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Abstract

Birth defects are among the leading causes of infant mortality and contribute substantially to

illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are

associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in sig-

naling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral

axis. For example, auriculocondylar syndrome is caused by impaired Endothelin-1 (Edn1)

signaling, and Alagille syndrome is caused by defects in Jagged-Notch signaling. The BMP,

Edn1, and Jag1b pathways intersect because BMP signaling is required for ventral edn1

expression that, in turn, restricts jag1b to dorsal CNCC territory. In zebrafish, the scaffolding

protein Wdr68 is required for edn1 expression and subsequent formation of the ventral

Meckel’s cartilage as well as the dorsal Palatoquadrate. Here we report that wdr68 activity is

required between the 17-somites and prim-5 stages, that edn1 functions downstream of

wdr68, and that wdr68 activity restricts jag1b, hey1, and grem2 expression from ventral

CNCC territory. Expression of dlx1a and dlx2a was also severely reduced in anterior dorsal

and ventral 1st arch CNCC territory in wdr68 mutants. We also found that the BMP agonist

isoliquiritigenin (ISL) can partially rescue lower jaw formation and edn1 expression in wdr68

mutants. However, we found no significant defects in BMP reporter induction or pSmad1/5

accumulation in wdr68 mutant cells or zebrafish. The Transforming Growth Factor Beta

(TGF-β) signaling pathway is also known to be important for craniofacial development and

can interfere with BMP signaling. Here we further report that TGF-β interference with BMP

signaling was greater in wdr68 mutant cells relative to control cells. To determine whether

interference might also act in vivo, we treated wdr68 mutant zebrafish embryos with the

TGF-β signaling inhibitor SB431542 and found partial rescue of edn1 expression and cra-

niofacial development. While ISL treatment failed, SB431542 partially rescued dlx2a

expression in wdr68 mutants. Together these findings reveal an indirect role for Wdr68 in

the BMP-Edn1-Jag1b signaling hierarchy and dorso-anterior expression of dlx1a/2a.
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Introduction

Birth defects are among the leading causes of infant mortality and contribute substantially to

illness and long-term disability. Craniofacial anomalies, excluding cleft lip and palate, occur in

1 out of every 1600 births in the United States [1]. Defects in Bone Morphogenetic Protein

(BMP) signaling are associated with cleft lip/palate [2, 3]. Many craniofacial syndromes are

caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs)

along the dorsal-ventral (D/V) axis. For example, Auriculocondylar syndrome is caused by

impaired Endothelin-1 (Edn1) signaling [4–6] and Alagille syndrome is caused by defects in

Jagged (Jag)-Notch signaling [7, 8]. The BMP, Edn1, and Jag1b pathways intersect because

BMP signaling is required for ventral edn1 expression that, in turn, restricts jag1b to dorsal

CNCC territory [9–11].

Craniofacial development in vertebrate organisms is a highly conserved process and

involves interactions between multiple signaling pathways. The zebrafish Danio rerio is a

model vertebrate organism particularly suited to the study of early developmental events. Cra-

niofacial development begins shortly after the end of gastrulation with the specification and

subsequent migration of CNCCs from the dorsal part of the neural tube. The CNCCs migrate

ventro-laterally from the dorso-medial neural tube to one of seven pharyngeal arches. Once in

the arches, the CNCCs receive and participate in multiple signaling events [12]. Lateral ecto-

derm and medial endoderm cells together form pouches that cup the CNCCs and deliver vari-

ous paracrine signals important for both the survival and the patterning of the adjacent

CNCCs [13–15]. The zebrafish jaw structures derived from the first arch CNCCs are the dorsal

palatoquadrate (PQ) and ventral Meckel’s (M) cartilages [16, 17].

BMP and Jag-Notch signaling regulate ventral and dorsal CNCC patterning, respectively

[9–11]. Edn1 signaling is required for ventral CNCC patterning downstream of BMP signaling

[10, 18]. The combined action of these signaling pathways sub-define regions of CNCCs along

the D/V axis within the first pharyngeal arch. These sub-defined territories are evident in the

layered expression patterns of the distal-less (dlx) family of transcription factors [19]. Specifi-

cally, loss of Edn1 signaling results in the loss or reduction of ventral and intermediate struc-

tures such as Meckel’s cartilage (M) and the jaw joint. Additionally, the loss of Edn1 signaling

has been shown to result in the dorsalization of ventral structures [18, 20–22]. In mice,

mutants for either edn1-/- or ednra-/- display loss of expression for dlx3-6, and hand2 [21, 22].

