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Abstract

Until now, dynamic functional connectivity (dFC) based on functional magnetic reso-

nance imaging is typically estimated on a set of predefined regions of interest (ROIs)

derived from an anatomical or static functional atlas which follows an implicit

assumption of functional homogeneity within ROIs underlying temporal fluctuation

of functional coupling, potentially leading to biases or underestimation of brain net-

work dynamics. Here, we presented a novel computational method based on

dynamic functional connectivity degree (dFCD) to derive meaningful brain

parcellations that can capture functional homogeneous regions in temporal variance

of functional connectivity. Several spatially distributed but functionally meaningful

areas that are well consistent with known intrinsic connectivity networks were iden-

tified through independent component analysis (ICA) of time-varying dFCD maps.

Furthermore, a systematical comparison with commonly used brain atlases, including

the Anatomical Automatic Labeling template, static ICA-driven parcellation and ran-

dom parcellation, demonstrated that the ROI-definition strategy based on the pro-

posed dFC-driven parcellation could better capture the interindividual variability in

dFC and predict observed individual cognitive performance (e.g., fluid intelligence,

cognitive flexibility, and sustained attention) based on chronnectome. Together, our

findings shed new light on the functional organization of resting brains at the time-

scale of seconds and emphasized the significance of a dFC-driven and voxel-wise

functional homogeneous parcellation for network dynamics analyses in neuroscience.
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1 | INTRODUCTION

In recent years, exploration to functional organization principles in

the human brain has been extended from static functional networksLiangwei Fan and Qi Zhong authors contributed equally to this article.
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into its dynamic aspect which assumes evident time-varying fluctua-

tion of network connectivity across task states (Elton & Gao, 2015;

Fatima, Kovacevic, Misic, & Mcintosh, 2016) and during periods of

resting state (Elena A Allen et al., 2014; C. Chang & Glover, 2010;

Hutchison et al., 2013). Dynamic functional connectivity (dFC)

(Sako�glu et al., 2010) has been successfully applied to identifying

variance in cognitive and vigilance states (Elena A Allen et al., 2014;

Wilson et al., 2015) and characterizing disease like schizophrenia

(Damaraju et al., 2014). Moreover, dFC is associated with individual

characteristics such as an individual's behavior (Kucyi &

Davis, 2014) and age (Davison et al., 2016; Qin et al., 2015), and

even the existence of individual variability in dFC could be used to

identify individuals and predict higher-order cognition (J. Liu, Liao,

Xia, & He, 2018).

Due to extremely high dimensionality of neuroimaging data such as

functional magnetic resonance imaging (fMRI), the human brain (includ-

ing cortical areas and subcortical nuclei) is usually parcellated into a set

of anatomically and functionally distinct, spatially contiguous regions, for

a better understanding of the functional architecture in the brain. Accu-

rate parcellations facilitate exact representations at multiple scales of

whole-brain activity and efficient comparison between results from dif-

ferent studies. In particular, some functional connectivity (FC) based

parcellation strategies subdivide a specific region of interest (ROI) into

smaller, functionally specialized parcels by maximizing regions' functional

homogeneity that is commonly measured with its functional coupling

with other areas, or intra-area functional topographic organization

(Arslan et al., 2018). These functional subdivisions strategies of the brain

have also been extended to investigation on dFC as a ROI-predefinition

in most time-resolved fMRI studies (Elena A Allen et al., 2014; Damaraju

et al., 2014; Dong et al., 2019; Leonardi, Shirer, Greicius, & Van De

Ville, 2014; Li et al., 2014; Shen et al., 2016).

Notably, the current definition of functional homogeneity is that

each ROI is performing some particular function and therefore voxels

within the ROI were supposed to have (roughly) similar dynamics,

yielding strongly correlated voxel time series (Korhonen, Saarimäki,

Glerean, Sams, & Saramäki, 2017). The definition comes with an

implicit assumption that functional topological organization within a

predefined ROI and its coupling patterns with other regions is invari-

able during the entire scan. In the context of dFC, however, the signif-

icant variances in functional coupling patterns between intrinsic

connectivity networks over time have been observed (Iraji

et al., 2019; Kiviniemi et al., 2011) and suggested to be associated

with different diseases (Ma, Calhoun, Phlypo, & Adalı, 2014). Even

inside ROIs, there are rich voxel-level correlation structures that vary

in time (Ryyppö, Glerean, Brattico, Saramäki, & Korhonen, 2018).

These observations suggest that the ROIs derived from static FC or

anatomical architectures are not necessarily functional homogeneous

across the whole scan. These unmodeled dynamics in the ROIs may

have rich and meaningful information about individual cognitions,

potentially leading to biased estimation or underestimation of dFC.

Here we extend the definition of functional homogeneity of an

ROI based on its connectivity with other areas to its dynamic

aspect. That is, two voxels are functional homogeneous when they

have consistent functional coupling patterns with other areas at all

time points. Inspired by this idea, we proposed a voxel-wise data-

driven method for brain parcellation based on distant dynamic

functional connectivity degree (dFCD) matrices, by estimating func-

tionally homogenous regions in the temporal evolvement of whole-

brain functional coupling. Our approach is built on the fact that two

functional homogeneous voxels would have the highly correlated

time series of FC degree if they have similar FC patterns with other

areas at every time point. Thus, an independent component analysis

(ICA) on dFCD matrices can make the group-level inferences of

these functional homogeneous areas, identify resting coherencies

within ROIs that are consistent over time, and ultimately offer a

novel ROI-definition strategy for efficient representation of brain's

dynamics.

Importantly, identifying functionally synchronous regions in the

context of dFC is useful for understanding time-varying functional

organization in the brain. FC analyses with various modalities

including positron emission tomography (PET), magnetoencephalog-

raphy (MEG), and electroencephalography (EEG), have revealed sets

of spatially distributed, temporally correlated brain regions (referred

to as intrinsic connectivity networks, ICNs; or resting-state net-

works, RSNs; Beckmann, DeLuca, Devlin, & Smith, 2005; Dam-

oiseaux et al., 2006; Yeo et al., 2011). These ICNs have been linked

to underlying neural activity and are likely constricted, but not

entirely determined by structural connectivity (Damoiseaux &

Greicius, 2009). On a shorter time scale, however, distinct func-

tional subnetworks form and dissolve as the brain explores different

functional architectures (Deco, Jirsa, & McIntosh, 2011). Although

the rich spatiotemporal dynamics of ICNs have been shown in both

simulations and empirical work (Elena A Allen et al., 2014; Deco,

Jirsa, & McIntosh, 2013), how these subnetworks are organized

remains unknown. In particular, we ask whether there are spatially

separated but functionally similar areas, in which voxels remain

highly similar voxel-cortical connectivity patterns when the whole

brain's FC profile evolves over time.

