF-gene target edge scores which define confidence for each 
TF regulating the corresponding target gene. To test which 
TFs significantly regulate gene expression, a null distribu-
tion of TF edge weight was calculated by randomising the 
TF-gene target 512 times and TFs were selected with an 
empirical p-value [36] (p < 0.05).

Generating signalling network

We used a previously constructed diffusion model that esti-
mates network connectivity between receptors and TFs 
through a signalling network. For creating a signalling net-
work, we used gene expression data, TFs, and receptors. A 
list of 80 receptors was used which includes IBD GWAS risk 
genes, cytokines-, chemokines-, pattern recognition-receptors 
as well as adhesion molecules (Table S1 and Figure S1). To 
select genes specific to cell surface receptors signalling path-
way, we used GO term (GO:0007166) which limits the net-
work to known receptors. Thus, we obtained 24 IBD-relevant 
cell-adhesion receptors and 37 cytokines receptors with a 
total of 61 extracellular signalling molecules (Table S1 and 
Figure S1). By applying significance testing with empirical 
p-value < 0.05, 34 key TFs were obtained using the sum of 
their regulatory network edge weights of a total of 643 TFs 
from pandaR [33]. A complete list of TFs selected for further 
analysis is provided with their annotations and target genes 
(Table S2). Genes such as TP53, HSP’s, UBC which have a 
high number of protein–protein interactions were removed to 
reduce the complexity of the global network. To further restrict 
the network, we used GO terms which are associated with cell 
surface receptor signalling pathway, cytokine-mediated signal-
ling pathway, and integrin α4β7 complex pathway (Table S3). 
Thus, the final signalling network contains only 309 nodes 
and 2645 edges for T-cell specific receptors, signal transducer 
proteins, and TFs.

Diffusion model

We used our previously published diffusion model [29] 
which uses gene expression data to generate edge-weighted 
signalling network graphs for quantifying connectivity from 
receptors to TFs for each patient. The edge weight is calcu-
lated by the product of the gene expression levels of the two 
genes connected by an edge. The signalling network was 
used to generate  t50 variable with 2074 receptor-TF pairs 
for all samples.  t50 is defined as the number of time steps 
needed to reach 50% of the maximum signal received by the 
TFs over time. The obtained  t50 data matrix contains scores 
for each receptors-TF pair per sample representing sample-
specific network connectivity. For each gene, a faster  t50 (low  

t50 score) means that more signal is being transduced to the 
connected gene by connected genes.

Subnetwork identification

The subnetwork is a simplification of the entire global net-
work. The subnetwork is created by shortest paths (using 
 t50 values of a gene) between the receptor and the ten top 
TFs. Note that for each gene, a lower  t50 indicates a greater 
accumulation of diffused signal. The top ten receptor-TF 
pairs (Table S4) all have an AUC > 0.78 (VDZ response vs 
non-response). The igraph (https:// igraph. org/) package was 
used to plot the subnetworks. For each subnetwork, the sum 
of the gene  t50 values for each branch (receptor to TF) for 
each sample was calculated. The group branch sums were 
used to compare the groups.

Statistical analysis

Statistical significance for differentially expressed genes was 
performed using linear modelling. Multiple testing correc-
tion was done with the method of Benjamini and Hochberg 
[37]. Exploratory data visualisation was done using prin-
cipal component analysis (PCA). ‘nnet’ a deep learning-
based method was used [38] with tenfold cross-validation 
repeated 20 times using average accuracy to select the final 
model. Prediction results were evaluated by area under the 
receiver operating curve (AUC). GO enrichment analysis 
was performed using the clusterProfiler, Bioconductor pack-
age [39]. For comparing the responder and non-responder 
sample groups, we used Wilcoxon test which is then evalu-
ated using p-value measure.

