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Brain tumor segmentation is the process of separating the tumor from normal brain tissues; in clinical routine, it provides useful
information for diagnosis and treatment planning. However, it is still a challenging task due to the irregular form and confusing
boundaries of tumors. Tumor cells thermally represent a heat source; their temperature is high compared to normal brain cells.
The main aim of the present paper is to demonstrate that thermal information of brain tumors can be used to reduce false
positive and false negative results of segmentation performed in MRI images. Pennes bioheat equation was solved numerically
using the finite difference method to simulate the temperature distribution in the brain; Gaussian noises of ±2% were added to
the simulated temperatures. Canny edge detector was used to detect tumor contours from the calculated thermal map, as the
calculated temperature showed a large gradient in tumor contours. The proposed method is compared to Chan–Vese based level
set segmentation method applied to T1 contrast-enhanced and Flair MRI images of brains containing tumors with ground truth.
The method is tested in four different phantom patients by considering different tumor volumes and locations and 50 synthetic
patients taken from BRATS 2012 and BRATS 2013. The obtained results in all patients showed significant improvement using the
proposed method compared to segmentation by level set method with an average of 0.8% of the tumor area and 2.48% of healthy
tissue was differentiated using thermal images only. We conclude that tumor contours delineation based on tumor temperature
changes can be exploited to reinforce and enhance segmentation algorithms in MRI diagnostic.

1. Introduction

A brain tumor represents a set of abnormal cells that
reproduce in the brain in an uncontrolled way. There are
large varieties of brain tumor types that are classified into
two categories, benign (noncancerous) brain tumors are less
aggressive, formed slowly, and most often remain isolated
from surrounding brain normal tissues; they do not spread
to other regions of the brain or other parts in the human
body and are generally easier to surgically extract than
malignancies. Malignant brain tumors (cancerous) are not
always easy to distinguish them from surrounding normal
tissues. Therefore, it is sometimes difficult to extract them
entirely without damaging the surrounding brain tissues
(http://braintumor.org). The number of people affected by
malignant brain tumors has been increasing in the last few
decades. According to the American cancer society [1, 2] in
the US for 2017, there were an estimated number of 23,800

new cases which increased with 30 cases compared to 2016
(23,770) and 16,700 estimated deaths with an increase of 650
cases compared to 2016 (16,050).

Magnetic Resonance Imaging or MRI is a noninvasive
medical imagingmodality commonly used in the clinical rou-
tine as it offers images with high spatial resolution and high
contrast between soft tissues. MRI provides rich information
about shape, size, and localization of brain tumors for more
accurate diagnosis and treatment planning [3, 4]. Therefore,
most of the research in medical diagnosis and delineation
of brain tumors uses MRI images. Various MRI sequences
can be created; they are called weighted images, such as T1-
weighted, T2-weighted, Proton-DensityWeighted, and Fluid-
Attenuated Inversion Recovery (FLAIR). T1-weighted image
provides a better segmentation for brain tissues due to the
high contrast between gray and whitematter [5], T1-weighted
contrast-enhanced images and FLAIR are widely used for
brain tumors structure diagnostic as it makes tumor region
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hyperintense. In this work, we have collected synthetic T1-
weighted contrast-enhanced and Flair MRI images of all
subjects as experimental data to test our approach.

Accurate segmentation of brain tumors fromMRI images
represents a crucial and challenging task in diagnosis and
treatment planning. Image segmentation is an active field
in medical imaging, which consists in extracting from the
image one or more regions forming the area of interest.
Various algorithms have been developed in the literature to
perform brain tumor detection, including threshold-based
methods [6, 7], region-based methods [8, 9], deformable
methods [10–13], classification methods [14, 15], and deep
learning [16–18]. Deformable models are among the most
popular methods used for brain tumor segmentation in MRI
images. They are represented by curves (2D) or surfaces
(3D) defined in an image that move by the influence of two
forces, internal or local forces defined in the curve to keep
it smooth during the deformation process, while external
forces are computed from image data in order to move the
curve towards the object boundary sought. In the deformable
models, we distinguish two principal categories, parametric
deformable models or snakes [19] and geometric deformable
models. The parametric deformable models necessitate a
parametric representation during deformation of the curve.
These later have difficulty in topology changes to split and
merge contours to segment multiple objects. Geometric
deformable models or level sets proposed by Osher and
Sethian [20] move based on geometric measurements such
as the curve normal and curvature. The advantage of these
models is their capacity for topological changes during curve
propagation.

Brain tumor segmentation consists of extracting the
tumor region from healthy brain tissues; the existence of
brain tumors can often be detectable. However, accurate
and effective segmentation of tumors remains a challenging
task, since the tumors can have different sizes and loca-
tions. Their structures are often nonrigid and complex in
shape and have various appearance properties. Besides, they
have intensities overlapping with normal brain tissues and
especially in tumor borders; they show significant variable
appearances from patient to patient [21], due to the need to
add physical information of tumor to reinforce algorithms
segmentation for more accurate and effective extraction. In
the present work, we investigate the effect of temperature on
segmentation in MRI images. Each tissue in human body
has a thermal signature in the presence of abnormality like
tumors, the thermal signature of the tissue changes, and the
measurement of temperature changes can be helpful for the
estimation of the existence and localization of an internal
abnormality [22] in recent years was widely used as a tool
for tumors diagnostic [23–26]. We have used temperature to
delineate tumor contours and compared the obtained results
with segmentation by the level set method.