To illustrate our approach, we computed two brain parcellations

with a coarse-scale (n = 20) and a fine-scale (n = 116). In a coarse

parcellation, we sought to investigate how the resting brain orga-

nizes at a network level by identifying the whole-brain connectivity

patterns that remain stable underlying the dFC evolvement. In a

fine-scale parcellation, we would derive a set of meaningful brain

ROIs for modeling dFC. We further designed an individual identifi-

cation task and three prediction tasks of individual cognitive perfor-

mance to assess the capacity of the proposed parcellation strategy

in capturing dFC. Results indicated that compared with several com-

monly used brain atlases including the Anatomical Automatic Label-

ing (AAL) template, static ICA-driven parcellation and random

parcellation, the proposed dFC-driven ROI-definition strategy not

only resulted in higher within-ROI functional homogeneity, but

could also better identify the interindividual variability and predict

observed cognitive performance.
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2 | MATERIALS AND METHODS

2.1 | Methodological overview

The methodological pipeline of our approach is illustrated in

Figure 1a. The flowchart includes three basic steps: First, a sliding-

window approach was used to derive dFC matrix and the voxel-wise

FC degree was calculated within each time window. The dFCD time

series at each voxel was believed to reflect the dynamic changes of its

functional coupling with other areas of the brain. Second, an ICA was

performed on these dFCD matrices to identify functional homoge-

neous areas whose voxels have consistent voxel-cortical coupling pat-

terns at all time points. Finally, the obtained independent components

of ICA decomposition were used to generate a dFC-driven ROI-

definition strategy that was expected to better extract FC dynamics

than currently widely used atlases.

2.2 | Participants and data acquisition

The dataset for this study consisted of scans from the 100 subjects

(age range, 22–35 years, see later for the selection criteria), provided

in the S500 data release of the Human Connectome Project (HCP;

www.humanconnectomeproject.org), a publicly available MRI neuro-

imaging dataset (Van Essen et al., 2013). The HCP provides two

sessions on two different days (here referred to as S1 and S2) of

F IGURE 1 Group ICA performed on dynamic functional connectivity degree (dFCD) matrices revealed a set of independent spatial
components that represent functionally homogeneous areas underlying dynamic functional connectivity. (a) The pipeline of identifying
independent components in dFCD matrices. (b) The process of brain parcellation based on the independent components and generating brain
states by clustering subject-specific weight vectors. (c) Demonstration of spontaneous fluctuation in the 20 independent components over time.
All of the time courses were rescaled to z-score. (d) The frequency-domain analysis of the time courses shows obvious low-frequency (from 0.01
to 0.025 Hz) oscillations of these components, corresponding to a period ranging 40–100 s
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resting-state fMRI data for each subject, and each session includes

two phase-encoding directions (left-to-right or right-to-left) during

data collection. Here, we chose the left-to-right runs for all subjects.

In addition, the HCP provides many behavior measures, such as fluid

intelligence, sustained attention, and cognitive flexibility, which allow

us to investigate the relationship between individual traits and their

neuroimaging data.

The resting-state fMRI (rs-fMRI) data of HCP were acquired on a

3T Siemens scanner with participants' eyes open, relaxed, and fixed on a

bright cross-hair projected on a dark background. The data acquisition

parameters were as follows: repetition time (TR) = 720 ms, time echo

(TE) = 33.1 ms, flip angle (FA) =52�, resolution = 2.0 mm, field of view

(FOV) = 208 × 180 mm (RO × PE), matrix size =104 × 90 (RO × PE),

slices = 72 and volumes = 1,200. A detailed description of the HCP data

is available in the previous literature (Van Essen et al., 2013).

2.3 | Data preprocessing

First, the minimal preprocessing pipeline was performed according to

(Glasser et al., 2013), including spatial artifact and distortion removal,

motion correction, within-subject cross-modal registration, and cross-

subject registration to a standard space. Next, we resampled the fMRI

images to 3 × 3 × 3 mm isotropic voxels. Then, the images were spa-

tially smoothed using a Gaussian filter kernel with 6 mm full width at

half maximum and temporally bandpass filtered from 0.01 to 0.08 Hz.

Finally, we regressed the white matter (WM) signal, cerebrospinal fluid

(CSF) signal, global signal (GS), and their first-order deviations to fur-

ther denoise data.

In addition, the displacement of head motion at time point i was

calculated according to the formula (Wang, Shen, Tang, Zang, &

Hu, 2012; Zhong et al., 2019):

FD ið Þ= Δdixj j+ Δdiy
�� ��+ Δdizj j+ Δαij j+ Δβij j+ Δγij j ð1Þ

where dix, diy, diz refer to translational displacements of x, y and z axis

at time point i, αi, βi, γi refer to rotational displacements of x, y, and

z axis at time point i. Δdix = d(i − 1)x − dix, and the other parameters are

defined similarly. To reduce the potential influence of head motion,

100 subjects with the lowest average movement were selected

among 477 subjects in the S500 data release. The specific list of sub-

jects has been added in Supporting Information.

2.4 | dFC degree

We used time-varying dFCD maps to reflect the temporal changes of

voxel-wise FC degrees throughout the brain. First, a sliding time win-

dow approach (Calhoun, Miller, Pearlson, & Adalı, 2014; Qin

et al., 2015) with a window size of 39.6 s (55 TRs) was used to divide

the voxel-wise resting-state fMRI signal into temporal segmentations,

and the voxel-wise FC was then calculated using Pearson correlation

coefficients. As a result, a series of v × v correlation matrices were

obtained, where v is the number of gray matter (GM) voxels of the

whole brain. Second, a graph-based computational approach (Sepulcre

et al., 2010) was used to create a voxel-wise connectivity degree that

quantifies the number of links or edges connected to a node in a net-

work (Rubinov & Sporns, 2010). In this study, the nodes are GM

voxels and the links or edges were positive correlations across voxels

above a certain threshold (rho = .25). Note that negative correlations

were discarded from the networks prior to analysis because of higher

stability of positive correlations relative to negative correlations

(Shehzad et al., 2009; Tian et al., 2007) and controversial neurophysi-

ological basis of negative correlations (Y. Liu, Shen, Zhou, & Hu, 2011;

Rubinov & Sporns, 2010). In order to reduce signal noise and simplify

the model, link weights were commonly eliminated (Buckner

et al., 2009; McCarthy, Benuskova, & Franz, 2014; Sepulcre

et al., 2010). For each window, both local and distant degree maps

were generated by counting the number of significantly positive FC

inside the immediate neighborhood of an individual voxel and outside

of this neighborhood, respectively. Here, we chose 14 mm radius

(approximately 3 voxels around target voxels) as distance restriction

according to the previous report (Jonathan D Power, Schlaggar,

Lessov-Schlaggar, & Petersen, 2013).

Short-distance connections may come from shared patterns of

local neuronal activity, but they can also appear due to data

processing (e.g., blurring, reslicing) and from head motion (Jonathan

D. Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). To minimize

the effects of questionable correlations on network structure

(Jonathan D Power et al., 2013), we used distant degree maps as a

series of dFCD maps for further analysis. Consequently, we obtained

a matrix Xi � ℝt × v representing dFCD matrix from subject i, v is the

number of voxels, and t is the number of time windows.

2.5 | Brain parcellation based on dFCD maps

Here, we performed a coarse and fine-scale parcellation (Figure 1b) by

using group-based ICA on dFCD matrices of all participants

X = [X1, � � �Xi, � � �, Xm]
T. X � ℝ(m × t) × v, and m is the number of subjects.

In the coarse parcellation, 20 components (n = 20) were obtained to

extract network-level functionally homogeneous regions in dynamics

of FC. Whereas in the fine parcellation, the number of components

n was configured to 116, which facilitated a quantitative comparison

of FC dynamics with the commonly used template of AAL (ROI

number = 116).