Similarly, edn1-/- mutant zebrafish lose ventral and intermediate expression of dlx3-6 and

hand2 [18]. Overexpression of Bmp4 expands ventral territory via upregulation of edn1 and

the corresponding downstream network of transcription factors including hand2 and several

dlx genes [10]. Conversely, disruption of later stage Bmp signaling by overexpressing a domi-

nant negative Bmp receptor after CNCC induction results in the loss of ventral edn1 and dlx6a
expression, intermediate-ventral dlx3b expression, and the ventral expansion of the normally

dorsal restricted jag1b [9]. In zebrafish, jag2 and jag1b are expressed in the CNCCs and pha-

ryngeal pouch endoderm [11, 23] and antisense knockdown of them results in reductions in

dorsal cartilages [24]. Zebrafish jag1b mutants display dorso-posterior defects in PQ forma-

tion; antisense morpholino knockdowns of notch2 yield a similar phenotype consistent with a

traditional Jag-Notch signaling requirement for dorsal development. Loss of Jagged-Notch sig-

naling results in the dorsal expansion of ventral and intermediate specifying dlx3b and dlx5a
markers. Misexpression of jag1b results in the dorsalization of ventral structures, particularly

with the transformation of M into a more PQ like structure. Jag1b is normally restricted to the

dorsal-most CNCC within the first arch, however ubiquitous overexpression of jag1b results in

the loss of ventrally expressed hand2 and edn1 as well as restriction of ventral-intermediate

markers dlx3b, dlx5a, and dlx6a to the most ventral territory of the arch [11]. Taken together,
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these interactions yield a model in which BMP signaling patterns ventral and intermediate ter-

ritory at least partly through induction of Edn1 signaling, while Jag-Notch signaling patterns

dorsal territory, and mutual antagonism stabilizes patterning along the D/V axis [25]. These

combined interactions yield spatial restrictions of a nested network of transcription factors

into dorsal, intermediate, and ventral territories that prefigure the future lower jaw, joint, and

upper jaw cartilages.

BMP2/4/7 ligands are members of the Transforming Growth Factor Beta (TGF-β) super-

family of growth factors. The TGF-β signaling pathway is also important for several patterning

events during early embryonic development, including proper craniofacial development [26].

While BMPs act through the phospho-Smad1/5 (pSmad1/5) transcription factors in complex

with the common shared Smad4 to regulate downstream target gene expression, the TGF-β1/

2/3 ligands instead act through pSmad2/3 also in complex with Smad4 [27, 28]. Interestingly,

TGF-β can interfere with BMP signaling via Smad3 displacement of Smad4 from pSmad1/5

complexes [29, 30].

Wdr68/Dcaf7 (hereafter referred to as Wdr68) is a highly conserved 342 amino acid length

member of the WD40 repeat domain family of proteins that are generally known to function

as scaffolding proteins [31–33]. Vertebrate Wdr68 interacts with several protein kinases

including several members of the Dual-specificity tyrosine phosphorylation-regulated kinase

(Dyrk) gene family [34–38]. Dyrk1a maps to the Down Syndrome (DS) critical region of

human chromosome 21 and overexpression of Dyrk1a is a major contributor to the neurode-

velopmental defects present in DS patients [39, 40]. Dyrk1a and Dyrk1b possess RNApII-CTD

kinase activity important for the expression of several genes [41]. High-throughput protein

interaction assays also suggest that Wdr68 interacts with the pSmad2/3 components of TGF-β
signaling [42]. The subcellular localization of Wdr68 is likely regulated. When expressed

alone, Wdr68 is found in both the cytoplasm and nucleus. However, co-expression with the

RNApII-CTD kinase Dyrk1a induces nuclear translocation of Wdr68 [35, 37, 43]. Wdr68 is

expressed widely in early development and regulates ventral cartilage formation in the zebra-

fish [36, 43]. Specifically, wdr68 is required for expression of edn1 and genes downstream of

Edn1 such as bapx1, hand2, and several dlx genes [36]. wdr68 is also required for the expres-

sion of the spaw, lft1, and lft2 genes [34] that are downstream of BMP signaling in the zebrafish

[44, 45].

Together, these previous findings suggest Wdr68 may modulate TGF-β/BMP signaling to

downstream targets such as the Edn1-Jag1b network for D/V patterning. The wdr68hi3812 allele

contains a retroviral insertion within the first exon after codon 44 and is therefore considered

a null allele [36, 46]. Here we report that the temperature-dependent severity of the cartilage

defects present in wdr68hi3812 homozygotes is a consequence of differential perdurance of

maternally derived Wdr68. We then exploited the temperature-dependence, along with a Tg
(hsp70l:GFP-Wdr68) zebrafish line, to define a temporal window between the 17-somites and

prim-5 stages during which wdr68 activity is required for craniofacial development. Notably,

this window overlaps substantially with the known onset of edn1 expression and activity dur-

ing craniofacial development. We also report that edn1 expression can partially rescue dlx6a
expression in wdr68 mutants, consistent with it functioning downstream of wdr68. However,

edn1 expression was unable to restore hand2 expression in wdr68 mutants. We also found ven-

tral expansion of the expression of the normally dorsal-restricted jag1b, hey1, and grem2 genes

in wdr68 mutants. We further report pharmacogenetic interactions between BMP signaling

and wdr68. Specifically, the BMP antagonist dorsomorphin (DM) exacerbates the wdr68 carti-

lage and edn1 expression defects while the BMP agonist isoliquiritigenin (ISL) partially rescues

the wdr68 cartilage and edn1 expression defects. Using CRISPR/Cas9 generated mouse C2C12

sublines lacking wdr68, we found no significant changes in pSmad1/5 levels, pYap1 levels, or
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BRE-Luciferase responsiveness to BMP ligands. We also found little to no defects in pSmad1/5

levels in zebrafish wdr68 mutants. However, co-challenge with TGF-β and BMP ligands

