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Abstract: The spreading of antibiotic-resistant bacteria strains is one of the most serious problem in
medicine to struggle nowadays. This triggered the development of alternative antimicrobial agents
in recent years. One of such group is Gemini surfactants which are massively synthesised in various
structural configurations to obtain the most effective antibacterial properties. Unfortunately, the
comparison of antimicrobial effectiveness among different types of Gemini agents is unfeasible since
various protocols for the determination of Minimum Inhibitory Concentration are used. In this
work, we proposed alternative, computational, approach for such comparison. We designed a
comprehensive database of 250 Gemini surfactants. Description of structure parameters, for instance
spacer type and length, are included in the database. We parametrised modelled molecules to
obtain force fields for the entire Gemini database. This was used to conduct in silico studies using
the molecular dynamics to investigate the incorporation of these agents into model E. coli inner
membrane system. We evaluated the effect of Gemini surfactants on structural, stress and mechanical
parameters of the membrane after the agent incorporation. This enabled us to select four most likely
membrane properties that could correspond to Gemini’s antimicrobial effect. Based on our results
we selected several types of Gemini spacers which could demonstrate a particularly strong effect on
the bacterial membranes.

Keywords: gemini; molecular dynamics; force field; parametrisation; antimicrobial; membranes

1. Introduction

Antimicrobial resistance against available antibiotics has been acknowledged as one
of the most serious problems in medicine nowadays. This resulted in a surge of new
research works related to the synthesis of novel compounds that could serve as a potential
modern-generation groups of antimicrobial particles. One of these groups are Gemini
surfactants (initially referred to as bis-surfactants), which are heavily reported for their
antimicrobial effect [1]. In recent years, Gemini surfactants have been heavily addressed
in the world of science. Over the past five years, more than 130 articles dealing with the
subject of Gemini surfactants have been published, among which researchers determined
the methods of synthesis of new compounds, their physicochemical properties and even
their potential use or application.

Gemini surfactants have unique structural properties. They consist of two amphiphilic
groups connected by a spacer at the head level, which can be both hydrophilic and hy-
drophobic [2,3]. They have at least two hydrophobic chains and two ionic or polar groups.
There is a great variety in their structure e.g., short and long methylene groups can be used
as a linker, stiff (stilbene), polar (polyether) and nonpolar (aliphatic) groups can be used
as a linker [2,3]. The ionic group can be positive (ammonium) or negative (phosphorus,
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sulfur, carboxylase), while the polar non-ionic groups can be polyether or sugar. Most
Gemini surfactants have a symmetrical structure with two identical polar groups and two
identical chains (but there are also Gemini that are asymmetrical or with three polar groups
or chains) [4]. A universal scheme of Gemini is presented in Figure 1.
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A major part of synthesised Gemini surfactants has performed exquisite antibacterial
properties against both Gram-positive and Gram-negative bacteria [5–7]. The most common
antibacterial particles of this group are based on quaternary ammonium salts (QAS). Such
salts prevent the development of bacteria and fungi; therefore, they are used on a large
scale for cleaning, maintenance and disinfection. There were several attempts to evaluate
the effectiveness of antibacterial activity of Gemini surfactants. However, these are usually
limited to the compound structure—it is directly associated with the type and length of
spacer in the molecule and/or the length of hydrophobic chains [8–10]. Numerous scientists
proved that number of carbon atoms is correlated with the antimicrobial activity [11,12].
It has been established that a greater number of carbons in the molecule’s structure increases
its antibacterial activity, and the presence of 12 carbon atoms cause the greatest antibacterial
response. It was proposed that the shorter chains might not interact with the hydrophobic
region of the bilayer as smoothly and immediately as the longer ones [13]. However, very
long tails might curve and twist disqualifying the interactions with negatively charged
membrane surfaces by covering cationic head groups. Although it is believed that the
major element in the surfactant antimicrobial properties is connected to the hydrophobic
chain. It was confirmed that the head group type and structure are also essential factors of
biological activity as in the case of QAS molecules [14]. Moreover, Moran et al. revealed
that the structure of the hydrophilic core also plays an important role in antimicrobial
effects [15,16].