As shown in Figure 1a, a group-based ICA approach (Calhoun,

Liu, & Adalı, 2009) was first conducted using the GIFT software

(http://icatb.sourceforge.net/) to decompose the dFCD matrices into

multiple independent components and the corresponding time

courses. The resulting ICA decomposition of the dFCD matrix from

subject i could be denoted as the following equation:

Xi =AiCi ð2Þ

where Ai � ℝt × n is a single subject mixing matrix containing the time

courses of n component, and Ci � ℝn × v contains the n components.

i = 1, 2, � � �, m, m is the number of subjects.
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These functional relevant components respond to dynamic func-

tional subnetworks that represent functionally homogeneous regions

in task-free brains. The number of components n is determined empir-

ically to be 20, as this number of components has been demonstrated

to be suitable for extraction of large-scale brain networks

(Damoiseaux et al., 2006; Wang, Liu, Shen, Li, & Hu, 2015). Therefore,

we obtained subject-specific component map Ci = c 1ð Þ
i ,c 2ð Þ

i , � � �c nð Þ
i

h iT
for each participant using ICA decomposition of the dFCD matrix, and

c jð Þ
i refers to jth component of subject i. Then, to detect significant

regions associated with each of the n independent components statis-

tically, we applied one-sample t-tests (p <.01, false discovery rate

[FDR] correction) for each of the n components across all subjects

c jð Þ
1 ,c jð Þ

2 , � � �,c jð Þ
m , j=1,2, � � �n

� �
to generate the group-level t score maps,

each of which represents statistical significance level of one compo-

nent in the whole brain. The t score map of jth component was calcu-

lated as follows:

tj =
�c jð Þ−μ0
σ=

ffiffiffiffi
m

p ð3Þ

where �c jð Þ = 1
m c jð Þ

1 + c jð Þ
2 + � � �+ c jð Þ

m

� �
, μ0 is a zero vector,

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
i=1

c jð Þ
i − �c jð Þ

� �2
s

, and m is the number of participants (100). As

a result, the spatial distribution of each component with the peak

voxels is shown in Table S1.

As aforementioned, we obtained subject-specific mixing matrix

Ai = a 1ð Þ
i ,a 2ð Þ

i , � � �,a tð Þ
i

h iT
, containing the time courses for each of

n components, t is the number of time windows and n-dimensional

vector a t0ð Þ
i denotes subject-specific weight vector of n components at

time window t0 for subject i. Intriguingly, we observed significant

quasi-stable weight vectors in the time-varying weight vectors of the

obtained 20 independent components, that is, certain weight vectors

of independent components derived from dFCD matrices reoccur

over time and are present across subjects. Therefore, we applied the

Ward's method (Ward Jr, 1963) of agglomerative hierarchical cluster-

ing to a 1ð Þ
i ,a 2ð Þ

i , � � �,a Tð Þ
i , i=1,2, � � �m

n o
. The L1 distance function

(Manhattan distance) was selected as the vectors' similarity measure

across windows in clustering:

dist a t1ð Þ
i ,a t2ð Þ

j

� �
=
Xn
c=1

a t1ð Þ
i,c −a t2ð Þ

j,c

��� ��� ð4Þ

where a t1ð Þ
i,c refers to the time-varying weight vector of cth indepen-

dent component at time window t1 from subject i, and a t2ð Þ
j,c is defined

similarly.

A cluster validity index, defined as the ratio of the within-cluster

distance to the between–cluster distance, was used to determine the

number of cluster k. To obtain robust cluster centroids, cluster replica-

tion of 100 times on bootstrap resamples were performed by ran-

domly choosing 78 subjects among all of the 100 subjects per time.

Note that the choice of 78/100 was arbitrary since a bootstrapping of

greater than 0.5 can achieve a fairly good estimation (Efron, Rogosa, &

Tibshirani, 2015). Consequently, all time windows were divided into

k groups, each of which corresponds to one quasi-stable weight vec-

tor of 20 independent components. Then, the quasi-stable brain

states Si(i = 1, � � �, k) were obtained by averaging the dFCD maps at

those time windows falling within the same group. Siis a v-dimensional

vector whose element represents the distant connectivity degree at

each voxel, and v is the number of the voxels in the whole-brain

GM. These quasi-stable brain states are a conceptual analogy to FC

states described by Elena A. Allen et al. (2012). In particular, we used

the statistic of Pearson correlation coefficient Corr(Si,Sj) to assess the

degree of linear correlation between two brain states Si and Sj. The

value varies from −1 (perfect anti-correlation) to +1 (perfect position

correlation).

When FC patterns within each time window were assigned to dif-

ferent brain states, we observed that FC patterns tend to stay in a sin-

gle state for long periods, along with transitioning between brain

states for a short period. This state transition defined as a brain

behavior of shifting from a brain state into another state could be

modeled as a Markov chain (Elena A. Allen et al., 2012). Transition

probability representing the probability of going from a given state to

the next state in this Markov process, was calculated to characterize

the transition dynamics of brain states.

Also, we obtained a finer parcellation of 116 components in the

same manner. The significant regions of each component were used

to segment the whole-brain into different ROIs. However, some

voxels are significant in multiple components. Since a single voxel can

only belong to one ROI, we compared the normalized t value located

in each component separately and assigned this voxel to the compo-

nent with the largest t value. In particular, those few voxels which

were not significant in any components were assigned to

corresponding components according to the adjacent voxels in Euclid-

ean space with K-nearest neighbor algorithm (Sekiguchi, Sano, &

Yokoyama, 1994). This segmentation eventually led to a whole-brain

parcellation with 116 fine-scale ROIs. For comparison, the static ICA-

driven parcellation was generated in the same way but the whole-

brain BOLD signals were used as features instead of time-varying

dFCD maps.

2.6 | Temporal stability within ROIs

A brain parcellation usually assumes that all voxels within an ROI are

functionally homogeneous so that whole-brain brain activities can be

represented by the ROI-average time series. However, it has been

demonstrated that internal functional coupling structures of ROIs vary

in time (Ryyppö et al., 2018), which were typically ignored in previous

dFC studies. Next, we would evaluate functional homogeneity of the

ROIs in several brain parcellations whose ROIs are commonly used as

nodes of dFC, including the proposed dFC-driven parcellation, AAL

atlas, static ICA-driven parcellation and random parcellation. The AAL

atlas was obtained from the WFU_PickAtlas software package (http://

fmri.wfubmc.edu/software/PickAtlas). The random parcellation was

obtained by randomly parcellating GM into 116 contiguous ROI using

a parcellation algorithm which was developed to minimize the varia-

tion in nodal volume (Zalesky et al., 2010).
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We used spatial consistency which was introduced in (Ryyppö

et al., 2018) to quantify the functional homogeneity of ROIs at a single

time window. The spatial consistency ϕspatial(I, t0) of the ROI I

describes the average strength of FC between voxels within the ROI I

at time window t0:

ϕspatial I,t0ð Þ= 1
NI NI−1ð Þ

X
a,b�I

r a,bð Þt0 ð5Þ

where r a,bð Þt0 is the strength of FC between voxel a and voxel b (a≠ b)

which belong to ROI I in the time window t0. NI is the number of

voxels within the ROI. The distributions of spatial consistency for the

four brain parcellations were calculated.