Human body temperature distribution depends on sev-
eral factors including heat energy generated by cellular
metabolism and blood flow, as these are altered in dis-
ease; the temperature distribution changes in pathological
tissues. The blood flow plays an essential role in the body
thermoregulation mechanism, which removes heat from a

region with a higher temperature and increases heat in the
cooled region. Tumor cells generally generate more heat than
adjacent healthy cells due to their highmetabolic activity and
the blood flow. In the tumorous regions, the blood flow can be
significantly less than that in the surrounding healthy tissues
[27].Therefore, heat energy generated by the tumormetabolic
heat generation is dissipated less rapidly from the tumor than
from the surrounding healthy normal tissues.

Consequently, the tumor temperature rises higher than
normal tissues [28]. Kateb et al. [29] showed a significant
difference in brain tumor temperature compared to normal
brain tissues, up to 3.3∘C in the tumor center (36.4∘C)
compared to the surrounding normal tissues temperature
(33.1∘C), and demonstrated that it can be used to delineate
the margins of brain tumors. Therefore, the temperature
distribution can provide additional information about brain
tumors. Numerous studies used temperature distribution to
detect and estimate tumor size and location using thermal
imaging (thermography) [25, 30–33].

In this paper, we developed a new approach to improve
the segmentation of brain tumors performance in term
of accuracy, based on temperature profiles changes in the
tumorous region. The temperature distribution in the brain
with the tumor is calculated using Pennes bioheat equation.
Next, Canny edge detection method was applied in the
calculated thermal image to estimate tumor contours, based
on the abrupt change of temperature in tumor contours. The
obtained results are comparedwithChan–Vese based level set
segmentation in MRI images.

The rest of this paper presents the proposed method in
Section 2, several tests, results, and discussion in Section 3,
and finally, the conclusion in Section 4.

2. Materials and Methods

2.1. Temperature Calculation. Temperature distribution in
the brain with tumors was simulated by Pennes bioheat
transfer equation [34], which models heat transfer within
biological systems by taking into account heat transfer mech-
anisms such as thermal conduction, blood perfusion, and
metabolic heat generation [34, 35]. This model had some
critics in past decades as it does not consider the effect
of blood flow direction; it considers that heat equilibration
happens in the capillaries and does not take into account the
blood leaving the tissue. Several studies tried to overcome
these limitations [36–38], but it is still widely used by the
majority of papers in the literature due to its implementation
simplicity and availability of its parameters experimentally.
The Pennes bioheat transfer equation [34, 35] is given by

𝜌𝐶𝑃 𝜕𝑇𝜕𝑡 = K ⋅ (𝜕2𝑇
𝜕𝑥2 +

𝜕2𝑇
𝜕𝑦2 ) + 𝜔𝑏𝜌𝑏𝐶𝑝𝑏 (𝑇𝑎 − 𝑇)

+ 𝑄𝑚,
(1)

where 𝜌 [Kg/m3] is the density of tissue, 𝐶𝑃 [J / (Kg ∘C)]
is the specific heat of tissue, K [W/(m ∘C)] is the thermal
conductivity, 𝜔𝑏 [ml /(s.ml)] is the blood perfusion rate, 𝜌𝑏
[Kg/m3] is the density of blood,𝐶𝑝𝑏 [J/(Kg ∘C)] is the specific



International Journal of Biomedical Imaging 3

Table 1: Thermal properties used for temperature simulation.

Material Property name
k [W/(m ∘C)] 𝜌 [𝑘𝑔/𝑚3] 𝐶𝑝 [𝐽/(𝐾𝑔 ∘𝐶)] 𝑄𝑚 [𝑊/𝑚3] 𝜔𝑏 [𝑚𝑙/(𝑚𝑙 ∙ 𝑠)] Refs

CSF 0.6 1000 4200 0 0 [43]
GM 0.565 1035.5 3680 16,229 0.013289 [43]
WM 0.503 1027.4 3600 4517.9 0.0036956 [43]
Tumor 0.565 1027.4 3600 25,000 0.0005 [31, 43, 44]

heat of blood, 𝑇𝑎 [∘C] is the temperature of artery, and 𝑄𝑚
[W/m3] is metabolic heat generation. The left-hand side of
(1) represents the stored heat energy, the second describes
the heat transfer due to conduction; the second term refers
to the temperature exchange between the blood and the
surrounding tissue, due to blood convection; and the last
term denotes the heat generation by cellular metabolism.

To solve (1), normal body temperature 𝑇𝑖 = 37∘C is con-
sidered as the initial condition. In the boundary conditions,
brain tissues are supposed to be exposed to constant normal
body temperature 𝑇𝑏 = 37∘C [39]. The thermal properties
of blood perfusion were consigned as 𝜌𝑏= 1052 [Kg/m3],𝐶𝑝𝑏= 3800 J/ (Kg. ∘C), and 𝑇𝑎= 37∘C [40]. Finite difference
method was applied for discretization of Pennes bioheat
transfer equation within the Cartesian grid, where i and j
represent the pixel index in the image space coordinate. The
time step was assumed at Δ𝑡 = 0.1𝑠 and the spatial stepΔ𝑥 = Δ𝑦 = 1 𝑚𝑚, which is derived from image resolution.
The solver convergence was assumed when the temperature
difference within all image pixels between two consecutive
iterations is less than 1 ⋅ 10−7 . The approximation of the
second derivative with respect to both time and space using
the finite differences is descripted as follows [41]:

(𝜕𝑇
𝜕𝑡 )𝑖,𝑗 =

𝑇𝑛+1𝑖,𝑗 − 𝑇𝑛𝑖,𝑗
Δ𝑡 , (2)

(𝜕2𝑇
𝜕𝑥2 )

𝑖,𝑗

= 𝑇𝑖−1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖+1,𝑗
Δ𝑥2 , (3)

(𝜕2𝑇
𝜕𝑦2 )

𝑖,𝑗

= 𝑇𝑖,𝑗−1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗+1
Δ𝑥2 . (4)

After discretization using finite difference method, (1) be-
comes [42]

