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Abstract We consider the accumulation and formation of

lipid droplets in an adipocyte cell. The process incorporates

adipose nucleation (adipogenesis) and growth. At later

stages, there will be merging of droplets and growth of

larger droplets at the expense of the smaller droplets, which

will essentially undergo lipolysis. The process is modeled

by the use of the Cahn–Hilliard equation, which is mass-

conserving and allows the formation of secondary phases in

the context of spinodal decomposition. The volume of fluid

(VOF) method is used to determine the total area that is

occupied by the lipids in a given cross section. Further, we

present an algorithm, applicable to all kinds of grids

(structured or unstructured) in two spatial dimensions, to

count the number of lipid droplets and the portion of the

domain of computation that is occupied by the lipid

droplets as a function of time during the process. The

results are preliminary and are validated from a qualitative

point using experiments carried out on cell cultures. It turns

out that the Cahn–Hilliard theory can model many of the

features during adipogenesis qualitatively.

keywords Adipose � Adipogenesis � Spinodal

decomposition � Finite-element method

1 Introduction

Wounds, trauma, diet, or tumor resection may cause loss of

subcutaneous fat. This raises concerns from an aesthetical

point of view and therefore, it is attractive to apply li-

poplasty to implant autologous fat. However, the results

from this procedure on the longer term, seem to be sub-

optimal due to insufficient vascularity, which makes the

tissue deteriorate. Despite injection of vascular endothelial

growth factor (VEGF) would likely have systematic

effects, adipose tissue engineering is currently investigated

as a clinical alternative.

Mathematical results about existence, uniqueness, sta-

bility of the solution to Cahn–Hilliard equations were

described in studies due to [2, 8, 33], to mention a few. The

Cahn–Hilliard equations describe microstructural changes

involving nucleation (in our case adipogenesis), growth,

coarsening, merging and dissolution of particles or droplets

of varied shape. The phases may co-exist or compete with

each other. As an alternative to diffuse interface models,

such as the Cahn–Hilliard equation, it is possible to use the

so-called sharp interface models. In these models, the

interface between adjacent phases is sharp, in the sense that

it involves a discontinuity of the (derivative of the) solu-

tion. The interface is tracked explicitly by means of mov-

ing mesh method [7, 22, 31] or a level-set method [6, 14,

15, 28]. Classical Stefan problems fall within the class of

sharp interface models. The diffuse interface models, such

as the Cahn–Hilliard equation, also track the content of a

chemical by diffusion and involve a smooth solution with a

rapid change over the interfacial region, which separates

the adjacent phases. From a numerical point of view, the

interfacial region has to be discretized with a sufficiently

high resolution. Often, one employs mesh adaptive meth-

ods to have a sufficiently high resolution in the interface
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region and a small resolution away from the interface

where the resolution does not need to be that high. The

diffuse-interface models are, opposed to the sharp interface

models, capable of dealing with the appearance of new

particles or lipid droplets. A final class of Lifschitz–

Slyozov–Wagner (LSW) models tracks the statistical size

distribution of the nucleating particles or lipid droplets. An

example is described by Myhr and Grong [23].

Besides the applications and scientific fields that were

mentioned until now, there is a growing interest in Cahn–

Hilliard equations in the community of mathematical

biology. The reason is that separation phenomena play an

important role in this scientific field. Wise et al. [37]

recently presented a multi-species Cahn–Hilliard problem

extended with advection with an application of modeling

nonlinear growth of tumors. The same phenomenon is

modeled using a sharp interface model by Macklin and

Lowengrub [20]. There is a reasonable qualitative agree-

ment between both approaches. Further, examples of

Cahn–Hilliard applications in the field of biomaterials are

described in Seitz et al. [32] and Fan et al. [10].

In this study, we show by numerical experiments com-

pared to adipocyte cell culture experiments that the Cahn–

Hilliard equation gives the right phenomenological picture.

It is not yet the aim of this study to describe adipogenesis

quantitatively, nor will all biological issues such as the

penetration of triglycerides into the adipose cell be mod-

eled. The expansion of the volume of an adipose cell due to

adipogenesis is not taken into account in this study. Nev-

ertheless, it is the first study to model accumulation of lipid

droplets in adipocytes which is critically needed for sup-

porting adipose tissue engineering, even if the description

is merely phenomenological. The experimental results that

we use for a qualitative comparison were presented in more

detail by Or-Tzadikario [27].

We stress that this article does not aim at being very

mathematical. For more mathematical and numerical

issues, we refer to [35] and references therein. The

important innovation in this study concerns the application

of Cahn–Hilliard equations to phenomenologically model

apidogenesis and to compute the lipid droplet fraction and

number of lipid droplets for arbitrary meshes in two spatial

dimensions. We also note that a huge variety of simulations

using the Cahn–Hilliard equation can be found in literature.