Nevertheless, as mentioned earlier, all works focus only on the structural differences
of Gemini surfactants. Furthermore, the conclusions are usually limited to one subgroup of
Gemini compounds, hence when analysed more globally, are often mutually contradictory.
The reported antimicrobial activity is based on minimum inhibitory concentration (MIC),
which strongly depends on the protocol used [17]. The studies reporting the interactions
and the effect of Gemini on membranes—with particular emphasis on their properties
and potential rupture—are scarce in the literature. There are only available few studies
on commercially available Gemini surfactants such as octenidine (OCT) [18–20]. This is
quite surprising as membrane destruction was emphasised as one of the potential targets
for antimicrobial effect [21,22]. To this end, in our work we have focused on systematic
theoretical studies of Gemini agents. Specifically, we have reviewed available literature and
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recreated the structure of the synthesised Gemini particle groups. This was followed by
the classification of molecules into subgroups and the parametrisation of the compounds
to create force fields for molecular dynamics studies. As a result, we obtained 250 valid
force fields of Gemini class surfactants. Finally, we have selected valid representatives
of the subgroups and investigated their interaction with lipid membranes. The selection
of representatives was partially determined by the conclusions of structural studies. We
ended with 25 selected particles used in molecular dynamics studies. The model mem-
brane system was based on the inner membrane of E. coli. In this work we report the
theoretical effect of Gemini class surfactants on properties and behaviour of the membrane.
Additionally, the incorporation and behaviour of the molecules were also assessed. Based
on our systematic characterisation of membrane system, we selected four parameters that
were strongly affected by Gemini agents’ incorporation. Those were: area compressibil-
ity, bending rigidity, lateral diffusion coefficient and surface tension. This selection of
impactful parameters allowed us to make a preliminary selection of Gemini molecules
groups that could show strong antimicrobial effect from those analysed. This work could
provide a means for more detailed studies of Gemini class surfactants and their interaction
with lipid membrane models. Such systematic computational analysis provides in silico
method to select, from the group of molecules, the ones that are most likely candidates for
antimicrobial compounds. It can result in decreasing the amount of expensive synthesis
work, which can restrain this type of studies. In a further perspective, it could help in
initial scanning of the molecules and facilitate comparison between different MIC studies
to determine valid candidates for next-generation antimicrobial substances.

2. Results and Discussion
2.1. Parametrisation

Variety of different Gemini type molecules are synthesised and characterised every
year in various literature reports. However, usually their antimicrobial effectiveness is
described by a single MIC experiment using various protocols and bacteria families, af-
ter which they are left forgotten. Perhaps the new antimicrobial agents, more effective
than currently available, have been already synthesised. Due to the shortcomings of the
MIC experiments and the inability of systematic comparison it could be impossible to
use them. Furthermore, these molecules have a specific biophysical effect on membranes,
although are rarely used in molecular dynamic studies due to the missing of an appropri-
ate parametrisation. To this end, we have collected the structures of synthesised Gemini
molecules from a significant number of recent literature reports [1,3,7,10,23–49]. Using
SCIGRESS software, these structures were designed and preliminarily optimised in the
water solvent. It was followed by their equilibration and determination of the Hessian
matrix was carried out using Gaussian software. Finally, data from both geometry and a
Hessian matrix were used for parametrisation of modelled particles and the force fields
creation. This approach was successfully used beforehand to create force fields for various
particles [18,50,51]. In Supporting Materials (SM) we have delivered the detailed base of
modelled 250 particles (see Microsoft Excel datasheet) with optimised force fields (see
included zip file). Force fields are ready-to-use in NAMD software however, a detailed
description on how to prepare them for GROMACS users was also included. Molecules
were divided into groups based on the origin of the spacer. Each molecule is characterised
by the molecular scheme, segment name, spacer formula, length of the spacer, length and
formula of chain components and the presence of organic salt. Additionally, based on
the modelled molecule structure, partition coefficient (logP) and critical micelle concen-
tration (CMC) were determined. Several molecules were presented as a preview in Table
1 while the total selection is included in Table S1. The theoretical value of logP could be
useful for molecule selection as it can indicate whether the molecule incorporates into the
membrane in the first place. On the other hand, CMC value may suggest the aggregation
behaviour of investigated agents. However, it should be noted that the algorithm is based
on phenomenological values hence CMC should be only considered as an approximation.
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Table 1. Representation of selected modelled molecules from detailed base included in Supporting Materials.