𝑇𝑛+1𝑖,𝑗
= 𝑇𝑛𝑖,𝑗 + Δ𝑡K

𝜌𝑖,𝑗𝐶𝑖,𝑗Δ𝑥2
⋅ [𝑇𝑛𝑖−1,𝑗 + 𝑇𝑛𝑖+1,𝑗 + 𝑇𝑛𝑖,𝑗−1 + 𝑇𝑛𝑖,𝑗+1 − 4𝑇𝑛𝑖,𝑗]
+ Δ𝑡

𝜌𝑖,𝑗𝐶𝑖,𝑗 [(𝜔𝑏)𝑖,𝑗 (𝜌𝑏)𝑖,𝑗 (𝐶𝑃𝑏)𝑖,𝑗 (𝑇
𝑛
𝑎 − 𝑇𝑛𝑖,𝑗) + 𝑄𝑖,𝑗] ,

(5)

Table 1 presents the thermal properties used for tem-
perature simulations of normal brain tissues and tumor. A

tumor with 𝜔𝐵 = 0.0016 𝑆−1 and 𝑄𝑚 = 25000 [W/m3] is
considered in this study.

Towards the stability and convergence of (5), Δt should
satisfy the inequality as follows [42]:

Δ𝑡 ≤ 2Δx2𝜌𝐶𝑃𝜔𝑏𝜌𝑏𝐶𝑝𝑏Δx2 + 12𝑘 (6)

2.2. Chan–Vese Model. Towards the segmentation of brain
tumors in T1 contrast and Flair MRI images, we have
used active contours without edges proposed by Chan and
Vese [45], which is an energy-based method based on the
Mumford-Shah segmentation method [46] by approximating
the image pixels intensities inside and outside the curve
known as c1 and c2, respectively. The minimization problem
of energy functional defined by Chan and Vese is described
in the following formula:

𝐹𝐶𝑉 (𝑐1, 𝑐2,C)
= 𝜇 ∙ ∫

Ω
𝛿 (Φ (𝑥, 𝑦)) ∇Φ (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 + V

∙ ∫
Ω
𝐻(Φ (𝑥, 𝑦)) 𝑑𝑥𝑑𝑦

+ 𝜆1 ∫
Ω

𝑢0 (𝑥, 𝑦) − 𝑐12𝐻(Φ (𝑥, 𝑦)) 𝑑𝑥𝑑𝑦
+ 𝜆2 ∫

Ω

𝑢0 (𝑥, 𝑦) − 𝑐22 (1 − 𝐻 (Φ (𝑥, 𝑦))) 𝑑𝑥𝑑𝑦

(7)

where 𝜇, 𝜆1, and 𝜆2 are positives parameters; in this paper
they were initialized at 0.5, 1, and 2, respectively [47]. Φ is
level set function, 𝑢0(𝑥, 𝑦) is the input image, C is the curve
which corresponding to zero level set function Φ, and H is
the Heaviside function [45]:

𝐻(𝑧) = {{{
1, 𝑖𝑓 𝑧 ≥ 0
0, 𝑖𝑓 𝑧 < 0, (8)

and 𝛿 is one-dimensional Dirac measure [45]:

𝛿 (𝑧) = 𝑑
𝑑𝑧𝐻 (𝑧) (9)

while 𝜙 (x, y) is a signed distance function defined as [45]

Φ(𝑥, 𝑦) > 0 𝑖𝑓 (𝑥, 𝑦) 𝜖 𝐼𝑛𝑠𝑖𝑑𝑒 (𝐶)
Φ (𝑥, 𝑦) = 0 𝑖𝑓 (𝑥, 𝑦) 𝜖 𝑂𝑛 (𝐶)
Φ (𝑥, 𝑦) < 0 𝑖𝑓 (𝑥, 𝑦) 𝜖 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 (𝐶)

(10)
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To solve this minimization problem of the energy func-
tional in (7), the gradient descent method is used to derive
Euler–Lagrange equations and update the level set functions
[45]:

𝜕Φ
𝜕𝑡 = 𝛿 (Φ) [𝜇𝑑𝑖V( ∇Φ

|∇Φ|) − V − 𝜆1 (𝑢0 − 𝑐1)2

+ 𝜆2 (𝑢0 − 𝑐2)2]
(11)

where c1 and c2 are defined as follows [45]:

𝑐1 (Φ) = ∫
Ω
𝑢0 (𝑥, 𝑦)𝐻 (Φ (𝑥, 𝑦)) 𝑑𝑥𝑑𝑦
∫
Ω
𝐻(Φ (𝑥, 𝑦)) 𝑑𝑥𝑑𝑦

𝑐2 (Φ) = ∫
Ω
𝑢0 (𝑥, 𝑦) [1 − 𝐻 (Φ (𝑥, 𝑦))] 𝑑𝑥𝑑𝑦
∫
Ω
[1 − 𝐻 (Φ (𝑥, 𝑦))] 𝑑𝑥𝑑𝑦

(12)

and we implemented level set method based on the work of
Crandall [47].

2.3. Canny Edge Detector. The calculated temperature dis-
tribution (thermal image) in this study showed that a large
gradient in tumor borders is the reason to use an edge
detection method to track the tumor contours. An edge
in the image represents a strong local variation in pixels
intensity, usually, arising on the boundary between two
different regions within an image. Edge detection is the
process of objects boundaries detection within an image by
finding the changes in discontinuities intensities. There are
several edge detection methods, developed in the literature.
The most famous methods are the edge detection operators
of Roberts, Sobel, Prewitt, Kirsh Marr-Hildreth, Robinson,
LoG and Canny, and so on. Here, in this work, to detect
tumor contours based on temperature distribution, Canny
edge detection method [48] was used, as it provides much
better results with strong edges compared with the other edge
detectionmethods. Canny is based on amultistage algorithm.
It consists of five separate steps: smoothing, gradient finding,
nonmaximumsuppression, double threshold, and edge track-
ing using hysteresis. Due to the addition of noise in thermal
images, the smoothing step was applied two times.