revealed significant enhancement of TGF-β interference with BRE-Luciferase responsiveness

to BMP ligands in C2C12 sublines lacking wdr68. Suggesting conservation of this mechanism

in vivo, we also report that treating wdr68 mutants with the TGF-β inhibitor SB431542 also

partially rescued the craniofacial and edn1 expression defects. Further analysis of dorsal CNCC

markers revealed that expression of dlx1a and dlx2a was severely reduced in anterior dorsal

and ventral 1st arch CNCC territory in wdr68 mutants. While ISL treatment failed to restore

dlx2a expression, SB431542 partially rescued dlx2a in wdr68 mutants. Together, the findings

reported here reveal an indirect role for Wdr68 in the BMP-Edn1-Jag1b signaling hierarchy

and dorso-anterior expression of dlx1a/2a. These findings also suggest interactions between

Wdr68 and TGF-β signaling that will require further investigation.

Materials and Methods

Chemicals and reagents

Dorsomorphin (P5499, Sigma-Aldrich), isoliquiritigenin (I3766, Sigma-Aldrich), SB431542

(S4317, Sigma-Aldrich), BMP4 (HZ-1045, Humanzyme), and TGF-β1 (HZ-1011, Human-

zyme) were purchased and used according to the manufacturers recommendations. Antibod-

ies used were anti-Wdr68 (HPA022948, Sigma-Aldrich), anti-β-tubulin (sc-55529, Santa Cruz

Biotechnology Inc.), anti-pYap1 (13008S, Cell Signaling), anti-Yap1 (4912S, Cell Signaling),

anti-pSmad1/5 (9511S, Cell Signaling), goat anti-mouse IgG-HRP (sc-2005, Santa Cruz Bio-

technology Inc.), Amersham ECL anti-rabbit IgG, HRP-linked whole antibody (from donkey)

(NA934, GE Healthcare).

Zebrafish husbandry

This project was approved and conducted under the approved Cal State LA IACUC protocol

(14–2 Renewal 11–3) and the zebrafish animals (TAB14 and AB� backgrounds) used in it were

reared in strict accordance with IACUC guidelines. Zebrafish embryos were raised at 24˚C,

28.5˚C, or 32˚C as specified in specific experiments.

Alcian blue staining

Alcian blue staining was performed as previously described [34, 43]. Briefly, after fixation with

4% PFA, embryos were washed in Phosphate Buffered Saline + 0.1% Tween-20 (PBST) and

dehydrated through 50% PBST/ 50% Methanol (MeOH) while rocked for 5 minutes. Samples

were put into 100% Methanol and stored on ice for 30 minutes. Methanol was then removed

and samples stained in 0.1% Alcian Blue overnight while rocking. The next day samples were

rinsed twice with 100% Ethanol (EtOH) and then rehydrated through 50% PBST/ 50% MeOH

into PBST. Samples were digested in 0.05% Trypsin in saturated Sodium Borate (Na2B4O7) for

3 hours at 37˚C. Samples were bleached overnight in a solution of 3% H2O2; 1% KOH at 4˚C.

The next day samples were washed in PBS + 1.0% Tween-20 for 5 min and then re-suspended

in 80% glycerol; 0.1% Tween-20. Animals were scored for the presence of the M and PQ

cartilages.

Immunofluorescence

Embryos were fixed in 4% PFA in PBST for 2 hours at room temperature (RT), then washed

twice with PBST, once with 50% PBST/50% MeOH, once with ice-cold 100% MeOH for 2

min, quickly washed twice with dH2O and then exposed to 100% acetone at -20˚C for 4 min
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followed by three washes with PBST. Embryos were then washed twice with PBSTTD (PBST

+ 0.1% Triton X-100 + 1% DMSO) for 5 min. Embryos and primary antibodies were pre-

blocked for 30 min at RT in Block solution (PBSTTD + 0.5% Boehringer Mannheim Block

solution + 10% Lamb serum) and then incubated in primary antibody overnight at 4˚C. The

next day embryos were washed twice quickly and five times for 10 minutes each in PBSTD

(PBST + 1% DMSO) and then re-blocked for 30 minutes before exposure to blocked secondary

antibody for 2 hours at RT. Then, embryos were washed twice quickly and five times for 10

minutes each in PBSTD followed by imaging on a Zeiss Apotome microscope.

Confocal imaging

The Tg(sox10:mCherryCAAX) animals were kindly provided by the Crump Lab [47]. Confocal

multi-TIFF stacks were captured using an Olympus IX81 confocal microscope on agarose-

mounted embryos and analyzed using FIJI volume viewer.

Transgenesis constructs and isolation of transgenic lines

The Tg(hsp70l:GFP-wdr68)csu6 and Tg(hsp70l:GFP-wdr68)csu9 lines were created using the

Gateway Tol2kit reagents [48]. Briefly, the GFP-wdr68 fusion fragment from pCS2+GFP-
wdr68 [36] was inserted into the pDONR221 plasmid to yield the pME-GFP-wdr68 plasmid

that was then combined with p5E-hsp70l, p3E-polyA and pDestTol2CG2 to create

pT2-hsp70l:GFP-wdr68-CG2. This plasmid was then co-injected with Tol2 transposase mRNA

into zebrafish embryos at the 1-cell stage to create the founders for subsequent isolation of sta-

ble transgenic lines.