Results

Testing VDZ‑specific gene expression

We first assessed four VDZ-specific genes such as MAD-
CAM1, VCAM1, Integrin Subunit Beta 4 (ITGB4), and 
Integrin Subunit Beta 7 (ITGB7) which are pivotal players 
in the VDZ drug inhibition of the interaction between α4β7 
integrin on T cells with MAdCAM1. To test if these genes 
can predict VDZ response, we used a linear model on the 
four integrin-specific genes. Only VCAM1 obtained a sig-
nificant p-value (0.003, AUC = 0.68) and no significance was 
found in the other three genes (Table 3).

Comparison with a reference method

We used a deep learning method, ‘nnet’, a feed-forward neu-
ral network algorithm to test the predictive ability to separate 

https://igraph.org/
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treatment responder and non-responder patients. Using ROC 
(receiver operating characteristic curve), we obtained an 
AUC of 0.76 for the gene expression (Fig. 1). Similarly, 
we did a ROC analysis for the diffusion model to compare 
the predictive ability. We found 39 receptor-TF pairs with 
AUC > 0.78 (Table S4). The top-scoring discriminators 
were receptor-TF pairs free fatty acid receptor 2 (FFAR2) 
nuclear respiratory factor 1 (NRF1), colony-stimulating fac-
tor 3 receptor (CSF3R)-RELB, and integrin subunit beta 4 
(ITGB4)-ETS proto-oncogene 1, transcription factor (ETS1) 
with AUC ~ 0.80. These pairs show distinct differences 
between VDZ responder and VDZ non-responder patients 
before and after treatment (Fig. 1A and C).

Comparing gene expression vs. diffusion model

To compare the predictive ability of the diffusion model 
against the gene expression data, we used ROC analysis to 
select the best predictor receptor-TF pairs. Then, we applied 
PCA on gene expression vs. diffusion model feature score 
 (t50) for all VDZ responders, non-responders, and controls 
samples (Fig. 2A and B). The diffusion model demonstrates 
an improved predictive power for the separation of patients 
with VDZ therapy response (see PC1, Fig. 2A) as compared 
to gene expression. In addition, we applied PCA on recep-
tor FFAR2 which is the best predictor for a subnetwork 
using the diffusion model result with top receptor-TF AUC 
score (~ 0.81) and compared it with FFAR2 gene expres-
sion (Fig. 3A and B). We found that the PCA of the diffu-
sion model using  t50 branch sums of the shortest paths could 
separate VDZ responder and the non-responder group as 
compared to the gene expression.

Characterising individualised pathways 
for treatment response patient groups

Each UC patient exhibits heterogeneity in their network con-
nectivity. Differences in patient-specific networks related 
to immunological pathways may cause UC pathogenesis. 
Anti-integrin therapies perturb immunological and inflam-
matory pathways besides cell trafficking interference [40]. 
For generating individualised subnetworks, we selected 
the top 10 receptor-TF pairs (AUC > 0.79), which show the 
best discriminatory ability (Figure S2). To discriminate 
VDZ treated responders and non-responders with pre-and 

post-treatment status, we used  t50 scores of the diffusion 
model. We found that diffusion results with the FFAR2 
receptor gene to TFs such as NRF1, ETS Like-1 (ELK1), 
RELB, ETS Like-1 (RFX3) and transcription factor AP-2 
alpha (TFAP2A) demonstrate the best discriminatory ability 
for separating therapy responder and non-responder patients 
(Fig. 4B and Table S4). To test individual-level differences 
in the signalling pathway for the patient groups, we gener-
ated a simplified version of the overall signalling pathway 
into the subnetwork describing the diffusion of signal from 
receptor FFAR2 that passes transducers, to downstream TFs 
(Fig. 4A). For FFAR2 subnetwork, we selected the top 10 
TFs selected with receptor-TF pairs (AUC > 0.77) that sepa-
rate VDZ responders from non-responder UC patient groups. 
We found that patient with VDZ non-response exhibits 
quicker signalling as compared to the patients with VDZ 
response and controls.

Identification of patient‑specific signalling 
pathways

To identify patient-specific signalling pathways, we use the 
shortest paths in the subnetwork of identified top receptor-TF 
pairs (Table S4). The top pairs were selected by ROC analy-
sis (Figure S3). Using selected genes in the branch length of 
the shortest paths, we found the distinct separation of VDZ 
responders and controls from the non-responders by diffu-
sion model in contrast with gene expression (Fig. 5A and B).