Group Scheme ID Seg Name Linker Linker
Length (n)

Chain
Compound
(R1 or R2)

Number of
Carbons in
R1/R2 (m)

Number of
Carbons
from N+

Chemical
Formula

Organic
Salt

log10
(CMC) Ref.

Alkyl Bisp
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Table 1. Cont.

Group Scheme ID Seg Name Linker Linker
Length (n)

Chain
Compound
(R1 or R2)

Number of
Carbons in
R1/R2 (m)

Number of
Carbons
from N+

Chemical
Formula

Organic
Salt

log10
(CMC) Ref.

Ester
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2.2. Membrane Characterisation

As previously stated, Gemini molecules are well-known for their antimicrobial ac-
tivity. It was considered by Epand et al. [21] as well as shown in the OCT studies, that
this effect is related to membrane disruption [18]. The effect of those Gemini molecules
on the membrane properties was assessed to determine the properties that most likely
correspond to the antimicrobial effect. A number of molecules were selected to investigate
the effect of Gemini particles on membrane’s behaviour. Specifically, at least one molecule
from each group was selected. Since in several works [52–56] it was reported that strongest
antimicrobial effect was observed for Gemini agents with chain length equal to 12 carbon
atoms, such condition was adapted during molecule selection from the group. All of the
investigated molecules, except diGalactose (dGl), were incorporated into the membrane
during the simulation time. The dGl molecule fluctuated over the bilayer surface, maintain-
ing a 30 ± 4 Å distance from phosphorous atoms in lipid heads. The explanation of a lack
of incorporation for dGl most likely lies in the negative logP of the molecule. A detailed
location of system components such as lipid fragments or Gemini molecules has been
presented in the partial density chart in Figure S1–S5 in SM. Selected screenshots of the
systems with anchored molecules are presented in Figure 2. The membrane composition
was selected in such a way to most accurately reflect the inner membrane of E. coli [21,57].
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Membrane with incorporated Gemini molecules was thoroughly analysed to deter-
mine its properties such as area per lipid, membrane thickness, interdigitation, penetration
depth, lateral diffusion, bending and tilt rigidities, area compressibility and surface tension.
From such set of parameters four most likely candidates were chosen that could corre-
spond to the antimicrobial effect. Those are membrane compressibility, bending rigidity,
lateral diffusion and surface tension. The detailed characterisation of Gemini effect on the
membrane, including all of the investigated parameters, is presented in SM Table S2. In this
work, we additionally simulated the OCT molecule and we used it as a positive control.
We assume that the effect on the membrane of these commercially available molecules
could serve as a guidepost regarding desirable changes in selected properties. Since other
molecules might indicate a much different mode of action therefore in our selection, we
took into account the possible different mechanisms. Such a mechanism could induce a
different magnitude of parameter change. As a result, we were also considering, in our
selections, the extremum parameter changes, not only guided by the tendencies given by
the effect of OCT. Concerning our analysis, we selected the four most changeable bilayer
parameters reflecting membrane-agent interaction and potential antimicrobial activity. We
deliver a total set of parameters in SM Table S2. The rest of the determined parameters
were not selected due to insignificant differences between the analysed systems. Mem-
brane thickness was, in general, determined to be between 39 and 41 Å. The difference
of 2 Å between extreme particles with uncertainty equal to 1 Å was enough to exclude
this parameter as an influential one. Similarly, tilt bending ranged from 9.9 up to 10.9 fold
KbT with an uncertainty of 0.3 fold KbT. For APL, when the leaflet in which the Gemini
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agent incorporated is analysed, the values range between 58 and 62 Å2. Only two cases are
extreme, which are 67.0 ± 3.3 Å2 for aryl bispiridine (Ary) and 64.8 ± 2.7 Å2 for glucose
(Glu). Interestingly, both of those spacers were highlighted as possible antimicrobial based
on analysis of other significant parameters.