Microinjections

Zebrafish embryos were harvested and injected with morpholino solution at the one to four

cell stages as previously described [34, 43]. The morpholino solutions used were 3812-2/4:

200μM 3812–4 morpholino, 500μM 3812–2 morpholino in 0.1% phenyl red; 0.5x PBS or

3812–1: 700μM 3812–1 morpholino in 0.1% phenyl red; 0.5x PBS [36]. The 3812-2/4 solution

blocks endogenous wdr68 mRNA translation, while the 3812–1, which does not block transla-

tion, served as a negative control.

Heat Shock Rescues

Tg(hsp70l:GFP-wdr68)csu9 animals were crossed to wildtype TAB14 fish. Embryos were col-

lected at the one cell stage and injected with either 3812-2/4 morpholino, blocking translation

of endogenous Wdr68, or with the negative control 3812–1 morpholino. Embryos were then

allowed to develop in a 28.5˚C incubator. Heat shocks were performed at 39˚C for 30min at

each of the stages of interest. Heat shocks were conducted at 5-somites, 12-somites, 15-somites,

17-somites, 20-somites, 25-somites, prim-5, prim-12 and prim-20 stages. After 30 minutes of

heat shock, animals were returned to 28.5˚C, and allowed to develop until the formation of the

swim bladder was observed in control animals [approximately 5 days post fertilization (dpf)].

Animals were then fixed for 1 hour at room temperature or overnight at 4˚C in 4% PFA in

PBST, and cartilages scored via Alcian Blue Staining.

Probe Synthesis and In Situ Hybridization

Probes for jag1b, hey1, and grem2 were previously described [10, 11]. The edn1 plasmid has

been previously described [18]. The dlx6a, hand2, dlx1a, and dlx2a plasmids have been previ-

ously described [49–52]. All transcription reactions were conducted with the MEGAscript

Wdr68 Mediates D-V Patterning Events for Craniofacial Development

PLOS ONE | DOI:10.1371/journal.pone.0166984 November 23, 2016 5 / 30



SP6, T7, or T3 Transcription Kits per manufacturer’s instructions (Ambion), with the adapta-

tion of using digoxigenin-labeled-UTP. ISH was performed as previously described [34, 53]

with the following modifications. The jag1b, hey1, grem2, and dlx1a probes were used at 0.2ng/

μL in hybridization buffer (hyb) overnight at 65˚C. The edn1, hand2, dlx6a, and dlx2a probes

were used at 0.5ng/μL in hyb buffer overnight at 70˚C. Once development was complete,

embryos were washed in PBST, bleached in 10% H2O2; 5% formamide in PBST for 20 min.

Finally embryos were washed in PBST and cleared in 80% glycerol containing 0.1% Tween-20

in dH2O for imaging.

Embryo Genotyping

Embryos were separated into individual Eppendorf tubes, excess water removed, and then

digested in Proteinase K at a final concentration of 100μg/ml for 2 hours at 55˚C and were vor-

texed every 15 minutes during the incubation. Samples were then diluted two-fold with dH2O

and vortexed for 1 minute. Proteinase K was then inactivated by heating samples to 96˚C for

15 minutes. Samples were then centrifuged at top speed for 1 minute to pellet cellular debris.

2μL of the solution was then used as template in a PCR reaction using the previously described

primers 3812-c; 3812–3; and LTR-f1 [36].

Plasmid construction and plasmid rescue assay

The primers edn1-f1 5’-TTCTTCGGATCCACCATGCATTTGAGGATTATTTTCCCAGT

TCTG-3’ and edn1-r1 5’-TTCTTCGAATTCCTATGAGTTTTCAGAAATCCACGCTTG-3’

were used to PCR amplify the edn1CDS from a previously described ISH probe plasmid con-

taining edn1 [18]. The insert was TOPO cloned, DNA sequence verified, and subcloned into

pCS2+ to yield pCS2+edn1CDS. For rescue, a pCS2+eGFP marker plasmid was co-injected at

the 1-cell stage with either pCS2+dsRed or the pCS2+edn1CDS plasmid, each at 50ng/μL.

Drug Treatments of Embryos

Adult wdr68hi3812/+ zebrafish were crossed to obtain groups of embryos that were placed in a

24˚C incubator for later dorsomorphin (DM) treatment or a 32˚C incubator for later isoliquir-

itigenin (ISL) or SB431542 (SB) treatment. Dechorionated embryos were exposed to 0.1%

DMSO control or DM/ISL/SB starting at the 14- to 15-somites stage and processed at 5 dpf for

Alcian staining or at the 20–24 somites stages for ISH analysis. Various drugs were kept on the

embryos until fixation.