2.4. Segmentation Evaluation. To evaluate the performance of
brain tumor segmentation, we have used five metrics, Accu-
racy, Sensitivity, Specificity, Dice Coefficient, and Jaccard
coefficient, which are computed according to the following
[49]:

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁, (13)

Sensitivity = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (14)

Specificity = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 (15)

Dice = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (16)

Jaccard = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (17)

where TP “True Positive” counts the number of pixels that are
correctly segmented as a tumor and FP “False Positive” rep-
resents the number of pixels in the image that are incorrectly
segmented as a tumor. FN “False Negative” gives the number
of pixels that are incorrectly segmented as healthy pixels, and
TN stands for “True Positive” denotes the number of pixels
that are correctly segmented as healthy pixels.

2.5. Experiments on Synthetic MRI Images. To validate the
approach in tumors with different locations and volumes, we
have taken four synthetic MRI images of patients with brain
tumors from [50], with 11.6 𝑐𝑚3 for patient 1, 27.4 𝑐𝑚3 for
patient 2, 51.1 𝑐𝑚3 for patient 3, and 81.7 𝑐𝑚3 for patient
4. The tumors were generated using realistic 3D tumor
growth cross-platform software called TumorSim simulator
[51]. It was used to validate brain tumor segmentation in
many recent papers [52–54]. The database containing 100
MRI images of brains with tumors of different locations
and volumes was created from 20 patients in the BrainWeb
database, five images per patient [55]. Each generated MR
image includes 181 slices. Figure 1 shows that the T1, T1
contrast-enhanced, and FLAIR slices were taken from four
different patients with different tumor volumes in the axial
plane associated with its ground truth. The 2D axial planes
are presented for varying brain patients. Each one of the slices
is taken at the axial plane of maximum tumor surface. All
the images are 256 x 256 pixels, 12–bit grayscale in DICOM
format, and have 1 mm2 isotropic resolution.

Fifty other synthetic patients were used to test our
approach; 25 patients with high-grade tumors were taken
from BRATS 2012 Training data, 25 other patients with low-
grade tumors were taken from BRATS 2013 Training data
[56, 57]; these synthetic images were created using TumorSim
[51]. The reason of validating the approach in synthetic MRI
images is that it contains the ground truth of brain tissues and
tumors; therefore, we take the real geometries of tissues and
tumors for more accurate temperature calculation.

The bioheat transfer equation, level set method, and
Canny edge detection method were implemented using
C/C++ on Windows 7 operating system with a CPU Intel
i7-4770k. The C/C++ code has been compiled with Visual
C++ compiler. The DICOM images were read using ITK
(www.itk.org) library.

3. Results and Discussion

Brain tumor thermally represents a heat source; its volume
affects temperature distribution. A simplified circular tumor
with three diameters is placed in the same location in the
healthy brain as shown in Figure 2. At first glance, we can
observe that temperature increases in tumors with higher
sizes (volume). For tumors with 10 mm, 15 mm, and 20 mm
the temperature increases with 0,58∘C, 0,99∘C, and 1,37∘C,

https://www.itk.org
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V = 11.6 cm3

Grey matter

White matter
Cerebrospinal fluid

Tumor

(a)

V = 27.4 cm3

Grey matter

White matter
Cerebrospinal fluid

Tumor

(b)

V = 51.1 cm3

Grey matter

White matter
Cerebrospinal fluid

Tumor

(c)

V = 81.7 cm3

Grey matter

White matter
Cerebrospinal fluid

Tumor

(d)

Figure 1: Synthetic T1, T1 contrast, and Flair images of four patients with tumors of different volumes with their ground truth. (a) Tumor
with 11.6 cm3 of volume. (b) Tumor with 27.4 cm3 of volume. (c) Tumor with 51.1 cm3 of volume. (d) Tumor with 81.7 cm3 of volume.

respectively, where themaximum temperature is in the tumor
center. Figure 3 provides more clear representation of 1D
temperature profile in the line passing through the center of
tumors. Results show clearly the existence of abnormality;
also, the rises in temperature distribution do not only indicate
the existence of a tumor but also provide useful information
about its localization.

Next, the temperatures distributions of the brain with
realistic tumorswere calculated with the addition of Gaussian
noise; Figure 4 presents the synthetic images used for the
analysis of the proposed approach; it gives the ground truth
of four patients with different tumor volumes in different
locations and illustrates the corresponding calculated tem-
perature distribution.Themaximum temperatures rise which
is in the center of tumors with volumes of 11.6 cm3, 27.4 𝑐𝑚3,51.1 𝑐𝑚3, and 81.7 𝑐𝑚3 being 1.86∘C, 2.53∘C, 2.75∘C, and
3.12∘C, respectively without addition of noise. The obtained
results confirm that temperature is high with increasing
tumor volumes.