The area compressibility is one of the most robust parameters in our dataset, hence
we predict that it may be an adequate property reflecting antimicrobial effect on the
membrane. This mechanical parameter quantifies the energetic cost associated with the
membrane’s area stretching and/or compressing. For high values of area compressibility,
the membrane is resistant to external pressure. For low values the membrane loses its
resistivity. Both cases can result in inability of proper cell function. The determined values
of area compressibility of bilayers with incorporated Gemini molecules are presented
in Figure 3. The area compressibility of positive control—membrane with incorporated
OCT—is almost seven times higher than in the case of the model membrane. Interestingly,
membrane area compressibility with incorporated Adamantane (Adm) is higher than in
the case of positive control. Four other molecules from the ester (Est), higher quaternary
ammonium salt (hQAS), oligomeric QAS (o-QAS) and pyridine (Pyr) group also induced
significant growth in the area compressibility. Furthermore, two Gemini molecules had
a decreasing effect on the area compressibility of the membrane. Specifically, those from
Saccharide (Sch) and Alkyl Bispyridinamine (Alk) group.
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In our previous work we highlighted that mechanical parameter such as bending
rigidity play an important role in OCT mode of action [18]. To this end we selected this
parameter as a likely and promising candidate that correspond to antimicrobial activity.
Briefly, bending rigidity quantifies the energetic cost associated with the membrane bending.
The determined values of bending rigidity of membranes with incorporated Gemini agents
are presented in Figure 4. First, the difference between pure membrane and the positive
control is not statistically significant. To our knowledge, the OCT effect on bending rigidity
is closely related to the aggregation properties rather than the effect of a single molecule
action [18]. Nevertheless, several Gemini molecules significantly affected the bending
behaviour of membranes. Considering OCT as a positive control we found the activity of
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several agents such as ionic (Ion), alginine (Alg), Pyr, butene (But) and glucose (Glu) as not
statistically significant, hence similar to OCT. If, however, the strongest difference between
pure membrane is considered, aryl bispiridine (Ary), imino (Imo), oQAS, gluconamid (Glc)
were the most active candidates.
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Lateral diffusion is a property that defines the mobility of lipid molecules in the mem-
brane plane. Changes in lateral diffusion of the lipids could result in changes of movement
of proteins, which can affect the activity of transporters and channel proteins [58]. Such an
effect on proteins could significantly impede the functioning of microbe cells and corre-
spond to antimicrobial effect of Gemini molecules. Although this dependency is not strictly
related to the Gemini’s destructive effect on the membrane, it also should be considered as
a factor. The values of lateral diffusion of lipid molecules are presented in Figure 5. Our
positive control indicates that decreasing effect on lateral diffusion should be desirable
however, the antimicrobial effect of OCT is based on membrane disruption and cannot
be considered as a factor in this case. Results obtained for model membrane are in strong
agreement with the GUVs E. coli mimicking studies, i.e., experimental diffusion coefficient
equals D = 6.09 µm2/s [59]. Interestingly, different antimicrobial agent-thymol induced
growth in lipids mobility, supporting the agent translocation [59]. To this end we selected
three lowest and three highest values of lateral diffusion for selected agents that influence
this membrane property. Gemini molecules that strongly increased the lateral diffusion of
lipids on membranes were But, imidazolium (Imi) and Pyr. On the other hand, Gemini
molecules that strongly decreased the lateral diffusion were o-QAS, Imo and Glu.