CRISPR/Cas9-mediated knockouts in C2C12 cells

C2C12 cells were obtained from the ATCC. pLentiCRISPRv2-dcaf7-2 was generated by digest-

ing the pLentiCRISPRv2 plasmid with BsmBI, the oligonucleotides CRISPR-mdcaf7-2f: 5’-CA

CCGACATCGCCTTCAGCCGCGC-3’ and CRISPR-mdcaf7-2r: 5’-AAACGCGCGGCTGAA

GGCGATGTC-3’ were annealed, and then ligated into the vector fragment as previously

described [54]. Putative clones were isolated from Stbl3 competent cells and verified by DNA

sequencing. Lentiviral particles were generated by co-transfecting 293T cells with the virus

packaging plasmids psPAX2 and pCMV-VSV-G along with pLentiCRISPR-dcaf7-2. Cleared

virus-containing supernatant was used to transduce C2C12 cells in C2C12 growth medium

(GM) (DMEM + 2.5% FBS + 10% calf serum + 7.4 mM L-glutamine + 100μg/mL pen/strep).

The transduced C2C12 cells were subjected to 1μg/mL puromycin (GM+puro) selection, and

clonal sublines were isolated by serial dilution. Putative knock-out sublines were screened by

Western blot to identify functional knock-outs.
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Western blots on zebrafish embryo or C2C12 cell extracts

Embryos were ground on ice in a 1.5 mL microcentrifuge tube using a plastic pestle in 50μL

ice-cold RIPA buffer (50mM Tris pH 8, 150mM NaCl, 1% Igepal CA630, 0.5% NaDeoxycho-

late, 0.1% SDS) with 1x Protease Inhibitor Cocktail (PIC). The samples were vortexed for 1

minute and then centrifuged for 1 minute at room temperature at high speed. The samples

were maintained on ice for 1 hour and every 10 minutes were vortexed for 1 minute. After the

1-hour period ended, the tubes were centrifuged to pellet debris and supernatants quantified

by Bradford assay prior to being subjected to western blot analysis as described further below.

C2C12 cell extracts were made from 10cm plates of cells grown in GM or Differentiation

Medium (DMEM + 2% Horse serum + 100ug/mL pen/strep), rinsed twice with ice-cold PBS,

and then incubated in 0.5mL ice-cold RIPA buffer + 1x PIC for 15 min at 4˚C. Cells were then

scraped from the plate, incubated on ice for 1 hour, centrifuged at 10,000g at 4˚C and superna-

tants quantified by Bradford assay prior to being subjected to western blot analysis as follows.

Equal amounts of protein samples were boiled for 5 minutes at 95˚C, ran on 8–16%

SDS-PAGE gels, and then transferred onto PVDF membrane (Thermo Scientific). The PVDF

membrane was blocked overnight at 4˚C with 5% non-fat dry milk in PBST (PBS+0.01%

Tween-20) with 0.02% NaN3. The following day the blocking buffer was removed and blocked

primary antibody was added. The membrane was then rinsed 3X for 5 minutes with PBST and

then blocked secondary antibody was added. After the incubation period the membrane was

rinsed 3X for 5 minutes with PBST. In most cases, the same blot was stripped and re-probed

for relevant controls (beta-tubulin, total Yap).

Transient transfections and reporter assays

BMP-luciferase (BRE-Luc) reporter plasmid [55] and SV-40 Renilla Luciferase (SV40-Luc)

reporter plasmid were co-transfected into the C2C12 sublines using X-tremeGene HP as per

the manufacturers recommendations (Roche). After 8 or 16 hours of transfection, DNA-lipid

complexes were replaced with fresh medium -/+ BMP4 and/or -/+ TGF-β1. After an additional

8 or 20 hours, cell extracts were harvested for luminometer measurements using the Dual-

luciferase reporter (DLR) assay kit reagents (Promega).

Statistical Analysis

Pairwise comparisons were performed using the Student’s T-test. Experiments containing 3 or

more conditions were subjected to one-way ANOVA and post-hoc Tukey HSD tests.

Results

wdr68 activity is required during a window between the 17 somites and

prim-5 stages

The wdr68hi3812/hi3812 mutant was originally described as presenting a range of jaw defects that

varied from only mild joint fusions to near complete losses of the palatoquadrate (PQ) and

Meckel’s (M) cartilages [36]. The initial characterization was completed using embryos raised

at the standard 28.5˚C. We have since found that rearing the animals at 24˚C yielded mutant

animals that mostly present only the mild M-PQ joint fusion defects (Fig 1B red arrowhead,

compare to 1A). Specifically at 24˚C, 79% of mutants presented only mild M-PQ fusions ver-

sus 21% displaying severe loss of the M and/or PQ cartilage. In contrast, rearing embryos at

32˚C yielded mutant animals that mostly present severe losses of the M and PQ cartilages (Fig

1C compare to 1A, 1B). Specifically at 32˚C, 6% of mutants presented only mild M-PQ fusions

versus 94% displaying severe loss of the M and/or PQ cartilage. Because the wdr68hi3812 allele is
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a retroviral insertion within exon-1 near a splicing junction [36], and insertional mutations

can cause temperature-dependent splicing defects [56], we examined animals reared at 24˚C

versus 32˚C by RT-PCR in an effort to detect potential alternative splicing products but found

no evidence to support such a mechanism (data not shown).

We next used immunofluorescence to determine whether Wdr68 protein might exhibit

temperature-dependent differences in perdurance (Fig 1D and S1A–S1D Fig). We expected to

find Wdr68 protein in very early stage wdr68hi3812/hi3812 mutants because we previously

reported that wdr68 transcripts are maternally supplied [36]. Consistent with that expectation,

100% of shield-stage embryos obtained from wdr68hi3812/+ in-crosses that were analyzed by

immunofluorescence were positive for Wdr68 expression when raised at either 24˚C or 32˚C.