A good brain parcellation for dFC was expected to have minimal

temporal variation of functional homogeneity within ROIs while the

inter-ROI connectivity dynamics could be extracted as much as possible.

The average temporal variation of within-ROI FC hence could be applied

to evaluate the capability of a ROI-definition strategy in depicting brain

dynamics. We measured this temporal stability of within-ROI functional

coupling using the inverse of the averaged relative change of spatial

consistency across windows (Ryyppö et al., 2018):

ϕtemporal stability Ið Þ= t t−1ð Þ
2
P

t0 < t1

ϕspatial I,t0ð Þ−ϕspatial I,t1ð Þ�� �� ð6Þ

where t is the number of time windows (t = 227), and the summation

is over all possible pairs of time window t0 and t1. The value reflects

how stable the ROI's spatial consistency is over time on average. Fur-

ther, the average value of temporal stability across ROIs was com-

puted and compared between the dFC-driven parcellation and the

other three parcellations.

2.7 | Evaluation of parcellation based on individual
identification and cognitive performance prediction
tasks

It is challenging to evaluate the quality of brain parcellation since

there is no ground-truth segmentation of the whole brain. Here we

used a prediction task of individual cognitive abilities to evaluate the

capacity of brain parcellation in capturing FC dynamics. It has been

revealed that chronnectome (Calhoun et al., 2014) could be used to

identify individuals and predict individual higher cognitive perfor-

mance (J. Liu et al., 2018). Since parcellations can extremely reduce

the dimensionality of the chronnectome without eliminating the infor-

mation about temporal dynamics in the whole-brain functional cou-

pling, a good parcellation should be able to well capture the

interindividual variability and provide sufficient explanation for

observed individual cognitive performance.

For each subject, we constructed whole-brain dynamic functional

networks from the preprocessed rs-fMRI data based on the four dif-

ferent atlases with the same ROI number (116). First, ROI-based brain

signals were generated by averaging the regressed BOLD signals of

GM voxels within each ROI (Shen, Wang, Liu, & Hu, 2010). Then, dFC

was estimated by using a sliding window approach with the same

parameters (window size of 55 TRs and sliding step of 5 TRs), which

divided the voxel-wise fMRI signal into temporal segmentations. Ulti-

mately, for each parcellation, we obtained a series of 116 × 116 con-

nectivity matrices in which each element reflects the correlation

coefficient of corresponding connections within a sliding window.

Furthermore, variability of connection between regions over time

was represented by the fluctuation of the correlation coefficient time

courses. Similar to the previous literature (J. Liu et al., 2018), we used

dFC mean strength (dFC-str) and dFC standard deviation (dFC-std) to

quantitatively describe dynamic characteristic:

dFC−str i, jð Þ= 1
t

Xt

t0 = 1

r i,jð Þt0 ð7Þ

dFC−std i, jð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t

Xt

t0 = 1

r i,jð Þt0 −�r i,jð Þ
� �2vuut ð8Þ

where r i,jð Þt0 is the strength of FC between node i and node j for a

given window t0. �r i,jð Þ is the mean strength of FC through all time

windows. t is the total number of time windows (t = 227). Notably,

dFC-str indicates the overall strength of dFC, and dFC-std describes

variation of dFC across time. Finally, for each subject and each

parcellation, we obtained two 116×116 matrices for one session.

We used the individual identification task applied in recent stud-

ies (Finn et al., 2015; J. Liu et al., 2018) to evaluate the discriminative

power of dFC extracted from the four parcellations. In this study, we

performed the individual identification tasks using two dynamic mea-

surements (dFC-str and dFC-std). Here we introduced the identifica-

tion process using dFC-str as an example. In S1 ! S2, all subjects'

matrices of dFC-str from Session 2 were calculated as a database

D 2ð Þ = d 2ð Þ
1 ,d 2ð Þ

2 , � � �d 2ð Þ
i , � � �d 2ð Þ

m

h i
, where d 2ð Þ

i refers to a 116×116 matrix

of dFC-str for ith subject from Session 2. Then, we compared the simi-

larity (Pearson correlation coefficient) between d 1ð Þ
j and all matrices in

D(2), where d 1ð Þ
j refers to a 116×116 matrix of dFC-str for jth subject

from Session 1. The predicted identity of the jth subject from Session

1 was assigned the label with the maximal similarity in D(2). Finally, the

identification accuracy (S1!S2) was determined after all subjects

had been predicted. Similarly, we reperformed the process described

above for S2! S1. After the identification accuracy of each

parcellation was obtained, a nonparametric permutation test (10,000

times) was performed to examine its statistical significance (Finn

et al., 2015). In addition to these dynamic measurements, we also

repeated the individual identification analyses with static functional

connectivity (sFC) as features so as to evaluate the impact of

parcellations on sFC-based identification accuracies.

Next, we used linear epsilon-insensitive support vector regression

(SVR) (LIBSVM toolbox in Matlab) (C.-C. Chang & Lin, 2011), which is

a most widely used supervised machine-learning approach

(Dosenbach et al., 2010; Erus et al., 2014; J. Liu et al., 2018), to evalu-

ate the impact of the parcellation on chronnectome-based prediction

tasks. The epsilon-insensitive SVR contains a regularization parameter

c, which controls the trade-off between achieving a low error on the

training data and minimizing the norm of the weights. During the
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prediction tasks, the parameter c was set as 1. Three types of behav-

ior data on high-level cognition from HCP protocol were selected,

including fluid intelligence (Penn Progressive Matrices, HCP:

PMAT24_A_CR), executive function/cognitive flexibility (Dimensional

Change Card Sort, HCP: CardSort_AgeAdj), and sustained attention

(Short Penn Continuous Performance Test, HCP: SCPT_TP). Dynamic

measurements from Session 1 were then used as features to predict

the scores of high-level cognition in the SVR analysis with the leave-

one-out cross-validation (LOOCV) strategy. In the SVR iterative pro-

cess, data from one participant was set aside as the test sample, and

data from the remaining participants was used as training set. Each

LOOCV run included four steps: First, the upper triangular portion of

the symmetrical dynamic measurement matrix was properly reformed

into a feature vector for each subject. Second, a feature selection was

implemented to retain only features with the highest correlation coef-

ficient between features and high-level cognition corresponding to

p value. Third, a predictive model was built in which training data were

used to fit linear regression between the selected features and the

score of high-level cognitive abilities. Finally, the test sample was

input into each model to generate a predicted score. Note that, the

feature-selection threshold for all iterations of LOOCV was optimized

by search from p = .0001–.05. Further, after all iterations were com-

pleted, we correlated the predicted and observed cognition scores

across all subjects to elucidate the predictive power of the model.

Finally, the statistical significance of the prediction accuracy for

each type of cognitive performance was assessed using a nonpara-

metric permutation test (10,000 times) (Cui, Su, Li, Shu, &

Gong, 2017) by choosing the correlation coefficient of the predicted

cognition scores with the observed cognition scores as the statistic. In

permutation testing, the observed behavioral scores of the training

data were randomly permuted prior to training. It was assumed that a

prediction model learned reliably from the data when the correlation

coefficient Corr0 obtained by the prediction model trained on the real

scores exceeded the 95% confidence interval of the prediction model

trained on randomly permuted behavioral scores. For any value of the

estimated Corr0, the appropriate p-value p̂ Corr0ð Þ represented the

probability of observing a correlation coefficient no less than Corr0.