Testing on the alternate anti‑integrin biologic drug 
(Etrolizumab)

For testing the diffusion model on an alternate anti-integrin 
biologic, we retrieved the publicly available published RNA 
seq data (GSE72819) with baseline biopsies from Etrolizumab-
treated UC patients (Table 4). This dataset contains 70 samples 
with 58 non-responder and 12 responder UC patient samples 
with non-IBD controls. We used the same network generated 
in VDZ training dataset. We found an acceptable AUC of 
0.72 for Etrolizumab dataset (Table S5). Next, we compared 
the obtained diffusion result with ‘nnet’ prediction, and we 
found an AUC of 0.69. To check the consistency of the predic-
tive ability of the model on two separate datasets, we applied 
Pearson’s product-moment correlation test [41] on two sets of 

Table 3  Adjusted p-value of 
VDZ-specific genes calculated 
using linear modelling

eulav-p.jdAseneG
270.04BGTI
49.07BGTI
94.01MACDAM
300.01MACV
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AUCs obtained from Vedolizumab and Etrolizumab datasets. 
We found a significant correlation of 0.68 (95% Confidence 
interval) with p-value < 0.01.

Discussion

In this study, we focused on the signalling pathway signa-
tures that stratify VDZ responders from non-responders. 
UC patients with non-response to VDZ and other biologic 
therapies have differences in their immune and inflamma-
tory pathways [42]. Using a diffusion model, we generated 
subnetworks that represent the signalling signatures to dis-
criminate VDZ treatment responders from non-responders. 
These subnetworks highlight the underlying UC-associated 
immuno-inflammatory pathways. The diffusion model uses 
the original gene expression data as well as prior biological 
knowledge for generating edge-weighted signalling network 
graphs to delineate the T-cell receptor signalling pathway.

After applying a linear model for gene expression of four 
pivotal VDZ-specific genes, only VCAM1 was found signifi-
cantly different between the responder and non-responder 
patient groups (Table 3). In a previously published study 
on dextran sodium sulphate (DSS)-induced colitis, Soriano, 

A. et al. demonstrated the functional role of VCAM1 as 
a mediator of leukocyte adhesion in colitis and a potent 
therapeutic effect on immunoneutralisation as compared to 
MAdCAM-1 and intercellular adhesion molecule 1 (ICAM-
1) [43]. Increased expression of VCAM1 in colonic biopsies 
from patients with IBD is associated with flare-ups leading 
to disease onset [44]. Gene expression variability is much 
higher in VCAM1 as compared to MADCAM1. VCAM1 
has previously been shown to provide a reliable measure of 
predicting anti-TNFα therapy response [44].

Exploratory analysis using the diffusion model provides 
a better stratification of treatment response groups as com-
pared to gene expression alone (Fig. 2). For testing alter-
nate prediction tools for treatment response stratification, 
we used ‘nnet’ a deep learning algorithm that has recently 
been utilised for biomarker discovery [38]. We have found 
that ‘nnet’ and diffusion model features facilitate separation 
of the VDZ treatment response groups, however, ‘nnet’ fails 
to outperform the diffusion model (Fig. 1A and B). Here, we 
can argue that the higher predictive ability of the diffusion 
model is because of the non-linear transformation of gene 
expression which is derived from the nature of the signal-
ling network. Another argument could be that the diffusion 
model enables the inclusion of relevant prior knowledge 

Table 4  Baseline characteristics of the patient treated with etrolizumab*

*  Data adapted from reference Tew et al. [66]
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which explains the underlying biological determinants of 
VDZ therapeutic response as compared to ‘nnet’ which con-
siders only gene expression.

A previous study has shown that reduction in faecal cal-
protectin after induction with anti-TNFα treatment, corre-
lates with endoscopic remission. However, the calprotectin 
level at W0 is a poor predictor of therapy response [45]. 