Random genotyping identified 2/16 wdr68hi3812/hi3812 mutants confirming that the appropriate

breeding cross had been made. However, by the 17-somites stage embryos raised at 32˚C were

strikingly different than those raised at 24˚C (Fig 1D, 17s red versus blue). While no embryos

raised at 24˚C displayed severe loss of Wdr68 expression, a near-mendelian ratio (20%) of

embryos raised at 32˚C lacked Wdr68 expression. Genotyping confirmed that 5/5 embryos

Fig 1. Wdr68 is required for craniofacial development between the 17 somites and prim-5 stages. A) Ventral view of 5dpf alcian

blue stained cartilages in wild type zebrafish. M: Meckel’s PQ: Palatoquadrate. B) Mild mutant phenotype resulting from rearing of

embryos at 24˚C, characterized by joint fusions (arrowhead) between M and PQ. C) Severe mutant phenotype resulting from rearing of

embryos at 32˚C, characterized by the loss of M and PQ. D) Immunohistochemistry readily detects maternal Wdr68 protein up to the 17

somites stage in wdr68hi3812/hi3812 mutants raised at the permissive 24˚C temperature (blue line). Maternal Wdr68 is lost by the 17

somites stage in wdr68hi3812/hi3812 mutants raised at the non-permissive 32˚C temperature (red line). E) wdr68-MO injected non-

transgenic (Non-Tg) animals display jaw defects regardless of heat shock. wdr68-MO injected Tg(hsp70l:GFP-Wdr68)csu9 animals that

are heat shocked by the prim-5 stage show rescue from jaw defects. Error bars indicate standard deviation. Additional abbreviations:

Shield (Sh), 15 somites (15s), 17 somites (17s), 20 somites (20s), 25 somites (25s), prim-5 (p5), prim-25 (p25), no heat shock (-HS).

doi:10.1371/journal.pone.0166984.g001
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raised at 32˚C and lacking Wdr68 expression by the 17-somites stage were wdr68hi3812/hi3812

mutants. Likewise, 9/9 embryos raised at 32˚C and possessing Wdr68 expression were wild-

type or wdr68hi3812/+ (hereafter summarized as +/�). Random genotyping of the embryos raised

at 24˚C that all had Wdr68 expression identified 3/10 wdr68hi3812/hi3812 mutants confirming

that the appropriate breeding cross had been made. By the prim-25 stage, both embryos raised

at 24˚C and 32˚C yielded near-mendelian ratios (24.1% and 23.8%, respectively) of embryos

lacking Wdr68 expression. Thus, a critical function for M and PQ formation is performed dur-

ing late somitogenesis by Wdr68 that is cut short in embryos raised at 32˚C.

To further delineate the temporal window during which Wdr68 functions to mediate M

and PQ formation, we generated Tg(hsp70l:GFP-wdr68) zebrafish lines (S1E–S1G Fig). The

lines were first characterized by heat shocking them at 39˚C for various periods of time fol-

lowed by fluorescence imaging (S1E and S1F Fig) and then harvested for western blot analysis

using anti-Wdr68 antibody (S1G Fig). We found that a 30-minute heat shock was sufficient to

yield fusion protein expression that lasted for at least 7 more hours (S1F and S1G Fig, lane 7).

We then injected embryos from outcrosses of the Tg(hsp70l:GFP-wdr68) adults with a previ-

ously described antisense wdr68-MO [36] and subjected them to 30-minute heat shocks at vari-

ous developmental stages to determine how late in development restored Wdr68 activity could

still rescue craniofacial development (Fig 1E). Overexpression of GFP-Wdr68 in otherwise

wildtype embryos did not yield any observable defects (S2A and S2B Fig). Over 75% of non-

transgenic wdr68-MO injected sibling embryos displayed jaw defects in spite of receiving heat-

shocks at all developmental time-points examined indicating that heat shock alone was unable

of rescue (Fig 1E, red line non-Tg). These embryos were also indistinguishable from both

transgenic and non-transgenic wdr68-MO injected embryos that did not receive any heat

shock (Fig 1E, -HS data point at the far right for each line; S2C and S2D Fig representative

images for mild and severe phenotypes). In contrast, less than 25% of Tg(hsp70l:GFP-wdr68)
sibling embryos heat shocked at 39˚C between the 17-somites and prim-5 stages displayed jaw

defects indicating rescue of craniofacial development as late as the prim-5 stage (Fig 1E, blue

line; S2G Fig compare 25s and p5 with p25 and -HS). However, heat shocking the wdr68-MO-
injected Tg(hsp70l:GFP-wdr68) embryos at the prim-25 stage failed to rescue craniofacial

development (Fig 1E, blue line; S2G Fig). Thus, restoring Wdr68 function as late as the prim-5

stage is sufficient to rescue craniofacial development. Together these findings indicate that

Wdr68 function is important for craniofacial development during a window between the

17-somites and prim-5 stages.