Finally, the surface tension was determined for membranes with incorporated Gemini
agents. Briefly, surface tension is defined as a cohesive force that keeps the cell membrane
intact. Hence, its fluctuations may be very informative and extremely important for the
determination of the antimicrobial mode of action based on the membrane disruption.
Values of the membrane surface tension influenced by Gemini detergents are presented in
Figure 6. The surface tension of membrane treated with OCT was twice as high than in the
model membrane’s case. Interestingly, a significant number of investigated molecules had
much stronger effect on membrane surface tension compared to the positive control. Three
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groups with the highest surface tension fluctuations were Ary, Aza and Alk. Additionally,
the activity of several molecules such as hQS, Imo and Pyr led to decreased membrane
tension. This should also be considered as change that could result in antimicrobial effect.
Pure membrane exhibited natively certain surface tension hence, any strong deviation from
this value could result in disruption of biological processes on the membrane.
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Taking into account our results oQAS, Pyr, Imo groups from the Gemini family may
exhibit strong antimicrobial effects. These molecules act as prominent candidates since
three from four selected membrane parameters were significantly affected. Wang et al. in
their experimental work [60] reported that presence of oxygen atom in oQAS spacer chain
introduces higher flexibility and reduction of coulombic repulsion allows long side alkyl
chain to tighter aggregation. This stays in line with our results since the oQAS molecules
deeply penetrate the bilayer affecting membrane diffusion and mechanical properties.
Moreover, Wettig et al. [61] highlighted unique transfection properties of Imo compared to
other synthesised molecules since additional flexibility from extra methylene unit between
nitrogen centres and readily protonated imino group is present. In our opinion, given
molecule properties may influence the membrane resulting in limited tension and diffusion.
Interestingly, both oQAS and Imo agents have similarities in structures (latter has additional
nitrogen and methylene units in the spacer region) and induce comparable change in the
membrane’s properties. Similarly, Quagliotto et al. [31] in the experimental work reported
that increased Pyr concentration reduced the surface tension. This is in accordance with
our theoretical approach where we observed significant limitations in membrane surface
tension. Other vital candidates, that were selected based on two from four parameters,
are Ary, Glu, hQAS and Alk. In the experimental work, Bailey et al. [1] concluded that
Ary and Alk agents showed antimicrobial effectiveness, according to MIC. However, the
latter showed weaker activity when compared to Ary. The authors emphasised that in
the case of alkyl series the most effective agents are those with 22 up to 30 carbon atoms
in the molecule. These could influence the character of membrane–molecule interactions
and thus result in the fluctuation of membrane parameters. Our results also highlighted
hQAS, which may be associated with molecule rigid spacer and three-charged headgroup
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indicating affinity to negative membranes [24]. Finally, Kumar et al. [38] reported that Glu
shows excellent surface-active properties and low cytotoxicity, which stay in agreement
with our findings based on membrane parameters variation. This selection was presented in
Table 2. Despite suggested membrane thinning in reported experimental works we did not
observe significant occurrence nor changes in acyl chain interdigitation in our studies (see
Table S2) [62,63]. Moreover, in a significant part of analysed molecules, we observed their
preferential localisation in the carbonyl-glycerol region. This was influenced by neither how
long the alkyl chain nor the spacer were (see Figure S1–S5). Nevertheless, experimental
comparison studies using uniformed protocol are required to confirm whether selected
parameters directly correspond to the discussed antimicrobial effect.
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Table 2. Selected potential antimicrobial candidates from each parameter group. It is suggested to compare those in
experimental studies. Frequently appearing molecules were bolded to emphasise their repetition between different
parameters consideration.