We rejected the null hypothesis that the prediction model could not

learn the relationship between the dynamic characteristic of FC and

the observed cognitive performance reliably when the p̂ Corr0ð Þ was

less than .05. Similar to the individual identification task, we evaluated

the performance of the four parcellations in the prediction tasks using

sFC as features.

3 | RESULTS

3.1 | Functionally homogeneous areas derived
from dFCD maps

We separated the dFCD matrices of all the subjects into 20 indepen-

dent components by using the group ICA approach. The time courses

of 20 independent components for a randomly selected subject are

presented in Figure 1c. Moreover, frequency-domain analysis of the

time series demonstrates significant low-frequency oscillations of

these independent components from 0.01 to 0.025 Hz, as shown in

Figure 1D. We further used a statistical analysis (single sample t-test,

p <.01, FDR corrected) to estimate functional brain networks repre-

sented by the independent components derived from dFCD matrices,

with the coordinates for the peak activations shown in Table S1.

According to organization of intrinsic FC in the human brain (Yeo

et al., 2011), these 20 independent components could be categorized

into seven resting-state functional networks (Figure 2) described in

detail below.

3.1.1 | Visual cortex

Component B, C, and D show the entire visual system with obvious

hierarchical structures. The component B predominately covers the

primary visual cortex (V1, BA 17), including the inferior and middle

occipital gyrus. The component C is mainly located in the bilateral

superior and middle occipital cortex (BA18), functioning as processing

and feature extraction of retinotopic images from V1. The component

D shows the cuneus and calcarine cortex (BA19), which are involved

in higher level visual processing including shape recognition, atten-

tional and multimodal integrating functions. These results are consis-

tent with findings of cytoarchitectural parcellation of visual areas

(Eavani et al., 2015) contributing from the low to higher levels of the

visual information processing (see Figure S1).

3.1.2 | Default mode network

Components H-M in Figure 2 show different types of subsystems

involving the default mode network (DMN; Andrews-Hanna, Reidler,

Sepulcre, Poulin, & Buckner, 2010). Component H has high weights in

the left medial superior frontal gyrus, triangular part of inferior frontal

gyrus, middle and inferior temporal gyrus, and angular gyrus. Compo-

nent I shows a part of the cuneus and calcarine. Component J shows

high weights in the bilateral orbital middle frontal gyrus and left ante-

rior cingulate gyri. Component K mainly represents the medial part of

the DMN, including the precuneus, medial frontal cortex, and the

bilateral angular gyrus. Component L shows the temporal part of the

DMN alone, covering the bilateral middle temporal pole, superior and

middle temporal gyrus. Component M shows the lateral part of the

DMN, including the inferior parietal cortex, angular gyrus, interior and

middle frontal cortex extending to the right orbital middle and inferior

frontal cortex.

3.1.3 | Attention network

Component Q, R, and S show major areas of the dorsal and ventral

attention networks with high weights in the posterior parietal cortex,

the inferior parietal lobule and superior temporal gyrus. Component R

predominately covers the anterior part of the attention network,

including the bilateral supramarginal gyrus, precentral gyrus, opercular
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part of inferior frontal sulcus (IPS), superior temporal gyrus, and the

insula, whereas component Q mainly represents the posterior part of

the attention network, such as the postcentral gyrus, supramarginal

gyrus, and the precuneus. Component S is predominately located in

the superior parietal lobule that is one major area of the dorsal atten-

tion network. In particular, an obvious overlap of component Q and S

in the precuneus could be observed (Table S1).

3.1.4 | Somatomotor network

Components E, F, and G show three separate structures of the

somatomotor network. Component F mainly represents the inferior

parietal gyrus (BA 40) and the primary somatosensory cortex (BA2) in

the postcentral gyrus. Component G shows the bilateral postcentral

cortex and the rolandic operculum extending to the insula, which are

involved in the second somatosensory cortex.

3.1.5 | Frontoparietal network

Component N and P have strong left-right laterality and show the

right frontoparietal network (rFPN) and the left frontoparietal network

(lFPN), respectively. Specially, component N predominately covers the

right inferior parietal gyrus, right middle frontal gyrus extending to the

opercular part of the right inferior frontal gyrus and the supramarginal

gyrus (BA40), while component P covers the left inferior parietal

gyrus, left inferior frontal gyrus and the left inferior temporal cortex.

3.1.6 | Other regions covered by single component

Component A shows the bilateral superior temporal gyri alone. The

area is important in audition, such as tone or pitch discrimination

(Larson-Prior et al., 2009). Component O shows the dorsolateral pre-

frontal cortex (DLPFC) (BA9 and BA10), medial superior frontal gyrus

and the anterior cingulum cortex, which are the key areas of the exec-

utive control network. Notably, component T covers the full

cerebellum.

3.2 | Transient brain states identified by
dFCD maps

Figure 3a shows that the cluster validity index decreased with

increasing number of clusters (ranging from 2 to 60). The optimal

clustering number was set to 16 (k = 16) based on the elbow crite-

rion of the cluster validity index. Figure 3b illustrates the obtained

16 quasi-stable weight vector centroids of 20 components. Each

row indicates one of the 20 independent components which were

further organized into the seven resting-state functional networks,

and each column denotes one of the quasi-stable weight vector

F IGURE 2 Group ICA on dynamic functional connectivity degree (dFCD) matrices estimated 20 spatial independent components that

represent functionally homogeneous areas underlying dynamics in functional connectivity (p <.01, FDR correction). The most informative views
for each component are chosen from the left/right, medial/lateral and sagittal/coronal/transverse 3D view(s) or slice view(s). Based on the
organization of the human intrinsic functional connectivity, these components can be categorized into seven resting-state functional networks,
involving the auditory cortex (a), visual networks (b–d), somatomotor network (e–g), default mode network (h–m), frontoparietal network (n–p),
attention network (q–s), and the cerebellum (t). See Table S1 for more detailed information on each component
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centroids obtained by averaging the weight vectors at those time

windows falling within the same group. Interestingly, we found that

there was a strong negative correlation between six pairs of brain

states (reversed states). Note that the other four states (1, 8,

10, and 13) had not been defined as a state and anti-state pair

because of their not significant anti-correlation across these states

(p >.05). The spatial component distribution and similarity of these

state pairs are in detail shown in Figure 3c. It is worth noting that

these state pairs with strongly negative correlation were usually

caused by opposite weights of the same functional networks in two

corresponding quasi-stable weight vector centroids. For example,

the VN, AN, and SMN had strong negative weights and positive

weights in the brain State 3 and brain State 7, respectively. A port

of the VN had a strong positive weight in the brain state 16, but

had a significantly negative weight in the brain State 15. The ATN

had strong a positive weight and a negative weight in the state cen-

troid 4 and state centroid 6, respectively.

We further calculated the state transition probability between

different brain states and found that the probability of transition

between pairs of reversed states was extremely low relative to the

nonreversed states, as shown in Figure 4a. According to Figure 4b,

the left histogram shows the mean and standard deviation of shifting

probability to the reversed states over all transitions, while the right

one shows the mean and standard deviation of shifting probability to

the nonreversed states. It is obvious that the transition probabilities

of shifting to the reversed states are much lower than

nonreversed ones.