edn1 functions downstream of wdr68

We previously showed that edn1 expression depends on wdr68 activity and that expression of

downstream targets of Edn1 signaling, such as dlx6a and hand2, are also reduced or absent in

wdr68hi3812/hi3812 mutants [36]. The simplest model for these observations is that edn1 func-

tions downstream of wdr68 and that the primary function of wdr68 in lower jaw development

is, either directly or indirectly, the induction of edn1 expression. A simple prediction of this

model is that restoring edn1 expression in a wdr68hi3812/hi3812 mutant should also restore the

expression of edn1 target genes, such as dlx6a and hand2. To test this model, we generated a

plasmid construct for expressing edn1, injected embryos from crosses of wdr68hi3812/+ adults

with various combinations of mRNAs or plasmids, and then processed the embryos raised at

32˚C for either alcian blue staining of cartilages (Fig 2A–2E) or in situ hybridization (ISH)

using dlx6a probe to assess potential rescue (Fig 2F–2Q). The negative control mRNA EF1a

had no effect on wildtype siblings and failed to rescue wdr68hi3812/hi3812 mutants (Fig 2A and

2B). In contrast a significantly higher fraction of the embryos injected with Edn1 mRNA

Wdr68 Mediates D-V Patterning Events for Craniofacial Development

PLOS ONE | DOI:10.1371/journal.pone.0166984 November 23, 2016 9 / 30



displayed partially restored M-like cartilages in wdr68hi3812/hi3812 mutants (Fig 2C and 2E; com-

pare Edn1 vs EF1a, p<0.001). However, Edn1-injected wdr68hi3812/hi3812 mutants largely failed

to form normal PQ-like cartilages. As expected, wdr68hi3812/hi3812 mutants injected with Flag-

Wdr68 mRNA displayed nearly-normal M and PQ cartilages (Fig 2D and 2E; compare FW vs

EF1a, p<0.001).

Fig 2. Edn1 functions downstream of wdr68 for craniofacial development. (A-D) Ventral views of 5dpf Alcian stained craniofacial

cartilages of zebrafish raised at 32˚C. A) wildtype sibling injected with EF1a mRNA. B) wdr68 mutant injected with EF1a mRNA. C)

wdr68hi3812/hi3812 mutant injected with Edn1 mRNA. D) wdr68hi3812/hi3812 mutant injected with Flag-Wdr68 (FW) mRNA. E) Edn1 mRNA-

injected mutants have more M cartilage elements than EF1a controls (p<0.001). (F-Q) ISH analysis of dlx6a expression in embryos

raised at 32˚C with red arrowhead pointing at 1st arch CNCC territory. F, H, J, L) dorsal view of prim-5 stage. G, I, K, M) lateral view of

prim-5 stage. F, G) wildtype sibling injected with GFP/dsRed (G/R) plasmid mix showing normal dlx6a expression. H, I) wdr68hi3812/hi3812

mutant injected with G/R plasmid mix showing loss of dlx6a in 1st arch CNCC. J, K) wildtype sibling injected with GFP/Edn1 (G/Edn1)

plasmid mix showing near-normal dlx6a expression. L, M) wdr68hi3812/hi3812 mutant injected with G/Edn1 plasmid mix showing partial

rescue of dlx6a in 1st arch CNCC. N-Q) lateral view of dlx6a expression in prim-5 stage embryos raised at 28.5˚C. N) heat shocked

wildtype sibling control with normal dlx6a. O) heat shocked wildtype sibling injected with Et1-MO showing loss of dlx6a. P) heat shock

induced Tg(hsp70l:GFP-Wdr68) sibling control with normal dlx6a. Q) heat shock induced Tg(hsp70l:GFP-Wdr68) sibling injected with

Et1-MO showing loss of dlx6a.

doi:10.1371/journal.pone.0166984.g002
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As control for ISH analysis, wildtype sibling embryos injected with plasmids expressing

GFP and dsRed (G/R) displayed normal expression levels of dlx6a in the pharyngeal arches

(Fig 2F and 2G, red arrowhead). Likewise, wdr68hi3812/hi3812 mutants injected with the G/R

plasmid mix displayed the expected loss of 1st arch dlx6a expression (Fig 2H and 2I, red arrow-

head). Wildtype sibling embryos injected with plasmids expressing GFP and Edn1 (G/Edn1)
were slightly smaller than normal but displayed near-normal expression levels of dlx6a in the

pharyngeal arches (Fig 2J and 2K, red arrowhead). In contrast, wdr68hi3812/hi3812 mutants

injected with the G/Edn1 plasmid mix partially restored dlx6a expression (compare Fig 2L and

2M with 2H and 2I). Genotyping confirmed that 0/12 mutants injected with the G/R plasmid

mix had restored dlx6a expression (Fig 2H and 2I, 0% rescue), while 9/14 mutants injected

with the G/Edn1 plasmid mix had restored dlx6a expression (Fig 2L and 2M, 64% rescue).

Notably, the restoration of dlx6a expression appeared largely restricted to the ventral-most

region of the 1st arch in G/Edn1-injected wdr68hi3812/hi3812 mutants (compare Fig 2M to 2K). A

significant caveat to these findings is that, at least in our hands, plasmid-based Edn1 is very

broadly expressed in these experiments and thus the partial rescue may be the result of a non-

local ectopic Edn1 source (S3E and S3F Fig).