Compressibility KA
[mN/m]

Bending Rigidity
[fold KBT]

Lateral Diffusion
[µm2/s]

Surface Tension
[mN/m]

o-QAS o-QAS o-QAS Aza
Pyr Ion Pyr Pyr

Adm Imo Imo Imo
Est But But
Sch Ary Imi Ary

Glu Glu
hQAS Alg hQAS

Alk Glc Alk
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3. Materials and Methods
3.1. Molecule Parametrisation

Quantum level calculations were performed using the Gaussian 2016 software pack-
age [64]. The equilibrium geometry of investigated Gemini molecules was calculated using
density functional theory (DFT) (B3LYP)/6-31++G (d) level of theory; first with Loose Self
Consistent Field (SCF) procedure, then with Tight. The solvent effect was taken into consid-
eration using the integral equation formalism of the polarisable continuum model IEFPCM.
Temperature was set to 300 K. Supplementary analysis based on the construction of the Hes-
sian matrix (the matrix of second derivatives of the energy with respect to geometry) was
also performed for further use in the force field parameterisation. The specific geometric
and electronic data, such as bond lengths, angles, dihedrals and charge distribution were
extracted from a Hessian matrix. The charge distribution was determined from the RESP
charge calculations as being the most adapted to reproduce the molecular behaviour with
the subsequently used CHARMM force field. For logP determination, the octanol/water
partitioning coefficient was calculated using SCIGRESS software (SCIGRESS, Molecular
modeling software, FQS Poland, ver. FJ-3.3.3). For CMC determination, the algorithm
proposed by Mozrzymas was used [65]. It is based on phenomenological values and
second-order connectivity index, that was determined using SCIGRESS software. Molecule
schemes were prepared using MoleculeSketch (v. 2.2.3).

3.2. Molecular Dynamics Simulations

The all-atom models of the membranes were generated using CHARMM-GUI mem-
brane builder [66]. The bacterial membrane model consisted of 80% PYPE, 15% PYPG,
5% PVCL2 [21,57]. The lipid bilayer was solvated with TIP3P water molecules (100 water
molecules per lipid) and 240 mM NaCl were added based on literature data [67].

MD simulations were performed using the GROMACS (version 2020.4) package with
the CHARMM36 force field [68,69]. Membrane systems were first minimised with the
steepest descent algorithm for energy minimisation. Further calculations were carried
out in the NPT ensemble (constant Number of particles, Pressure and Temperature) with
Berendsen thermostat and barostat using semi-isotropic coupling at T = 303.15 K with time
constant τ = 1 ps and p = 1 bar with τ = 5 ps. The primary part of the NPT calculations
was performed using the leap-frog integrator with a 1 fs timestep. Afterwards, for the
further NPT ensemble at T = 303.15 K, τ = 1 ps and p = 1 bar, τ = 5 ps, a Nose-Hoover
thermostat [70] and Parrinello-Rahman barostat [71] were used. The second part of long-
run production was carried out for 500 ns using the leap-frog integrator. Chemical bonds
between hydrogen and heavy atoms were constrained to their equilibrium values with the
LINCS algorithm, while long-range electrostatic forces were evaluated using the particle
mesh Ewald (PME) method [72] with the integration timestep of 2 fs. Based on simulated
pure membranes, the behaviour of Gemini surfactants was investigated. Molecules were
placed on average 2.5 nm above the membrane leaflet and the same MD procedure was
employed. For visualisation purpose, Visual Molecular Dynamics (VMD) was used [73].

3.3. Membrane System Characteristics

Membrane Thickness and Area per Lipid. Both area per lipid and membrane thick-
ness were determined using self-made MATLAB scripts (Matlab R2019a). Briefly, for each
leaflet Z-position on all phosphorus atoms were averaged, and distance between average
Z-positions between each of leaflets was calculated for each frame. The final membrane
thickness value is an average over analysed trajectory. Similarly, for each frame position of
phosphorus atoms (or Gemini atom on the Z-level corresponding to phosphorus atoms)
each leaflet was subjected to Voronoi tessellation. The average area for all lipid molecules
was calculated for each leaflet and frame and was averaged over the analysed trajectory.