2 Methods

2.1 Cahn–Hilliard theory

We present some issues from the Cahn–Hilliard theory. As

an alternative model that tracks several issues concerning

adipose genesis, we briefly mention the LSW model, which

is formulated to provide tracking the statistical lipid droplet

size distribution, rather than the individual droplets.

The mathematical concepts of the Cahn–Hilliard equa-

tion are described as follows. Let X be the bounded domain

of computation over which the solution of the Cahn–Hil-

liard equation is determined. Let X be bounded by oX: One

can think of X as a section within an adipose cell. Let c be

the volume fraction of the triglycerides phase in the binary

system, i.e., a system that consists of two species only,

then, the total Ginzburg–Landau free energy of the system

is given by [5, 19, 21, 37]

FðcÞ ¼
Z

X

f ðcÞ þ j
2
jrcj2

n o
dV ; ð1Þ

where j denotes the gradient energy coefficient. This

Ginzburg–Landau free energy expression is also treated as

a Lyapunov functional, which is used to answer stability,

existence and uniqueness questions. Further, f(c) is the bulk

free energy, which can be obtained from thermodynamic

databases. A typical form is the following

f ðcÞ ¼ RT
clnðcÞ

N1

þ ð1� cÞlnð1� cÞ
N2

� �
þ xcð1� cÞ: ð2Þ

Here x denotes the interaction parameter. An example of a

bulk free energy of the above form is shown in Fig. 1. Here

N1 and N2 are related to the molecular size. The values cL

and cR are known as the binodal points, determined by the

common tangent construction, as shown in Fig. 1. The

second term in Eq. 1 is crucial in the interfacial region,

where the gradient of c is large. Therefore, the second term

is also referred to as the interfacial energy. In our appli-

cation, we assume that triglycerides appear in solution to

such a high extent that, after possible chemical reactions,

the initial condition resides between the spinodal values in

Fig. 1, which is in the miscibility gap, given by the region

in Fig. 1 where f00(c) \ 0. This gives a meta-stable mixture,

in other words a super-saturated solution, and then as a

result of small spatial fluctuations, the triglycerides will oil

out resulting into the segregation of lipid droplets. These

lipid droplets contain a high concentration of triglycerides,

which are typically near the higher bimodal value for tri-

glycerides. Hence, we have two phases: the highly con-

centrated lipid droplets and the dilute concentrated part of

the cytosol. Since, the overall energy is lower for this latter

decomposed state, it follows that the decomposed state is

more stable. The Cahn–Hilliard is used to model the

kinetics of the transition from the initial state to the end

state. The kinetics of the aforegoing chemical reactions to

be so fast so that they are assumed not to determine the

overal kinetics of adipogenesis. We consider a situation in

which all triglycerides have been distributed equally over

all cells, except for small random perturbations. We
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assume that the total mass of triglycerides is conserved.

Furthermore, we assume that convective processes within

the cytosol are negligible, and that the only mechanism for

transport is nonlinear diffusion. These aspects are dealt

with when solving the Cahn–Hilliard equation, whereas the

Allen–Cahn equation is contained in a phase field model

with nonconserved variables. The Cahn–Hilliard equation

can be seen as a modified nonlinear diffusion equation in

which uphill diffusion occurs if the concentration resides

between the spinodal values, see Fig. 1. The Cahn–Hilliard

equation is capable of modeling lipid droplet formation

from small perturbations around the initial meta-stable

state, growth, and Oswald ripening, which is the growth of

larger lipid droplets at the expense of the shrinking small

lipid droplets. All these phenemona occur in the experi-

mental data. In this model, we do not incorporate the

kinetics of formation of triglycerides. As, we only focus on

the actual lipid droplet formation, growth, and fusion. In

future studies, we want to consider these issues in more

detail. We note that this study is preliminary, in which we

show our first plans of attack.