Figure 5 shows drawn temperature isotherm without
noise on T1-weighted images based on tumor temperature
profile to analyze the degree of variation of temperature in
the tumorous region. Six curves in different colors with 0.5∘C
of difference between each curve were drawn to represent
temperature lines of 37.5∘C, 38∘C, 38.5∘C, 39∘C, 39.5∘C, and
40∘C, respectively. For the four patients, the curve with
37.5∘C of temperature represents healthy pixels. However,
these pixels are affected by tumor temperature. Also, as
the tumor volume increases this curve moves away from
the tumor borders, as shown in Figures 2, and 4 tumors
with high volume generate more heat compared to tumors
with fewer volumes. Notice that not only the temperature
increases but also it has a larger distribution; this explains
that curve with 37.5∘C is located far from contours in tumors
of high volume. We also observe that temperature has an
abrupt change in the tumor contours compared to tumor
core and the healthy area; this observation is confirmed in
Figure 6, which shows a 1D absolute gradient in the line
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Figure 2: Temperature distribution of brain with circular tumors of three different diameters. (a) Tumor with 10 mm of diameter. (b) Tumor
with 15 mm of diameter. (c) Tumor with 20 mm of diameter.
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Figure 3: 1D representation of temperature profile on the path passes through the tumors centers with different sizes.
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Figure 4: Temperature distribution with noise of brains with realistic tumors of different volumes. (a) Tumor with 11.6 cm3 of volume. (b)
Tumor with 27.4 cm3 of volume. (c) Tumor with 51.1 cm3 of volume. (d) Tumor with 81.7 cm3 of volume.
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Figure 5: Temperature isotherms in the four cases to show the degree of variation of temperature in the tumorous region.
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Figure 6: 1D representation of temperature absolute gradient on the path passes in the tumor center in the four cases. (a) Tumor with 11.6
cm3 of volume. (b) Tumor with 27.4 cm3 of volume. (c) Tumor with 51.1 cm3 of volume. (d) Tumor with 81.7 cm3 of volume.

passing across the tumor center. It can be inferred that the
temperature gradient always has the maximum value in the
tumor contours for all the four patients, which proves that
tumor thermal profile can provide rich information about
tumor borders that can be used to reinforce segmentation
algorithms. This assumption represents the basis on which
our approachhas beendeveloped usingCanny edge detection
method to detect tumor contours from temperature distribu-
tion.

The results of the segmentation are illustrated in Figure 7,
where green and red curves represent segmentation and
ground truth, respectively. Each patient is presented in

different column; the two first lines present the results of
segmentation using the level set method on different MRI
sequences, which are T1 contrast and Flair, respectively. The
last line gives the obtained results of segmentation using
the proposed approach based on Canny edge detection from
temperature distribution with the addition of Gaussian noise
shown in T1-weighted images. At first glance, it can be
inferred that segmentation has been improved significantly
using the proposed approach. These results demonstrate
that temperature provides rich information about tumor
margins that can be exploited to have more effective tumor
segmentation in MRI images.
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(Patient 1) (Patient 2) (Patient 3) (Patient 4)

Figure 7: Results of segmentation by level set method in MRI images and the proposed approach. The first and second lines provide the
segmentation by level set in T1 contrast and Flair respectively. The last line gives the segmentation using the proposed approach showed in
T1. Green: segmentation. Red: ground truth.

To evaluate the segmentation performance, we have used
five metrics, Accuracy, Sensitivity, Specificity, Dice Coeffi-
cient, and the Jaccard coefficient. The obtained results are
presented in Table 2; it presents the calculated segmenta-
tion evaluation metrics for level set method in different
MRI sequences and the proposed approach. The proposed
approach yields good results compared with level set segmen-
tation for the four patients. All the metrics were improved
in all cases, except Sensitivity, which is reduced. It can be
justified by the fact that, in the segmentation in MRI using
level set, the number of FN is very weak and sometimes
null, as most of the curve of the level set remains outside the
tumorous area.

The temperature is obtained using the Pennes bioheat
equation, which can produce errors in calculation compared
to the experimentally measured temperature, as the model is
isotropic and the used thermal properties donot represent the
realistic properties of the patient.However, our interest in this
work is the way the temperature is diffused, and its variation
in tumor borders independently of the degree of temperature
rises in the tumorous region. Figure 8 shows a one-dimension
temperature distribution with noise in the tumorous regions
by considering three different values of blood perfusion
rate which are 0.001 𝑆−1 , 0.0016 𝑆−1, and 0.002 𝑆−1 for the
same tumor. Table 3 furnishes the calculated segmentation
evaluation metrics for the proposed approach using Canny
method applied on three temperature profiles of the same
tumor for all patients. It can be inferred that the obtained
results of segmentation are with good accuracy for all cases.

In addition, there is no significant difference by applying the
approach on three tumor temperature profiles of the same
tumor, as there is a high variation of temperature in tumor
borders in the three cases, which proves more the feasibility
and the robustness of the proposed approach.

Thus far, tumors contours were detected using steady-
state thermal analysis, where the segmentation was per-
formed in the equilibrium state of temperature distribution.
In order to study the effect of transient thermal analysis in
brain tumors segmentation, cold stress was applied. From
an initial temperature distribution at thermal equilibrium
obtained using (5), a cold stress temperature 𝑇𝑐𝑜𝑙𝑑 was
reducing from each pixel temperature. We have considered
three values for 𝑇𝑐𝑜𝑙𝑑, 0.25∘C, 0.5∘C, and 1∘C. After cooling
the brain, (5) was then solved. Next, thermal images were
obtained at different time steps, 5 s, 100 s, 600 s 1000 s,
2000 s, and 2500 s, respectively. Table 4 depicts the obtained
results of segmentation evaluation of the obtained thermal
images at each time step. It can be observed that, in the three
cases for all times steps, the approach is still giving acceptable
results, which shows the applicability of the approach even in
transient temperature distribution.

Figures 9 and 10 depict the results of segmentation of level
set in Flair images and the proposed approach in the thermal
images with additional noise of fifty synthetic patients taken
from BRATS 2012 Training data and BRATS Training data,
respectively. Tables 5 and 6 report the performance evaluation
of the 50 patients. In all tested cases, the delineation of
tumor contours based on temperature distribution showed a
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Table 2: The calculated segmentation evaluation metrics for level set method and proposed approach.