3.3 | Brain parcellation driven by dFC improves
within-ROI functional homogeneity

Based on the dFCD maps, we obtained a 116-sub-region functional

parcellation of the whole brain (see Figure 5). The overall structure of

the parcellation showed remarkable left-right symmetry. Especially,

we used temporal stability to evaluate within-ROI functional homoge-

neity over time. A nonuniform distribution of temporal stability of

ROIs was observed on the cerebral cortex (Figure 6a). As we expect,

the dFC-driven parcellation resulted in significantly better average

temporal stability than the other three parcellations (the AAL, random

parcellation and the static ICA-driven parcellation, two-sample t-test,

p <.001, see Figure 6b).

F IGURE 3 Transient brain states identified by using a hierarchical cluster method. (a) The clustering number was set to be 16 (k = 16)
according to the elbow criterion of the cluster validity index. (b) The cluster centroids of quasi-stable weight vectors. The color bar represents the
normalized weight values (z-score). (c) The 16 brain states were mapped onto the cortical surface, and re-organized into six state and anti-state
pairs based on their degree of linear correlation, with the corresponding correlation coefficient presented above those state pairs. AN, auditory
network; ATN, attention network; CN, cerebellum network; DMN, default mode network; FPN, frontal-parietal control network; STN,
somatomotor network; VN, vision network
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3.4 | Performance of individual identification and
cognitive prediction tasks

Based on the chronnectome-based individual identification and indi-

vidual cognition prediction tasks, we demonstrated a better ability of

the dFC-driven parcellation in extracting FC dynamics.

As illustrated in Figure 7, using the dynamic characteristic of dFC-

str as features, we obtained the following identification accuracies

(p <.0001, permutation tests): S1 ! S2, 93/100 (93%) for the dFC-

driven parcellation, 84/100 (84%) for the AAL, 76/100 (76%) for the

static ICA-driven parcellation and 70/100 (70%) for the random

parcellation; S2 ! S1, 90/100 (90%) for the dFC-driven parcellation,

F IGURE 5 The 116-ROI parcellation
was yielded from the group ICA
decomposition of dFCD matrices with
one-sample t-tests. The cortical maps

were generated by using the ITK-SNAP

F IGURE 4 Transitions between brain states. (a) The state transition matrix averaged for all time course. (b) Comparison between the
transition probabilities of a state shifting to its reverse states (marked by dotted boxes) and that of shifting to other noninverse states. The error
bar represents the standard deviation
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82/100 (82%)for the AAL, 72/100 (72%) for the static ICA-driven

parcellation and 58/100 (58%) for the random parcellation. Note that

sFC yielded comparable identification accuracy with dFC-str, while

the identification accuracies with dFC-std were relatively low

(no more than 70%) for all the parcellations (see Table S2).

We used the SVR models with the dynamic characteristic (dFC-

std) of the chronnectome to predict three types of individual high-

level cognitive abilities. All results were reported in the best prediction

accuracy (by searching the optimal p values for feature selection).

The dFC-driven parcellation. The SVR models successfully

predicted observed fluid intelligence for an individual. The correlation

between the predicted and observed fluid intelligence scores was

r = .43 (p <.0001). It also demonstrated a strong correlation between

the predicted and observed cognitive flexibility (r = .4081, p <.0001)

and sustained attention (r = .3511, p <.0001), respectively.

The AAL template. The scores of fluid intelligence (r = .2912,

p <.0038) and cognitive flexibility (r = .3528, p <.0001) could be effec-

tively predicted. However, the SVR model could not significantly pre-

dict individual sustained attention scores (p >.05) for the AAL

template.

The static ICA-driven parcellation. We found that only the

predicted cognitive flexibility (r = .3725, p <.0001) and sustained

attention (r = .2561, p <.0113) showed a significant correlation with

the observed scores, respectively.

The random parcellation. In the SVR analysis, we did not find sig-

nificant predictions for any of the three cognitions (p >.05).

F IGURE 6 The dFC-driven parcellation significantly enhanced the within-ROI temporal stability. (a) Cortical distributions of temporal stability
within the 116 dFC-driven ROIs. The color bar indicates temporal stability value. (b) Statistic comparison of the average temporal stability over
100 subjects between the four different parcellations. *p <.0001

F IGURE 7 The identification
accuracy in the chronnectome-
based individual identification
task for the four parcellations.
The dFC-driven parcellation
achieved the highest accuracy
both for S1 ! S2 and S2 ! S1

1426 FAN ET AL.



Figure 8 illustrates the prediction accuracy of the three high-level

cognitions for the four parcellations. The permutation-test results for

the dFC-driven parcellation are shown in Figure S2, indicating that the

prediction model learned the relationship between the chronnectome

and the individual cognition performance with a probability of being

wrong of <.05. The result that the dFC-driven parcellation had the

strongest correlation between predictive cognition scores and the

observed cognition scores for all the three cognition indicated that

this parcellation had the significantly higher prediction power of indi-

vidual high-level cognition than the other three parcellations. Though

we did not explicitly compare prediction accuracy between atlases,

the dFC-driven parcellation was the only atlas to significantly predict

individual variance in all the three higher-order cognitions. It is worth

noting that all of these results were built in context of dFC analyses.

In addition, we evaluated the prediction performance of the four

parcellations using static FC as features (see Figure S3 and Table S3

for the results). From the outcomes, we only could conclude that the

dFC-driven parcellation outperformed the anatomical or static func-

tional atlases under the situation of dFC analyses.

4 | DISCUSSION

In this study, we presented a voxel-wise, data-driven brain

parcellation for depicting dFC in the brain, by identifying functionally

homogeneous regions during the variance of FC based on the dFCD

maps. This dFC-driven parcellation not only successfully identified

spatially distributed, but functionally homogeneous areas that were

well consistent with the intrinsic connectivity network, but provided

some new findings on functional coupling patterns in dFC and tempo-

ral evolvement of brain states. We further emphasized that these

regions could provide better ability for capturing brain network

dynamics due to higher within-ROI temporal stability of dynamic func-

tional coupling. Three prediction tasks of individual cognitive

F IGURE 8 The correlations between the predicted and observed cognition performances for the four different parcellations. Note that the
dFC-driven parcellation exhibited the highest predictive power in all the three cognition prediction tasks. Each subject is represented by one dot
and the 95% prediction error bounds are indicated by the dash lines for those correlations above the significance level (p = .05)
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performance and an individual identification task based on

chronnectome were designed to evaluate this potential by comparing

the prediction performance of the dFC-driven parcellation with sev-

eral commonly used atlases in the previous dFC analyses. We found

that this dFC-driven parcellation could significantly improve within-

ROI temporal stability, identification of individual variance in dFC and

the chronnectome-based prediction of cognitive performance at an

individual level. Altogether, our results suggested that network-based

neuroscience would greatly benefit from brain parcellation and node

definition derived from brain connectivity dynamics.