The diffusive flux, J, is postulated to be proportional to

the gradient of the chemical potential, see for instance [19,

21], hence

J ¼ �MrlðcÞ ¼ �Mr dFðcÞ
dc

: ð3Þ

Here the variational derivative
dFðcÞ

dc is given by

dF

dc
¼ f 0ðcÞ � jDc: ð4Þ

Furthermore, M denotes the mobility, which is treated as a

constant by most authors, and Dc represents the Laplace

Operator on c, but Elliott and Garcke [9] treat the case of a

concentration-dependent mobility. The mobility is a

measure for the jump rate and rate of motion of the

molecules involved. In this study, we will assume M to be a

constant. Substitution of Eq. 4 into 3 and use of the mass-

balance,

oc

ot
¼ �r � J; ð5Þ

gives the Cahn–Hilliard equation on X

oc

ot
¼ r � M f 00ðcÞrc� jrDc½ �f g: ð6Þ

In the above equation, the second derivative M f00(c) acts

like an adjusted diffusion coefficient with respect to the

adipocyte cell’s composition. The fourth order term, with

j, in the Cahn–Hilliard equation is also considered as a

stabilization term, for the case where f00(c) \ 0. This

equation has been applied to model phase segregation and

spinodal decomposition in numerous studies [1, 9, 16, 19,

21, 34], in which the list is far from complete. In the case of

phase-separation and spinodal decomposition, the second

derivative of f with respect to c becomes negative in the

interface part of the domain. Physically, the negative

values of the second derivative of f give rise to ‘‘uphill

diffusion’’, which is diffusion from low concentration areas

to high concentration regions. As boundary conditions we

use symmetry conditions, i.e.,

oc

on
¼ oðDcÞ

on
¼ 0; on oX: ð7Þ

These two boundary conditions on each point of boundary

oX and an initial condition are necessary and sufficient for

a uniquely defined solution. In many other studies, periodic

boundary conditions are used instead. Further, we have an

initial condition for the concentration c:

c ¼ c0; for t ¼ 0: ð8Þ

It should be realized that
ffiffiffi
j
p

is a measure of the

interface thickness. Furthermore, one can demonstrate that

solutions to the Cahn–Hilliard equation, with our boundary

conditions, satisfy the following fundamental properties:

1. Solutions to the Cahn–Hilliard equation are mass

conserving, hence with the current boundary condi-

tions, it follows that d

dt

R
X cdX ¼ 0;

2. The total energy is non-increasing, that is
dFðcÞ
dt
� 0:

In our present model, we use the Cahn–Hilliard equation

to model adipogenesis, which is the nucleation, growth and

merging of lipid droplets in maturing and mature adipo-

cytes. The cytoplasm is assumed to be in the lipid droplet

phase if the solution exceeds a certain threshold. To be

more explicit, this amounts to the following portion of X :

XL ¼ XLðtÞ ¼ x 2 X : cðx; tÞ� ĉf g; ð9Þ
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Fig. 1 A plot of a Gibbs free energy function and the determination

of the binodal concentrations
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where XL denotes the region that is occupied by the lipid

droplets. What we are after is:

1. The number of lipid droplets as a function of time;

2. The lipid area per cross section as a function of time,

that is
jXLðtÞj
jXj ; in which jXLðtÞj and jXj; respectively,

denote the areas of the regions XL and X:

In [12], the time behavior of the total energy has been

evaluated and it is found that the total energy decays via a

t�
1
4-law at early stages and that this behavior changes to a

t
1
3-decay law at the coarsening stages. This is in line with

the Mullins–Sekerka problem. Here, the lipid droplets

circumference is minimized under a constant lipid droplet

area in two spatial dimensions.

In the alternative model due to Lifshitz, Slyozov, and

Wagner, nucleation and early growth are considered as the

only processes in adipogenesis. The model keeps track of

the statistical distribution of the lipid droplets, in which it is

assumed that all droplets are spherical. A combination of

the statistical distribution of the droplet radius and the rate

at which the radius changes gives the mean droplet radius

and the volume fraction. This model does not incorporate

phenomena over large times and deviation from spherical

geometry. Therefore, we do not further elaborate on this

type of models. An excellent article on this topic has been

written by [25].

2.2 Numerical procedure

2.2.1 The Cahn–Hilliard equation

To solve the Cahn–Hilliard equation, we use a standard

Galerkin finite-element method with order reduction, that is

the Cahn–Hilliard equation is split into a system of partial

differential equations with only second-order spatial

derivatives. This is done to avoid the necessity of the use of

higher order elements with stronger requirements for con-

tinuity (for instance in R
1; it can be demonstrated easily

that elements need continuity up to at least the first order

spatial derivative, and hence for instance cubic Hermitian

elements or continuous quadratic elements are used). The

domain of computation is divided into triangles and the

element basis functions that we use are linear over each

element. We use an implicit Euler time integration method,

where we use a Picard method to solve the obtained non-

linear algebraic system of equations at each timestep. The

algorithm has been implemented both for 2D and 3D

geometries, in which tetrahedra are used in 3D geometries.

The method that we used has been described in [35], where

also a score of alternative methods are presented with

respect to time integration and the mentioning of spectral

and discontinuous Galerkin methods.