Patient No. Method TP FP TN FN Sensitivity Specificity Accuracy Dice index Jaccard

Patient 1
T1c 593 191 14609 0 1 0.987 0.9875 0.8612 0.7563
Flair 592 285 14515 1 0.9983 0.9807 0.9814 0.8054 0.6742

Thermal map 556 5 14795 37 0.9376 0.9996 0.9972 0.9636 0.9297

Patient 2
T1c 1160 287 18241 0 1 0.9845 0.9854 0.8899 0.8016
Flair 1138 369 18159 22 0.981 0.98 0.9801 0.8533 0.7442

Thermal map 1112 37 18491 48 0.9586 0.998 0.9956 0.9631 0.9289

Patient 3
T1c 1593 105 18116 28 0.9827 0.9942 0.9932 0.9599 0.9229
Flair 1598 431 17790 23 0.9858 0.9763 0.9771 0.8756 0.7787

Thermal map 1547 7 18214 74 0.9543 0.9996 0.9959 0.9744 0.9502

Patient 4
T1c 2224 109 17545 204 0.9159 0.9938 0.9844 0.9342 0.8766
Flair 2428 418 17236 0 1 0.9763 0.9791 0.9207 0.8531

Thermal map 2375 25 17629 53 0.9781 0.9985 0.9961 0.9838 0.9682

Table 3: The calculated segmentation evaluation metrics for the proposed approach by considering different values of blood perfusion rate.

Patient No. 𝜔𝑏 TP FP TN FN Sensitivity Specificity Accuracy Dice index Jaccard

Patient 1
0.001 549 3 14797 44 0.9258 0.9997 0.9969 0.9589 0.9211
0.0016 556 5 14795 37 0.9376 0.9996 0.9972 0.9636 0.9297
0.002 559 5 14795 34 0.9426 0.9996 0.9974 0.9662 0.9347

Patient 2
0.001 1099 29 18499 61 0.9474 0.9984 0.9954 0.9606 0.9243
0.0016 1112 37 18491 48 0.9586 0.998 0.9956 0.9631 0.9289
0.002 1118 47 18481 42 0.9637 0.9974 0.9954 0.9617 0.9262

Patient 3
0.001 1538 1 18220 83 0.9487 0.9999 0.9957 0.9734 0.9482
0.0016 1547 7 18214 74 0.9543 0.9996 0.9959 0.9744 0.9502
0.002 1558 14 18207 63 0.9611 0.9992 0.9961 0.9758 0.9529

Patient 4
0.001 2330 17 17637 98 0.9596 0.999 0.9942 0.9759 0.9529
0.0016 2375 25 17629 53 0.9781 0.9985 0.9961 0.9838 0.9682
0.002 2387 31 17623 41 0.9831 0.9982 0.9964 0.9851 0.9707

Table 4: The calculated segmentation evaluation metrics for transient thermal analysis in brain tumor contours detection.

T𝑐𝑜𝑙𝑑 (
∘C) Time (s) Sensitivity Specificity Accuracy Dice index Jaccard

0.25

5 0.9773 0.9986 0.996 0.9836 0.9677
100 0.9761 0.999 0.9963 0.9846 0.9697
600 0.9794 0.9985 0.9962 0.9842 0.969
1000 0.9781 0.9985 0.9961 0.9838 0.9682
20000 0.9781 0.9985 0.9961 0.9838 0.9682
25000 0.9781 0.9985 0.9961 0.9838 0.9682

0.5

5 0.9744 0.9986 0.9957 0.9823 0.9653
100 0.9703 0.9993 0.9958 0.9826 0.9659
600 0.981 0.9986 0.9965 0.9855 0.9714
1000 0.9794 0.9985 0.9962 0.9842 0.969
20000 0.9781 0.9985 0.9961 0.9838 0.9682
25000 0.9781 0.9985 0.9961 0.9838 0.9682

1.0

5 0.9707 0.997 0.9938 0.9745 0.9504
100 0.953 0.9994 0.9938 0.9741 0.9495
600 0.9831 0.9987 0.9968 0.9869 0.9742
1000 0.918 0.9986 0.9889 0.9525 0.9094
20000 0.9785 0.9985 0.9961 0.984 0.9686
25000 0.9781 0.9985 0.9961 0.9838 0.9682
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Figure 8: Temperature distribution with noise of brains with realistic tumors of different volumes by considering three values of blood
perfusion rate. (a) Tumor with 11.6 cm3 of volume. (b) Tumor with 27.4 cm3 of volume. (c) Tumor with 51.1 cm3 of volume. (d) Tumor with
81.7 cm3 of volume.

significant improvement compared to the level set method,
except Sensitivity and the reason is explained in the previous
case. Table 7 presents the percent of the tumor and healthy
areas differentiated by segmentation in thermal images only
in all test cases; from the two tables, it can be observed that
segmentation is reinforced using thermal images, which lead
to more effective segmentation of brain tumors.

In Figure 9 and Table 5, patient 4 and patient 5 show
fewer values of the used segmentation evaluation metrics
(Dice, Jaccard. . ., etc.) using the proposed approach; this

assumption is also observed in Figure 10 and Table 6 for
patients 2 and patient 6. This can be explained as the
temperature is calculated using the standard Pennes equation,
which is isotropic model and biological tissues are highly
anisotropic. Accordingly, the edge detected byCannymethod
is smooth and finds difficulties in estimating complex geome-
tries. In future works, we plan to modify the standard Pennes
equation to consider anisotropy using MRI Diffusion Tensor
Imaging (DTI) to guide the anisotropy, in order to obtain
more accurate and realistic temperature distribution in the
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Table 5: The calculated segmentation evaluation metrics for level set method and proposed approach in BRATS Training data 2012.