Whereas diffusion model could predict the therapy response 
at W0 using gene expression data, therefore contributing a 
prognostic value at an early stage of UC.

A recently published study has found distinct signature 
genes with mucosal gene expression at baseline for VDZ 
treated UC patients [40]. While comparing these identi-
fied genes with the independent VDZ cohort, only about 
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Fig. 1  Predictive analysis (A) ROC analysis using diffusion model 
represents AUC = 0.81 for receptor-TF pair (FFAR2-NRF1), which 
separates treatment responder and non-responder sample groups. (B) 
ROC analysis of ‘nnet’ method represents AUC = 0.76 with a com-
plete gene expression matrix. (C) Dot plot represents the differences 
of  t50 in the treatment response groups for best discriminant receptor-

TF pair FFAR2-NRF1, separating responder pre-and post-treatment, 
non-IBD controls from the non-responder group. preResponseVDZ, 
postResponseVDZ represents biopsies obtained at W0 or W (6–52), 
respectively, from patients that respond to treatment. PreResistant-
VDZ, postResistantVDZ represents biopsies obtained at W0 and W 
(6–52), respectively, from patients with non-response
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a quarter of the significantly differentially regulated genes 
were reproducible in the independent cohort. For assessing 
the model’s reproducibility and generalisability, we used 
the alternate anti-integrin drug (Etrolizumab) comprising 
UC patients with treatment responders and non-responder 
without non-IBD controls. We found 40 best receptor-TF 
pairs with an AUC > 0.68 with a best receptor-TF pair 
CD40-NFKB2 (AUC = 0.72) (Table S4). Notably, on both 
anti-integrin treatment datasets, the diffusion model demon-
strated high predictive performance for stratifying respond-
ers from non-responders in comparison to ‘nnet’.

Our analysis revealed 48 receptors-TF pairs with 
AUC > 0.76 that separate the VDZ non-the responders from 
the responders’ group before and after treatment (Table S4). 
As expected, the top identified receptor-TF pairs include 
genes that have a role in regulating intestinal inflammation 
and involvement in UC pathogenesis. In Fig. 4B, FFAR2 
receptor gene to TFs such as NRF1, RELB, early growth 
response 1 (EGR1), and nuclear factor-kappa B subunit 
1 (NFKB1) separates the pre-treatment non-responder vs. 

responders using branch sum  (t50) of the shortest path. 
FFAR2 is a G protein-coupled receptor (GPCR) reported 
to be a critical precursor of signalling molecules involved 
in regulating whole-body energy homeostasis, inflam-
matory and immune responses in the intestine [46, 47]. 
Non-responder patients have more signals from connected 
genes that result in quicker signals as compared to the con-
trols and patients in the responder group. The subnetwork 
obtained using the best receptor-TF pair FFAR2-NRF1 
shows the signal from receptor FFAR2 through transducer 
route 1 (TNF-RACK1-TRAF2) and transducer route 2 
(TNF-CAV1-TRAF2) to TF NRF1 (Table S6).TRAF2 is 
a member of the TNF-receptor-associated factor (TRAF) 
protein family which directly associates with TNF as a 
major signal transducer for TNFα-mediated activation 
of JNK and NFκB [48, 49]. Through NFκB activation, 
TRAF2 regulates anti-apoptotic signalling by interacting 
with apoptosis inhibitors [50]. Adjacent to TRAF2 in the 
signalling network (Fig. 4), RACK1, which is an adap-
tor molecule that binds to the key signalling molecules 
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Fig. 2  PCA plot showing the difference in UC VDZ treatment 
response groups. (A) Gene expression of non-responder VDZ pre-
treatment, Non-responder VDZ post-treatment, responder VDZ pre-
treatment, non-responder VDZ post-treatment, and controls. (B) Dif-