2.2.2 The determination of the number of droplets

and droplet area

As a post-processing step, we need to compute the area that

is occupied by the lipid droplets in a given cross section as

a function of time. If the solution at a certain time, t and

location, x; exceeds a certain threshold, that is cðx; tÞ� ĉ;

then the location is assumed to be occupied by the lipid

droplet at this time t. The total area that is occupied by the

lipid droplets in a given cross section is determined by a

volume of fluid method, which is also explained in this

section. The postprocessing algorithm has been imple-

mented for 2D-configurations up to now.

Counting the lipid droplets

The droplets are defined via the relation c [ ĉ; where ĉ

is a given threshold value. The solution, c, is known in all

nodal points and since we use linear triangular elements,

the solution, c, varies linearly over each element at a cer-

tain time t. To find the lipid droplets in terms of its number

and area, we proceed as follows:

Marking of the nodes

First, all nodes are for which c [ ĉ are marked with a

value of 1. Nodes for which c\ĉ; are marked with -1 and

all other nodes are marked with 0.

Marking of the elements that do not belong to the

droplets

Next, all elements in the domain of computation are

marked with 0. The elements of which all vertices give

c\ĉ; are marked with -1. Hence, for example at a certain

time, we could have Given element e with vertices

{1, 2, 3}, then

emarkðeÞ ¼
�1; if ci\ĉ; for all i 2 f1; 2; 3g;

0; else :
ð10Þ

�

Herewith, all elements that do not belong to any droplet

have been marked with a value of -1. All the other ele-

ments belong a droplet. Next, we have to figure out to

which droplet each of these elements belong.

Marking the elements corresponding to the first

droplet

We examine the marking value of all the elements and

the first element with a mark 0 is marked to a value 1 to

indicate that it belongs to droplet 1. Subsequently, all

neighbors of this element that have a mark 0 are marked to

1. Then, all neighbors, with mark 0, of the aforementioned

elements that were just marked with a value of 1, are

marked to a value 1 as well. This is repeated for all

neighbors with mark 0, until no neighbors with mark 0 are

found anymore. Now, all elements that correspond to

droplet 1 have been found, and the area of droplet 1 can be

computed (see the next subsection). The set of all elements

that belong to a certain droplet is referred to as the active

set of this droplet.
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Marking the elements corresponding to all other

droplets

If there are still any elements with mark 0, then the

sequence number of the droplet is incremented (increased

by one). This sequence number indicates which droplet we

are working on. The aforementioned process in the previ-

ous paragraph is repeated with the first found element with

mark 0.

The process is repeated under incrementing the

sequence number of the droplet until all elements are

marked with a value that is different from 0, being -1 if

this element does not belong to any droplet (that is c\ĉ for

all its vertices), or else being the sequence number of the

droplet the element belongs to. We summarize this in the

following algorithm:

Here, as mentioned earlier, the active set corresponding

to droplet i represents the set of all elements that belong to

droplet i. In this way, all elements are marked -1 or

positive indicating to which droplet they belong. In this

way, each individual lipid droplet is tracked and also its

area occupied in a given cross section can be evaluated in

the course of time.

The computation of the area occupied in a given cross

section by the lipid droplets

During the marking of the elements, we paint the part of

the element belonging to the droplet with a color and also

compute the area of this part. This area is added to the total

area of the droplet. For this process, we need to distinguish

between three situations.

The most simple one is the case in which all three nodes

are marked with 0 or 1. In that case, the whole element

should be painted and the area is exactly the area of the

triangle. If not all three nodes are marked with 0 or 1, then

linear interpolation is used to determine the points on the

sides of the triangular elements for which c ¼ ĉ:

When two nodes are marked negative, we have the sit-

uation of Fig. 2. The dashed region corresponds to the

droplet and the area of this small triangle can be computed

in the same way as that of the large triangle.

If two nodes are marked positive and one negative, we

get the situation of Fig. 2. In this case, the dashed region is

a quadrilateral. The easiest way to compute the area is to

subtract the area of the small triangle from the large one.

Finally, we have the situation where one of the nodes

coincides with the boundary of the droplet, and the other

two are inside and outside the droplet. This situation is

sketched in Fig. 2.

Note that the solution is linear over each element. Since,

the procedure to get the lipid droplet area in an element is

based on linear interpolation and on exact computation of

the area, the current procedure will not give any contri-

bution to the numerical error.