4.1 | Functional organization underlying
dynamic FC

The results of ICA on dFCD matrices revealed some anatomical dis-

tributed areas, the majority of which fell within the resting-state func-

tional brain networks, supporting the model that highlights different

subnetworks underlying dynamics of resting-state brain networks

over shorter time window (Deco et al., 2013). Some of these subnet-

works were well consistent with the hierarchical structures of brain

functional systems. For example, components B-D well revealed hier-

archical processing flow of visual information from the primary visual

cortex (V1) to the extrastriate areas including visual areas 2 (V2, BA

18) and V3/V3A (BA 19). These regions also showed significant left–

right symmetry and adhere to known cytoarchitectural features of

visual areas (Eavani et al., 2015; Figure S1). We also observed

lateralized organization of the FPN that was significantly clustered

into the left FPN (lFPN) and right FPN (rFPN) in the coarse-scale

parcellation, in line with the two lateralized subsystem of the FPN

among the intrinsic connectivity networks derived from the entire

scanning data (X. Chang et al., 2014; Wang et al., 2015).

It is worth noting that the dFC-driven parcellation showed some

new dynamic functional subnetworks that were neglected in static FC

analysis (Yeo et al., 2011). We found an obvious disassociation

between the anterior (component R) and posterior (component Q)

attentional network in addition to the full cover of component S on

the dorsal attentional network (visuospatial attention network). This

observation was supported by the model of Posner and

Dehaene (1994) in which the attention system was divided into two

subsystems that performed different functions with the anterior sys-

tem serving executive functions, attentional recruitment, and control

of complex cognitive tasks and the posterior system functioning as

attention orienting and awareness of the environment. Some studies

on cognitive impairment in schizophrenic patients also confirmed this

functional separation of the anterior and posterior subsystems of the

attentional network (Mazza et al., 2013). In addition, some compo-

nents described above are clearly overlapping, suggesting multiple

functional roles of specific regions on driving dynamic functional sub-

systems. We noted that the precuneus simultaneously contributed to

the midline core component K of the DMN, the posterior subsystem

Q and dorsal subsystem S of the AN. The inferior parietal lobule (IPL)

was involved in component F of the SMN, component M of the DMN,

components N and P of the FPN. These regions have been identified

as the central hubs of connectivity in the brain (Buckner et al., 2009).

Components H-M revealed hierarchical architecture of the DMN

that is comprised of a midline core and two distinct subsystems rev-

ealed by intrinsic FC. These different DMN-related components

exhibit distinct functional contributions to cognition (Andrews-Hanna

et al., 2010). Specially, component K fully covered the core set of

“hubs” within the DMN including the anterior medial prefrontal cor-

tex (aMPFC) and posterior cingulate cortex (PCC). Component J and L

revealed the dorsal medial prefrontal cortex (dMPFC), lateral temporal

cortex (LTC) and the temporal pole (TempP) of the dorsal medial pre-

frontal cortex subsystem. Component I reflected the posterior inferior

parietal lobule (pIPL) in the medial temporal lobe subsystem. In partic-

ular, component H and M separated the bilateral regions of the DMN

(Yeo et al., 2011) including the angular gyrus, middle frontal cortex,

middle temporal cortex and the orbital middle frontal cortex into the

left predominated and right predominated subsystems, respectively.

It should be noted that the proposed approach aimed at identify-

ing the functionally homogeneous areas during the fluctuation of FC

at the group level. Some individual-specific transient variances of FC

were hence omitted. However, our approach could provide a group-

level inference for random-effect analyses of dynamic functional sub-

networks based on the group ICA methodology. In fact, some types of

dFC features, such as voxelwise dFC dominant patterns (Preti & Van

De Ville, 2017), time courses of instantaneous connectivity (van Oort

et al., 2018) and concatenated FC states (Zhong et al., 2019), have

been applied to cortical/subcortical subdivision. These dFC-derived

parcellation strategies have been demonstrated to recover biologically

valid subdivisions or improve reproducibility of segmented subregions

across subjects compared with static FC analyses.

4.2 | Inverse state pairs

We identified reoccurring short-term brain states based on time-

varying fluctuation of independent components derived from dFCD

matrices. Most of these brain states could be obviously categorized

into two fundamental types. One type of states was characterized by

high connectivity degree in the sensory (auditory, visual, and

somatomotor) cortex but relatively low connectivity degree in the

associated cortex (DMN, FPN, etc.), such as the State 2, 7, 8, 9, and

10). The other type of states had relatively low connectivity degree in

the sensory cortex, but high connectivity degree in the associated cor-

tex (e.g., State 3, 5, 11, 13, 14, and 15). These two distinct sets of

states accorded with the notion of metastates in the precious study of

hierarchical clustering of brain network dynamics, in which one met-

astate involves sensory and motor regions, and the other is linked to

the areas related to higher-order cognition (Vidaurre, Smith, &

Woolrich, 2017). They further revealed that time spent in each met-

astates is a subject-specific, heritable measure and could effectively

predict behavioral traits.

For the 16 brain states derived from dFCD matrices, we could

further divide the two fundamental types of states into six state pairs
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which exhibited strong anti-correlation of spatial distribution

(Figure 3C), supporting the hierarchical organization of brain network

dynamics (Vidaurre et al., 2017). Similar anti-correlation characteristics

of FC states have also been observed in temporal independent com-

ponent analysis (tICA) of dynamic functional network connectivity

(dFNC) (Yaesoubi, Miller, & Calhoun, 2015). In this framework,

observed dFNC patterns are viewed as linear composition of a finite

set of prototype correlation patterns as weighted contributions to the

dynamically changing dFNCs. A large negative weight means that

additive inverse (or “flipped”) version (named as “anti-state”) of the
corresponding state has a positive contribution to the final FNC

observation.

The exploration to temporal structure of the inferred brain states

revealed nonrandom temporal organization of brain activity. That is,

the brain tends to shift between noninverted state pairs with less fre-

quent transitions between inversed state pairs. This observation

repeated the previous findings about the metastates which were iden-

tified by two separate community structures in the transition proba-

bility matrix, that is, within-metastate transitions were significantly

more probable than between metastates (Vidaurre et al., 2017). Fur-

ther exploration of how temporal structures of these inversed states

and noninverted states (such as transition probability and fractional

occupancy) are linked to individual behavior and heritability is an

interesting issue.

4.3 | Improvement of dynamic network analysis
using dFC-driven parcellation

In modeling dFC, ROIs are used as nodes of brain networks with an

implicit constraint that voxels within each ROI are thought to have

similar functional coupling patterns (functional homogeneity) so that

the within-ROI averaged time series is considered as a representation

of the voxel-level dynamics. However, this assumption does not hold

for the ROIs of commonly used parcellations in static functional net-

work studies (Ryyppö et al., 2018). The fact that functional brain net-

works also change in short timescales (Bassett et al., 2011; Göttlich,

Ye, Rodriguez-Fornells, Münte, & Krämer, 2017) implied the impor-

tance of finding a plausible ROI-definition strategy to model brain's

dFC profile. It is, therefore, critical to evaluate the impact of

parcellations on dFC estimation from different perspectives.

Firstly, we introduced temporal stability to quantify the ROIs'

functional homogeneity, and found that the dFC-driven parcellation

resulted in significantly better temporal stability than the other three

parcellations. This suggested that the ROIs from a dFC-driven

parcellation had a more stable internal structure. We also observed

the nonuniform distribution of temporal stability across ROIs, that is,

the primary cortex including the visual and somatosensory areas

showed high temporal stability, whereas the associated cortex such as

the frontal cortex and cingulum cortex had relatively low values. This

observation implied that the correlation dynamics inside an ROI likely

related to its functional roles, since the associated cortex exhibited

greater functional diversity than the primary cortex.