fusion score  (t50) of non-responder VDZ pre-treatment, non-responder 
VDZ post-treatment, responder VDZ pre-treatment, non-responder 
VDZ post-treatment, and controls
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Fig. 3  PCA plot on FFAR2 receptor gene on the shortest path between 
receptor and TFs showing the difference in UC VDZ treatment 
response groups. (A) FFAR2 receptor gene subnet using gene expres-
sion of non-responder VDZ pre-treatment, non-responder VDZ post-
treatment, responder VDZ pre-treatment, non-responder VDZ post-

treatment, and non-IBD controls. (B) FFAR2  t50 sample branch sums 
of the shortest paths to top 10 AUC TFs from receptor FFAR2 of non-
responder VDZ pre-treatment, non-responder VDZ post-treatment, 
responder VDZ pre-treatment, non-responder VDZ post-treatment, 
and non-IBD controls

BA

Fig. 4  Explanatory analysis (A) A simplified subnetwork gener-
ated by the shortest paths between FFAR2 to the top 10 AUC TFs. 
The shortest paths were defined by network diffusion values  (t50). 
The size of the node represents the differences between  t50 between 
the responder and non-responder groups. A solid black line from 
FFAR2 to NRF1 represents the shortest path for the top receptor-TF 

pair FFAR2-NRF1. Red colour indicates receptors, white indicates 
transducers, and blue colour indicates TFs. (B) Box plot shows a 
separation of treatment response groups using the mean distance of 
branches in the sub-network. Higher branch length represents slower 
diffusion of signal in the responder and the non-IBD controls as com-
pared to the non-responder group
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involved in the cell migration, integrin adhesion and 
activity, and T-cell apoptosis [51–54]. A previous study 
demonstrates the role of RACK1 as a negative regulator 
of NF-κB signalling, NF-κB-mediated cytokine induc-
tion and inflammatory reactions [55]. Next, CAV1 is a 
gene involved in diverse signalling pathways and plays an 
essential role in cell proliferation, apoptosis, lipid migra-
tion, and exhibits a protective role in intestinal inflamma-
tion for IBD [56–58]. We hypothesise that TNF, RACK1, 
CAV1, and TRAF2 are part of the protein complex in 
which TNF and TRAF2 are connected to the TNFRSF1A. 

This might modulate downstream signalling to transcrip-
tion factor NRF1 (Fig. 4) which is involved in maintain-
ing organ integrity by regulating cytoprotective defences 
through cellular redox homeostasis [59, 60] by preventing 
cells against proteasome inhibition through regulation of 
proteasome gene expression. With a higher accumulation 
of proteasome inhibitors, NRF1 loses its potency to initi-
ate transcription [61]. Some studies showed a reduction of 
intestinal inflammation by targeting immunoproteasome 
that attenuates proinflammatory signalling in DSS-induced 
colitis study on mice and IBD patients [62–64]. Targeting 

BA

Fig. 5  Comparison of gene expression vs.  t50 diffusion values in path 
‘FFAR2-TNF-CAV1-TRAF2-NRF1’ (A) Gene expression of shortest 
path genes. (B)  t50 diffusion values of path genes. The horizontal dot-

ted line represents the mean values in controls. Pre-VDZ responders 
(pink), pre-VDZ non-responders (red), and controls (green) are indi-
cated
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NRF1-mediated endoplasmic reticulum-associated deg-
radation (ERAD) pathway could increase the therapeutic 
efficacy of proteasome inhibitor drugs for providing readily 
actionable targets [65].

Conclusions

We used a network-based diffusion model to highlight genes 
and their interactions in signalling pathways which may be 
predictive in response to the anti-integrin treatment. In our 
case, the diffusion model outperformed a deep learning 
method (nnet) and can give comparable prognostic ability at 
initial diagnosis to longer-term monitoring of calprotectin. 
The obtained subnetworks feature genes involved in cytokine 
and fatty acid signalling. The results suggest that anti-integrin 
drug responses in cytokine and fatty acid signalling pathways 
can discriminate UC patient populations. As the availability 
of high throughput RNA sequencing in the clinic increases, 
these findings may offer useful insights into the development 
of clinical decision-making to aid in selecting UC treatment 
strategies.
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