3 Results

We emphasize that an abundance of simulations with the

Cahn–Hilliard equation is available. So, the presented

contours of the solution to the Cahn–Hilliard equation are

not original. Though, the qualitative comparison with the

experiments on lipid droplet formation as well the appli-

cation of the lipid droplet count and area determination

(and applicability to arbitrary meshes) are original. As an

example of the numerical solution of the Cahn–Hilliard

equation, we consider a simple square domain X ¼ ð0; 1Þ2:
Further, the initial condition of this simplified adipocyte

cell is chosen by

c0ðxi; yiÞ ¼ 0:5þ 0:001 � randð1Þ; ð11Þ

at each gridpoint i with location (xi, yi). This condition

reflects the assumption that initially the adipose cell

− −

+

+ +

-

0−

+Fig. 2 From left to right: two

nodes negative - two nodes

positive - one node zero
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consists (apart from its nucleus) of a perfect mixture with a

small perturbation. This perturbation is necessary, since

each constant initial state will have this constant state as

the solution to the Cahn–Hilliard equation with our

boundary conditions. In other words, if the solution is

initially constant then the solution will not change in time.

Further, the function rand(1) is used to generate a random

number between 0 and 1 at each gridnode. Further, we

use f 00ðcÞ ¼ c
1:3þ 1�c

0:8 � 4:6cð1� cÞ; M ¼ 1; ĉ ¼ 0:6; and

j = 10-4. Homogeneous natural boundary conditions

apply at the boundary of X: The interfacial width is pro-

portional to
ffiffiffi
j
p

: Further, the initial configuration (11) is

unstable since f00(0.5) \ 0 and hence perturbations start to

grow and lipid droplets start to appear. One can see the

merging of neighboring droplets, and growth of large

droplets at the expense of small droplets, which undergo

lipolysis. Figure 3 displays some results at consecutive

times. Here, the lipid droplets even merged more, hence the

number of droplets decreases, however their total occupied

area increases. The number of droplets per area of view is

shown in Fig. 4. The behavior of the number of droplets is

determined by adipogenesis (nucleation), merging, and

growth of larger droplets at the expense of the cataboli-

zation (that is, they chemically break down) of small-sized

droplets. In Fig. 5, we show the lipid area fraction per field

of view as a function of time. From Fig. 4, it can be seen

that first there is an incubation time, followed by a sharp

increase of the lipid area fraction. This incubation time

follows from the fact that the perturbations of the initial

state first have to grow until the threshold concentration ĉ is

reached. Then, subsequently nucleation takes place with a

vast increase of lipid area. After the nucleation phenome-

non, growth, catabolization, and merging takes over, which

makes the increase of area less pronounced. Changing

parameters like mobility M, gradient energy j, and

threshold concentration determines the rate of the process

and the shape of the curve. Furthermore, the equilibria are

determined from the constants N1, N2, and x. As another

illustration, we show the influence of the mobility, M, to

the evolution of the lipid area fraction in Fig. 5. It can be

seen clearly that with a decreasing mobility, the incubation

time and slope of the curve increase and decrease,

respectively.

Changing the threshold concentration ĉ; gives the results

that were displayed in Fig. 5. In this figure, the curves have

been shifted to the left so that there is no incubation time.

The reason for this is that the experimental results by Or-

Tzadikario [27] also reflect the adipogenesis behavior from

the time at which the formation of the lipid droplets starts.

It can be seen that the behavior qualitatively reflects the

experimental curves in Fig. 8 better, if the threshold con-

centration ĉ is chosen large.

3.1 Model validation against adipocyte culture

experiments

This mathematical model was qualitatively compared with

previously conducted cell culture experiments which were

reported in detail by Or-Tzadikario [27]. For completenessFig. 3 A plot of the droplets at a dimensionless times t = 0.25 and 1

Fig. 4 A plot of the number of lipid droplets per field of view as a

function of time, here ĉ ¼ 0:7
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and for the purpose of comparisons, we describe these

experiments here in brief. Mouse embryo fibroblasts

(3T3-L1, passage number 9 or lower) obtained from the

American Type Culture Selection (ATCC) were cultured in

75 cm2 flasks with growth medium consisting of high-

glycoses Dulbecco’s Modified Eagle Medium (DMEM,

4.5 mg/l; Biological Industries, Israel), 10% fetal bovine

serum (Biological Industries), 1% L-Glutamine (Biologi-

cal Industries), 1% Penicillin–Streptomycin (Pen-Strep;

Sigma, Israel), and 0.5% HEPES (Sigma). We allowed

cultures to reach maximum confluence of 75–80% before

passaging. We induced differentiation in the sufficiently

confluent cultures using a differentiation medium that

contained the growth medium ingredients plus 5 lg/ml

insulin (Sigma), 1 lM dexamethasone (Sigma), and

0.5 lM 3-isobutyl-1-methylxanthine (IBMX;Sigma).