Secondly, our analyses revealed that the dFC-driven parcellation

had the best performance of the individual identification task for all

three types of features including dFC-str, dFC-std, and sFC (Table S2),

suggesting the dFC-driven parcellation may capture individual variabil-

ity in functional coupling better than the static ROI definition. Finn

et al. (2015) have demonstrated that static FC profiles can identify

subjects from a large group as a “fingerprint.” Subsequently, J. Liu

et al. (2018) extended this finding to the chronnectome by demon-

strating that mean strength dFC (using dFC-str as features) could

identify individuals with high accuracy. Interestingly, the observation

that dFC-std yielded far lower identification accuracies than dFC-str

and sFC likely implied that individual reproducibility of FC was more

expressed at the long timescale than at the timescale of seconds,

given that the static FC could be regarded as the time-average effect

of spontaneous fluctuation of FC over the entire scan

(Xu et al., 2018).

Finally, we designed a network analysis task of predicting individ-

ual higher-order cognitive performance to demonstrate the impact of

the parcellation on modeling resting-state dFC. Excluding the random

parcellation, both the AAL template and static-ICA parcellation

showed good predictive power (above the significance level of

p = .05) for some of the cognitive behaviors. This indicates that a good

parcellation can provide a high-level abstraction of functional organi-

zation in the brain at macroscopic scales (Arslan et al., 2018; Sporns,

Tononi, & Kötter, 2005). Especially, when using fluctuations of FC

(dFC-std) as features, the dFC-driven parcellation had significantly

better performance in all the prediction tasks (fluid intelligence, cogni-

tive flexibility, and sustained attention) than any of the static tem-

plates with the same numbers of ROIs, suggesting that the dFC-

driven parcellation could reserve more dynamics of FC that contain

rich meaningful information on individual higher-order cognition.

Previous researches have shown that not only stationary FC at

the long timescale, but also short-term fluctuations of FC could

encode higher-order cognition (Cole, Yarkoni, Repovš, Anticevic, &

Braver, 2012; Finn et al., 2015; J. Liu et al., 2018). One might be inter-

ested in asking whether a dFC-driven parcellation outperforms the

anatomical or static functional templates in these cognition prediction

tasks when the static FC features were used. In order to address the

issue, we reperformed the experiments using sFC as features. The

results (see Table S3 for details) demonstrated that dFC-driven

parcellation performed better than the AAL atlas and static-ICA

parcellation for some cognitive measurements (fluid intelligence and

cognitive flexibility). For sustained attention, however, the AAL atlas

and static-ICA parcellation achieved relatively higher prediction accu-

racy than the dFC-driven parcellation.

We selected the three higher-order cognition as predictive vari-

ables for that resting-state FC can better encode higher-order cogni-

tion such as working memory, learning, and executive function than

domain-specific cognitions (James et al., 2016; Siegel et al., 2016).

Furthermore, it has been reported that individual higher cognitive per-

formance can be effectively predicted based on dynamic properties of

dFC (J. Liu et al., 2018). We also evaluated these four parcellations'

prediction performance in domain-specific cognition by selecting
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picture vocabulary as an example. As illustrated in Figure S3, only the

dFC-driven parcellation yielded statistically significant prediction for

picture vocabulary when using dFC-std as features. The results dem-

onstrated the advantages of dFC-driven parcellation in capturing

dynamic fluctuations. When using static FC as features, however, the

AAL template, static-ICA parcellation and the dFC-driven parcellation

yielded statistically significant prediction for picture vocabulary, but

the AAL template (r = .4524) outperformed the dFC-driven

parcellation (r = .3978). Therefore, for cognition prediction tasks, the

conclusion that the dFC-driven parcellation outperformed the ana-

tomic or static functional atlases was specific to dFC analyses. We

could not conclude that the dFC-driven parcellation would be better

than other atlases for sFC approaches.

Moreover, to obtain a more persuasive result of our parcellation

performance in modeling dFC, we also reperformed the fluid intelli-

gence prediction using an elastic net (Scikit-learn toolbox in Python;

Pedregosa et al., 2011). In detail, dynamic measurement of dFC-std

from Session 1 was used as features to predict fluid intelligence in the

elastic net with the leave-one-out cross-validation strategy. We com-

pared the prediction performance in four parcellations with feature

selection and without feature selection, respectively. During the train-

ing procedure, we used “ElasticNetCV” function, which is an elastic

net model with iterative fitting along a regularization path. The best

model with a penalty combination of L1 and L2 was selected by five-

fold cross-validation in the training data. As shown in Figure S4B, we

did not find significant predictions in these four parcellations using an

elastic net without feature selection. However, the elastic net with

feature selection had comparable prediction performance compared

with current results using epsilon insensitive SVR (Figure S4A), which

demonstrated the necessity of feature selection. We thought it may

cause by there are a plethora of features (116*115/2 = 6,670 features

for one sample) most of which are not useful for making the necessary

prediction in our small dataset (100 subjects). Therefore, when we

trained the elastic net model without feature selection, the model

tended to overfit the training data rather than suppress the less infor-

mative features.

In a word, the results of this study emphasized that a parcellation

derived from the dFC was more appropriate for chronnectome-based

neuroscience researches since this ROI definition better encapsulated

neuro-biological information about dynamic functional coupling in

cortical organization. In addition, it is worth noting that the perfor-

mance of some prediction tasks (e.g., cognitive flexibility) did not

match the results of previous studies (J. Liu et al., 2018) as we used a

relatively lower ROI number in this study. The accuracy of a predicted

model could be effectively improved when the number of features

increased.

Some limitations should be considered in the presented approach.

First, the number of parcels in the dFC-driven parcellation was not

optimized due to the absence of a criterion for selecting the ROI num-

ber. An optimal dFC-driven parcellation should capture the dynamics

in brain functional coupling as much as possible. However, some fMRI

measurement noises and physiological confounding factors would

lead to the fluctuation of FC (Thompson, 2018). Connectivity

fluctuations even appear when the underlying process is stationary

(Laumann et al., 2017). Until now, it is yet challenging to separate the

meaningful neurophysiological or cognitive components in resting-

state FC prior to extracting FC dynamics. Second, it is unclear what is

the neurophysiological meaning underlying the variance of temporal

stability across ROIs although its nonuniform distribution on the cere-

bral cortex has been found. Moreover, proper statistically null models

need to be developed to test the significance of the change in tempo-

ral stability. Third, the different prediction results between higher-

order and domain-specific cognitions using sFC approaches suggested

their distinction in whole-brain functional coupling's representation.

However, these differences should be further validated based on

more available cognitive behavioral data in future research. Finally,

whether the resulting parcellation in this study is consistent for other

data measured during rest and during various cognitive tasks may

require further evaluation using a task-based dataset.

To conclude, we have identified functionally homogeneous

regions during spontaneous fluctuation of FC based on time-varying

dFCD maps. We demonstrated that the dFC-driven parcellation was

well consistent with known intrinsic connectivity networks, and could

provide a better ROI definition for chronnectome-based neuroscience

studies. Our findings shed new light on dynamic functional organiza-

tion of resting-state brains and emphasized the significance of a dFC-

driven and voxel-wise brain parcellation for network dynamics ana-

lyses in the brain.
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