Patient No. Method TP FP TN FN Sensitivity Specificity Accuracy Dice index Jaccard

Patient 1 Flair 1102 178 17090 66 0.9434 0.9896 0.9867 0.9 0.818
Thermal map 1142 18 17250 26 0.9777 0.9989 0.9976 0.9811 0.9629

Patient 2 Flair 1067 165 15176 2 0.9981 0.9892 0.9898 0.9274 0.8646
Thermal map 1038 18 15323 31 0.971 0.9988 0.997 0.9769 0.9549

Patient 3 Flair 2891 498 14358 4 0.9986 0.9664 0.9717 0.9201 0.852
Thermal map 2767 41 14815 128 0.9557 0.9972 0.9904 0.9703 0.9424

Patient 4 Flair 1678 342 9386 4 0.9976 0.9648 0.9696 0.9065 0.829
Thermal map 1561 44 9684 121 0.928 0.9954 0.9855 0.9498 0.9044

Patient 5 Flair 1810 191 17340 69 0.9632 0.9891 0.9866 0.9329 0.8743
Thermal map 1803 123 17408 76 0.9595 0.9929 0.9897 0.9477 0.9005

Patient 6 Flair 1982 628 16415 1 0.9994 0.9631 0.9669 0.863 0.759
Thermal map 1916 32 17011 67 0.9662 0.9981 0.9947 0.9748 0.9508

Table 6: The calculated segmentation evaluation metrics for level set method and proposed approach in BRATS Training data 2013.

Patient No. Method TP FP TN FN Sensitivity Specificity Accuracy Dice index Jaccard

Patient 1 Flair 2831 371 16731 106 0.9639 0.9783 0.9761 0.9223 0.8558
Thermal map 2803 71 17031 134 0.9543 0.9958 0.9897 0.9647 0.9318

Patient 2 Flair 1378 331 13666 26 0.9814 0.9763 0.9768 0.8853 0.7942
Thermal map 1307 34 13963 97 0.9309 0.9975 0.9914 0.9522 0.9089

Patient 3 Flair 1274 413 17336 10 0.9922 0.9767 0.9777 0.8576 0.7507
Thermal map 1236 8 17741 48 0.9626 0.9995 0.997 0.9778 0.9566

Patient 4 Flair 1762 560 18243 1 0.9994 0.9702 0.9727 0.8626 0.7585
Thermal map 1660 33 18770 103 0.9415 0.9982 0.9933 0.9606 0.9242

Patient 5 Flair 2015 807 13191 0 1 0.9423 0.9496 0.8331 0.714
Thermal map 1901 12 13986 114 0.9434 0.9991 0.9921 0.9679 0.9378

Patient 6 Flair 1383 644 13522 0 1 0.9545 0.9585 0.8111 0.6822
Thermal map 1271 20 14146 112 0.91901 0.9985 0.9915 0.9506 0.9059

Table 7: The percent of tumor and healthy areas differentiated by segmentation in thermal images only.

Data set Patient No. Reduced false positive rate (%) Reduced false negative rate (%)

Galimzianova et al. [50]

Patient 1 0.16 1.89
Patient 2 1.03 1.82
Patient 3 0.12 2.32
Patient 4 0 2.22

BRATS 2012

Patient 1 5.13 0.93
Patient 2 0.18 0.95
Patient 3 0 3.08
Patient 4 0 3.13
Patient 5 1.27 0.82
Patient 6 0 3.49

BRATS 2013

Patient 1 2.24 1.84
Patient 2 1.78 2.15
Patient 3 0.77 2.28
Patient 4 0 2.8
Patient 5 0 5.67
Patient 6 0 4.4
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(a) (b) (c) (d)

Figure 9: Results of segmentation by level set method in Flair MRI images and the proposed approach applied in six patients taken from
BRATS 2012. (a) Flair images (b) segmentation by level set in Flair images. (c) Temperature distribution with noise (d) the segmentation using
the proposed approach showed in T1-weighted images (green: segmentation, red: ground truth).

tumorous region. Next, we will develop a method to apply
the proposed approach in clinical realistic MRI images and
use the obtained results to reinforce other recent methods in
the literature to prove more the effectiveness of the proposed
approach.

In order to show further the robustness of the proposed
approach, we have applied Canny edge detector in obtained
thermal images with additional noise of all 25 patients with
high-grade tumors taken from BRATS 2012 database and
25 patients with low-grade tumors taken from BRATS 2013
database. Figures 11, 12, 13, 14, and 15 show the obtained

results of Sensitivity, Specificity, Accuracy, Dice index, and
Jaccard, respectively, for all patients. In all the tested cases,
the estimation of tumor contours was accurate.

In this work, we considered temperature distribution for
brain tumor borders delineation. Brain tumors modify the
normal temperature due to the variation in heat generation
by cells metabolism and blood flow in tumors. Temperature
reveals abrupt changes in tumor borders. Thus, we used
the Canny edge detection method to locate the edges. The
experiments showed that the proposed approach detects
tumor borders with good accuracy and reduces false positive
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(a) (b) (c) (d)

Figure 10: Results of segmentation by level set method in, MRI images and the proposed approach applied in six patients taken from BRATS
2013. (a) Flair images (c) segmentation by level set in Flair images. (c) Temperature distribution with noise (d) the segmentation using the
proposed approach showed in T1-weighted images (green: segmentation, red: ground truth).

and false negative of segmentation by level setmethod inMRI
images used in clinical routine. To the best of our knowledge,
we are the first to incorporated thermal analysis of brain
tumor in MRI images segmentation.