Three days later after inducing differentiation (Fig. 6), we

changed the medium to a supporting medium that con-

tained the growth medium ingredients supplemented with

5 lg/ml insulin (only). This supporting medium was

changed every 2–3 days (Fig. 7).

To monitor the extents and timecourses of accumulation

of lipid droplets in the cultures, we developed an image-

processing-based method that calculates the percentage

area of lipid droplets in a field of view of an optical

microscope, as well as numbers and sizes of droplets from

conventional optical micrographs taken consecutively

during culturing, without the need of staining the cells. The

complete image processing algorithm, including the Mat-

lab code in which it was implemented, is provided in

Or-Tzadikario [27] and is outside the focus of this article.

However, for the purpose of qualitative comparisons of this

simulation data against the experimental percentage lipid

area per field of view and the number of the lipid droplets

in a cell versus the logarithm of time (in days) for 30

Fig. 5 Top A plot of a lipid area fraction per field of view as a

function of time for several mobilities. The scale has been chosen

logarithmic for the horizontal axis for correspondence to the results in

Fig. 8. From the times shown, the incubation times were subtracted,

which is in line with Fig. 8, where the measurement started as soon as

lipid droplets started to appear. Top The threshold concentration

was chosen to be ĉ ¼ 0:75: Bottom The mobility was chosen to be

M = 1/240

Fig. 6 Lipid droplets developing in 3T3-L1 cell cultures: optical

micrograph of a mature adipocyte culture stained with oil red O which

selectively stains lipid droplets in the cells in red color

Fig. 7 Lipid droplets developing in 3T3-L1 cell cultures: fluorescent

micrograph of a single differentiated adipocyte cell stained with nile-

red that demonstrates the lipid droplets contained in the cell
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consecutive culturing days, as obtained from Or-Tzadika-

rio’s image processing algorithm (Fig. 8). It is evident that

qualitatively, the timecourse of percentage lipid area pre-

dicted by the Cahn–Hilliard theory (Fig. 5) very much

resembles the experimental data (Fig. 8). Likewise, the

experimental data of numbers of lipid droplets in cells

(Fig. 8) show that the Cahn–Hilliard theory was able to

successfully simulate the timecourse behavior of this out-

come measure as well (Fig. 4), particularly the initial

increase in lipid droplet during the nucleation phase and the

later decrease in their number when adjacent lipid droplets

fuse together.

4 Discussion

As pre-adipocyte cells mature from fibroblast-like cells to

adipocyte cells, lipid droplets develop, grow, and accu-

mulate (adipogenesis). This process is triggered by the

excess of triglycerides. We are aware of the enormous

chemical complexity of the process of lipid droplet

formation. Boström et al. [3, 4] report that diglycerides (an

intermediate product) undergo a diacylglycerol acyltrans-

ferase, acting as a catalyst, reaction with acyl-CoA to form

triglycerides. The catalytic reaction takes place in the

microsomal membranes. The formed triglycerides are

highly hydrophobic and hence have a limited solubility in

the membrane monolayer. Therefore, the cytosol becomes

unstable, and triglycerides start to oil out to form lipid

droplets which gradually grow and merge. This process is

similar to the process of spinodal decomposition, in which

an initially unstable, possibly one phasic, region starts to

decompose into two or more phases. Spinodal decompo-

sition as a separation of phases is commonly modeled by

the use of diffuse interface models, also called phase-field

models, such as the Allen–Cahn or Cahn–Hilliard equa-

tions. The Allen–Cahn equations do not conserve mass in

general, but are somewhat closer to diffusion equations in

the sense that besides the phase, also the content of a

chemical is tracked explicitly. The Cahn–Hilliard equation

tracks the phase of the configuration. Further, the Cahn–

Hilliard equation is a fourth-order partial differential

equation in space and first order in time.

The biochemical mechanism by which lipid droplets

form is not yet completely understood. However, it is

generally thought that new triglycerides, formed either in

the plasma membrane or in the endoplasmic reticulum, and

which are very hydrophilic and have limited solubility,

tend to ‘‘oil out’’ as a separate phase into the cytosol and

form the core for formation of new cytosolic lipid droplets.

The size of the smallest lipid droplets observed in cells by

electron microscopy is about 0.1 lm [26]. Lipid droplets

can increase in size by fusion, which is independent of

triglyceride biosynthesis. In fact, Boström et al. [4] showed

that approximately 15% of all droplets in a maturing adi-

pocyte culture are engaged in fusion events at any given

time. Lipid droplets can also be catabolized in a process

called lipolysis, during which droplets are being broken

into free fatty acids and glycerol that are liberated from the

cytosol and then enter the circulation. The anabolic hor-

mone insulin inhibits lipolysis.