Bending rigidity and Tilt rigidity. Both bending rigidity and tilt rigidities were
determined using self-made MATLAB scripts that were based on the works of Doktorova
et al. [74]. Briefly, a probability distribution for both tilt and splay are determined for all
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lipids over all analysed time steps. Tilt is defined as an angle between the lipid director
(vector between lipid head–midpoint between C2 and P atoms–and lipid tail–midpoint
between 16th carbon atoms) and bilayer normal. Lipid splay Sr is defined as divergence of
an angle formed by the directors of neighbouring lipids providing that they are weakly
correlated.

Compressibility. Compressibility was determined using self-made MATLAB scripts
based on the work of Doktorova et al. [75]. Briefly, a real-space analysis of local thickness
fluctuations is sampled from the simulations for carbon atoms. This is followed by determi-
nation of reference surface and calculation of potential mean force from fluctuations from
whole analysed trajectory to determine compressibility for given leaflet.

Lateral Diffusion Coefficient. The diffusion coefficient from the 2D mean square
displacement (MSD) equation was calculated Diffusion Coefficient Tool [76] from the slope
of the MSD curve through Einstein’s relation. This relation is presented in Equation (1),
where M (t) is the MSD at a range of lag time tau and E represents the dimensionality
(XY). For the computation accuracy, only phosphorous atoms (in the range of 20 Å from
surfactant) of all lipids were considered.

D(τ) =
M(τ)

2Eτ
(1)

Interdigitation. For all provided systems the fluctuation of lipid interdigitation was
determined using MEMBPLUGIN available in VMD software [77]. It is given in length
units and reflects the interdigitation between opposite leaflets in the system—unless no
interdigitation occurs it is equal to zero.

Penetration Depth. The depth of surfactant penetration was measured with respect
to the membrane centre. From the last 50 ns of the trajectory the positions of the deepest
placed carbon atoms on each alkyl chain were taken and evaluated with respect to the
distance between phosphorous atoms divided by two, which represent the membrane
centre.

Surface tension. The surface tension of membranes with anchored Gemini surfactants
was computed using gmx energy function build-in GROMACS software using pressure
tensor (Pxx, Pyy, Pzz values according to the Irving-Kirkwood method [78–80] and Equa-
tion (2), where L is the length of the simulation box in z dimension and represents an
ensemble average given from gmx energy.

γ =
L
2
〈Pzz −

Pxx + Pyy

2
〉 (2)

Significance test. Significance tests were performed using OriginLab OriginPro 9.0
software. Specifically, one-way ANOVA was performed and was supplemented with
post-hoc Tukey test to determine significance between individual populations.

4. Conclusions

In this work, we optimised and parametrised 250 Gemini molecules. We described
each of those molecules with theoretical values of logP and log (CMC) as well as provided
a detailed description of those molecules in the attached spreadsheet. Additionally, we
included those parametrised force fields in SM for future simulation studies. This may
be remarkably helpful in further antimicrobial action studies, as a significant number
of Gemini cationic molecules with various spacers were modelled and parametrised.
Such systematic summarisation may be extensively used not only for theoretical studies
but also for experimental ones with the aim to deliver comprehensive knowledge and
molecular mechanism of surfactant effectiveness. Furthermore, we selected 25 molecules
from various groups and simulated their behaviour in systems with membrane mimicking
the inner membrane of E. coli. This detailed characterisation of parameters allowed us to
extract four types of parameters—area compressibility, bending rigidity, lateral diffusion
coefficient and membrane surface tension—that could correspond to the antimicrobial
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effect of those molecules. Based on our preliminary screening we concluded that the
type of Gemini molecules that could exhibit strong antimicrobial effects are oQAS, Pyr,
Imo. Additionally, other possible candidates are Ary, Glu, hQAS and Alk. In this work
we proposed and deliver a uniform theoretical approach to compare Gemini surfactant
effectiveness. Nevertheless, this systematic approach should be confirmed experimentally
to provide solid biological relevance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222010939/s1: (1) Gemini molecules database (.xls). (2) Complete force-fields for Gemini
molecules from the database (.zip). (3) Supporting materials (.docx) including system density profiles
of investigated agents, table with membrane system characterisation and instruction for NAMD FF
to GROMACS FF conversion.
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