4. Conclusions

Effective and accurate brain tumor segmentation from MRI
images is still a challenging task due to the structural
complexity of brain tumors. In this paper, we proposed a

new approach to enhance brain tumor segmentation based on
the thermal analysis of brain tumors. We have presented and
investigated the effect of tumor on brain temperature distri-
bution as well as its size on temperature distribution. Next, we
have used tumor thermal profile for segmentation to detect
tumors contours. We calculated the temperature distribution
in the brain using Pennes bioheat equation implemented
by finite difference method (FDM). The obtained results
were compared with level set method tested in different
synthetic MRI sequences of different patients. We showed
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Figure 11: Sensitivity in thermal images for 50 patients; (a) 25 with high-grade taken from BRATS 2012; (b) 25 with low-grade taken from
BRATS 2013.
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Figure 12: Specificity in thermal images for 50 patients; (a) 25 with high-grade taken from BRATS 2012; (b) 25 with low-grade taken from
BRATS 2013.
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Figure 13: Accuracy in thermal images for 50 patients; (a) 25 with high-grade taken from BRATS 2012; (a) 25 with low-grade taken from
BRATS 2013.
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Figure 14: Dice index in thermal images for 50 patients; (a) 25 with high-grade taken from BRATS 2012; (b) 25 with low-grade taken from
BRATS 2013.
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Figure 15: Jaccard in thermal images for 50 patients; (a) 25with high-grade taken fromBRATS 2012; (b) 25with low-grade taken fromBRATS
2013.

a significant improvement in segmentation accuracy. There-
fore, the proposed approach can be used as a new indicator to
enhance tumors segmentation. The present work can be very
useful towards the creation of a new MRI thermal imaging
sequence in future studies, which measure the absolute tem-
perature distribution, as all MR-based temperature-mapping
approaches require a baseline data set.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors of this publication confirm that there are no
conflicts of interest associated with this publication and there

has been no significant financial support for this work that
could have influenced its outcome.

Acknowledgments

Thanks are due to theNational Center for Scientific and Tech-
nical Research (CNRST-Morocco) (Grant no. 13UH22016).

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,”
CA: A Cancer Journal for Clinicians, vol. 66, no. 1, pp. 7–30, 2016.

[2] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2017,”
CA: A Cancer Journal for Clinicians, vol. 67, no. 1, pp. 7–30, 2017.

[3] J. Liu,M. Li, J.Wang, F.Wu, T. Liu, andY. Pan, “A survey ofMRI-
based brain tumor segmentation methods,” Tsinghua Science
and Technology, vol. 19, no. 6, pp. 578–595, 2014.



International Journal of Biomedical Imaging 17

[4] S. Bauer, R. Wiest, L. P. Nolte, and M. Reyes, “A survey of MRI
based medical image analysis for brain tumor studies,” Physics
in Medicine & Biology, vol. 58, no. 13, pp. 97–129, 2013.

[5] G. Helms, K. Kallenberg, and P. Dechent, “Contrast-driven
approach to intracranial segmentation using a combination of
T2- and T1-weighted 3D MRI data sets,” Journal of Magnetic
Resonance Imaging, vol. 24, no. 4, pp. 790–795, 2006.

[6] P. Gibbs, D. Buckley, S. Blackb, and A. Horsman, “Tumour
determination from MR images by morphological segmenta-
tion,” Physics in Medicine & Biology, vol. 41, no. 11, pp. 2437–
2446, 1996.

[7] A. Stadlbauer, E. Moser, S. Gruber et al., “Improved delineation
of brain tumors: An automatedmethod for segmentation based
on pathologic changes of 1H-MRSI metabolites in gliomas,”
NeuroImage, vol. 23, no. 2, pp. 454–461, 2004.

[8] M. R. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. A. Jolesz,
andR. Kikinis, “Automated segmentation ofMR images of brain
tumors,” Radiology, vol. 218, no. 2, pp. 586–591, 2001.

[9] W. Deng, W. Xiao, H. Deng, and J. Liu, “MRI brain tumor
segmentation with region growing method based on the gradi-
ents and variances along and inside of the boundary curve,” in
Proceedings of the 3rd International Conference on BioMedical
Engineering and Informatics, BMEI 2010, pp. 393–396, China,
October 2010.

[10] S. Taheri, S. H. Ong, and V. F. H. Chong, “Level-set segmenta-
tion of brain tumors using a threshold-based speed function,”
Image and Vision Computing, vol. 28, no. 1, pp. 26–37, 2010.

[11] J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal, and C. K.
Ahuja, “A novel content-based active contour model for brain
tumor segmentation,”Magnetic Resonance Imaging, vol. 30, no.
5, pp. 694–715, 2012.

[12] T. Wang, I. Cheng, and A. Basu, “Fluid vector flow and
applications in brain tumor segmentation,” IEEE Transactions
on Biomedical Engineering, vol. 56, no. 3, pp. 781–789, 2009.

[13] A. M. Hasan, F. Meziane, R. Aspin, and H. A. Jalab, “Segmen-
tation of brain tumors in MRI images using three-dimensional
active contour without edge,” Symmetry, vol. 8, no. 11, Art. 132,
21 pages, 2016.

[14] L. M. Fletcher-Heath, L. O. Hall, D. B. Goldgof, and F. R.
Murtagh, “Automatic segmentation of non-enhancing brain
tumors in magnetic resonance images,” Artificial Intelligence in
Medicine, vol. 21, no. 1-3, pp. 43–63, 2001.

[15] A. Veloz, S. Chabert, R. Salas, A. Orellana, and J. Vielma, “Fuzzy
spatial growing for glioblastomamultiforme segmentation on
brain magnetic resonance imaging,” LNCS, vol. 4756, pp. 861–
870, 2008.

[16] M. Havaei, A. Davy, D. Warde-Farley et al., “Brain tumor
segmentation with Deep Neural Networks,” Medical Image
Analysis, vol. 35, pp. 18–31, 2017.

[17] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain Tumor
Segmentation Using Convolutional Neural Networks in MRI
Images,” IEEE Transactions on Medical Imaging, vol. 35, no. 5,
pp. 1240–1251, 2016.
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