The Cahn–Hilliard equation describes spinodal decom-

position if the initial condition is unstable with respect to

perturbations. If a certain threshold (chosen between the

spinodal compositions), ĉ is used to identify which phase a

certain location is in at some time, then at a certain moment

the solution exceeds the threshold value at some regions

within X; that is jXLj[ 0: First, the regions are circular

and grow. At this stage, nucleation of droplets, or adipo-

genesis, is modeled. Subsequently, more and more regions

will have a solution that exceeds the threshold, and then

several droplets merge. In our simulations, an initial solu-

tion was chosen such that it represents an initial unstable

Fig. 8 Experimental results from lipid accumulation studies in 3T3-

L1 cell cultures differentiated in media containing 10% fetal bovine

serum and 5 lg/ml insulin: top percentage lipid area per field of view

versus the logarithm of time (in days) from induction of differenti-

ation. Bottom number of lipid droplets versus the logarithm of time

(in days) from induction of differentiation. These experimental data

were adopted from Or-Tzadikario et al. [27]. The number of lipids

significantly increases in the nucleation phase—up to experimental

day 10—and then significantly decreases due to fusion of adjacent

droplets
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equilibrium point of the partial differential equation with

boundary conditions. Since the state, though unstable, is an

equilibrium, a small perturbation is necessary to trigger the

process of spinodal decomposition.

Alternative models may also be useful, such as sharp

interface models, i.e., Stefan problems. Without nucleation,

it can be shown that the solutions of the Cahn–Hilliard

equation converge to solutions to the Mullins–Sekerka

problem under appropriate conditions, see for instance the

study by Pego [29]. The problem is that these models can

only predict later stages of growth, and nucleation, or

adipogenesis, cannot be modeled with these models.

Another alternative is the use of the LSW models for the

lipid droplet size distribution. Although, the last-mentioned

model mimics the appearance of lipid nuclei rather well, in

particular at the early stages of adipogenesis, the model

cannot predict later stages as shape changes and merging of

lipid droplets. This is due to the fact that the model is

limited to a single shape. Therefore, we think that diffuse

interface models are most suitable in this application since

they are able to combine the effects of nucleation, growth,

and merging (change of shape and topology), which is also

observed in the experimental study by Or-Tzadikario et al.

[27].

The mobility parameter M, whose influence on per-

centage lipid area per field of view predicted by the Cahn–

Hilliard theory is demonstrated in Fig. 5, can be adjusted to

reproduce (and then to predict) the kinetics of adipogenesis

in different experimental conditions. In particular, M can

be adjusted to simulate adipogenesis in adipocytes cultures

from different sources as well as the influence of culture

conditions such as insulin concentration, fetal bovine

serum concentration, nature of the substrate for culturing,

pH of the medium, oxygen supply, or any form of physical

or biochemical stress applied on the cultures. Or-Tzadi-

kario et al. [27] primarily studied the effects of insulin and

serum concentrations in the cultures, in cells from a cell

line source (3T3-L1) as well as in primary cultures of

mesenchymal stem cells differentiated to adipocytes. They

found different timecourses of the percentage lipid area per

field of view as well as the numbers of lipid droplets,

depending on the cell origin and concentration of insulin

and serum in the culture media. In the future, we plan to

relate the mobility parameter M, and other thermodynamic

parameters appearing in the energy functional, to each of

these culture conditions based on experimental data, so that

it would be possible to provide quantitative, rather than

qualitative predictions of the extents and timecourses of

lipid accumulation and moreover, to predict the effects of

changing the insulin or serum concentrations in the med-

ium on the outcome of accumulated lipids.

Another important parameter for the description of the

development of the lipid area fraction is the threshold

concentration ĉ: Lower values of the threshold give a more

sudden nucleation rate after the incubation (waiting) per-

iod. This can be explained somewhat by considering a

linearization around the initial state, c0. For the linearized

Cahn–Hilliard equation (around the average of the initial

state c0), given by

oc

ot
¼ M f 00ðc0ÞDc� jD2c

� �
; ð12Þ

it can be seen easily for one spatial dimension that

solutions of the form expðrtÞ sinðkxÞ can be found with

r[ 0. Let

s :¼ 1

r
ln

ĉ

c0

� �
;

then, the width of the portion of the domain for which

c [ ĉ; which could be interpreted as the width of a 1D lipid

droplet, is estimated by

dðtÞ ¼
0; if t\s;
1
k p� 2 arcsinð ĉ

c0
expð�rtÞÞ

� 	
; if t� s:

(
ð13Þ

Then, the rate of change is given by

d0ðtÞ ¼
0; if t\s;

2

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð ĉ

c0
expð�rtÞÞ2

p ĉ
c0

r expð�rtÞ; if t� s:

(
ð14Þ

Note that as t! s; d0 gets unbounded, which explains

the sharp increase of the area fraction per field of view just

after the incubation time. Since, it is well known that

solutions to the Cahn–Hilliard equation differ significantly

from the linearized version, the deviation from linear

behavior increases as the threshold concentration increases.

Hence, the evolution of the actual lipide droplet size will be

different too. From the Lifshitz–Slyozov theory, it is to be

expected that the average lipid droplet radius, R; will

evolve as RðtÞ3 ¼ R
3

0 þ at at the later stages, see for

instance Küpper et al. [18], among many others. In the last-

mentioned reference, the Cahn–Hilliard equation is

considered for the simulation of particle growth in

metallic systems.

We note that the Cahn–Hilliard model involves more

parameters. An optimal fit between model and experiments

could be obtained after the use of regression techniques. In

Fig. 8, it can be seen that the experimental curve starts

differing from zero after a certain incubation time. As time

proceeds, the rate of the increase of the lipid area decrea-

ses, which again is followed by a sharper increase of this

rate. As the system tends to an equilibrium, the area tends

to a limit, which slows down the increase rate of the lipid

area. Then, coarsening starts taking place, which can be

seen by considering the number of lipid droplets in Fig. 8.

A similar behavior is reproduced by the simulation curves
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in Figs. 4 and 5. Although, our calculations and the

experiments carried out by [27] agree from a qualitative

point of view, we think that another interesting possibility,

is the incorporation of surface energy effects around the

lipid droplets. This would give a slower increase of the area

fraction of the lipid droplets at the early post-nucleation

growth stages. This effect can be modeled using the Cahn–

Larché equations, in which the energy functional is

entended with a term from elastic energy and the Cahn–

Hilliard equation is coupled with a mechanical balance. We

plan to incorporate the mechanical effects in future studies

to investigate their influence on the early stages of growth

of lipid droplets. The combination of Cahn–Hilliard

equations with elasticity is studied in [11], among many

other studies carried by Garcke and his team and other

authors in the (numerical) mathematical community.

Another important issue is the kinetics of reactions

before the separation of phases in the cytosol, given that in

the experimental setting, the pre-adipocytes were cultured

in flasks containing a high concentration of glucose in the

medium (4.5 mg/l), which accelerates the formation of

lipid droplets. In a real-world scenario, the rate of adipo-

genesis depends on the availability of glucose. Glucose

consumption by the cells was not accounted for in this

modeling, nor did we consider other components in the

biochemical chain of reactions leading to adipogenesis;

rather, we provided a phenomenological description to the

physical outcome of lipid droplet formation. Accompanied

with this last-mentioned process, the initial concentration,

and hence the driving force for the transformation (that is

the mechanism in which the triglycerides oil out of the

cytosol) may not be homogeneous if the additions would

have to diffuse through the cytosol. This diffusion process

takes place simultaneously with the segregation process.

Last, but not least, we are comparing a 2D-model to

2D-cross-sections in 3D-samples. With our code, it is

possible to solve the Cahn–Hilliard equation in three spa-

tial dimensions, but the algorithm of counting the lipid

droplets and computing the lipid droplet fraction, in a

generic unstructured mesh, has to be adapted to 3D-simu-

lations. The 3D-simulations, including the lipid droplet

counts and volume determination are much more expen-

sive. In future studies, we want to improve on these issues.

Although, much of the actual biological mechanism behind

adipogenesis remains unclear, the Cahn–Hilliard equation

gives the right phenomenological picture in the sense that it

models nucleation, growth, shrinkage, and merging of lipid

droplets. This issue, and the experimental results, imply

that the model needs improvement and to be made more

complex in accounting for more physical parameters. This

is left for further research. This study should be considered

as a pilot in using the Cahn–Hilliard type models for

simulating adipogenesis, and as a start to use more

complicated models which incorporate more of the relevant

physics. Furthermore, developing modeling tools for pre-

dicting adipogenesis at a cellular scale contributes to the

understanding of adipose function at a tissue scale as well,

which then has several implications on characterization of

biomechanical, see for instance Gefen [13], Natali et al.

[24], and Portnoy et al. [30] and bioelectrical, see for

instance Kuhn et al. [17], properties of adipose tissue.

Since, the qualitative agreement between the experi-

ments and simulations from Cahn–Hilliard theory is rather

good, we conclude that it is plausible that adipogenesis is a

mainly diffusion-controlled mechanism.
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