To further explore the epistatic relationships between edn1 and wdr68, we examined dlx6a
expression in Tg(hsp70l:GFP-Wdr68) embryos injected with antisense morpholino knockdown

of edn1 (Et1-MO) (Fig 2N–2Q). Wildtype sibling control embryos displayed normal dlx6a
expression (Fig 2N, red arrowhead). As expected, wildtype sibling embryos injected with

Et1-MO displayed severe loss of dlx6a expression in all pharyngeal arches (Fig 2O, red arrow-

head). Heat shock induction of GFP-Wdr68 overexpression did not alter dlx6a expression in

control embryos (Fig 2P) and failed to rescue dlx6a expression in Et1-MO animals (Fig 2Q).

We also found that GFP-Wdr68 overexpression did not affect edn1 expression (S3A and S3B

Fig). Expression of dlx6a in Et1-MO;wdr68hi3812/hi3812 mutants was severely reduced in all pha-

ryngeal arches similar to that observed in embryos only injected with Et1-MO (S3C and S3D

Fig; Fig 2O). In contrast, alcian blue stained cartilages readily detected a PQ-like cartilage in

Et1-MO animals that was absent in Et1-MO;wdr68hi3812/hi3812 mutants (S3G and S3H Fig).

Thus, edn1 appears to function downstream of wdr68 to facilitate ventral cartilage develop-

ment and dlx6a expression.

To further explore the regulatory relationships between wdr68 and edn1, we also examined

hand2 expression (S5I–S5P Fig). Expression of hand2 is both edn1-dependent and BMP-

dependent [9]. Wildtype sibling embryos injected with the G/R plasmid mix displayed normal

expression levels of hand2 (S3I and S3J Fig, red arrowhead). Likewise, wdr68hi3812/hi3812

mutants injected with the G/R plasmid mix displayed the expected loss of 1st arch hand2
expression (S3K and S3L Fig, red arrowhead). Wildtype sibling embryos injected with the G/

Edn1 plasmid mix displayed near-normal expression levels of hand2 (S3M and S3N Fig, red

arrowhead). In contrast to that observed for dlx6a, wdr68hi3812/hi3812 mutants injected with the

G/Edn1 plasmid mix failed to rescue hand2 expression (compare S3O and S3P Fig with S3K

and S3L Fig). Genotyping confirmed that 0/6 mutants injected with the G/Edn1 plasmid mix

had restored hand2 expression (S3O and S3P Fig, 0% rescue). Thus, while edn1 is downstream

of wdr68, more complex regulatory interactions exist for at least some edn1 target genes, such

as hand2, that require other wdr68-dependent functions for expression.

wdr68 restricts jagged-notch signaling to first arch dorsal territory

Signaling interactions between dorsally-restricted jag1b and notch2 are important for the

induction of similarly dorsally-restricted hey1 and grem2 expression [11]. Because edn1 expres-

sion is known to be important for proper restriction of jag1b, hey1, and grem2 expression from
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ventral territory, we examined their expression in embryos raised at 32˚C from crosses of

wdr68hi3812/+ adults. ISH revealed expansion of jag1b into the ventral territory of the first arch

structure in wdr68hi3812/hi3812 mutants (compare Fig 3A to arrowhead in Fig 3B). Genotyping

confirmed that 5/5 animals displaying the phenotype shown in Fig 3A were wildtype (+/�),

while 6/6 animals displaying the phenotype depicted in Fig 3B were wdr68hi3812/hi3812 mutant

animals. Expression of the transcription factor hey1 depends on Jag-Notch signaling [11]. We

also found expansion of hey1 expression into the ventral territory of the first arch structure

(compare Fig 3C to arrowhead in Fig 3D). Genotyping confirmed that 5/5 animals displaying

the phenotype shown in Fig 3C were wildtype (+/�), while 5/5 animals displaying the pheno-

type depicted in Fig 3D were wdr68hi3812/hi3812 mutant animals. Expression of the normally

dorsally-restricted BMP signaling antagonist grem2 is also dependent on Jag-Notch signaling

[10]. Mirroring our findings with jag1b and hey1, we found expansion of grem2 expression

into the ventral territory of the first arch structure (compare Fig 3E to arrowhead in Fig 3F).

Genotyping confirmed that 5/5 animals displaying the phenotype shown in Fig 3E were wild-

type (+/�), while 4/4 animals displaying the phenotype depicted in Fig 3F were wdr68hi3812/hi3812

mutant animals. Thus, we found that wdr68 is required to restrict Jagged-Notch signaling events

from ventral territory.

A BMP antagonist exacerbates the severity of craniofacial defects and

loss of edn1 expression in wdr68 mutants

BMP signaling is required for edn1 expression and ectopic BMP signaling can induce ectopic

edn1 expression [9, 10]. Thus, edn1 is a downstream target of BMP signaling. We previously

showed that edn1 expression is also downstream of wdr68 function [36] (and Fig 2). ISH analy-

sis failed to detect any defects in BMP4 expression in wdr68 mutants (S4 Fig), suggesting wdr68
functions downstream or in parallel to BMP signaling. A simple model combining these obser-

vations is that wdr68 facilitates BMP induction of edn1. If true, then treating wdr68hi3812/hi3812

mutants with a BMP antagonist will exacerbate loss of M formation and edn1 expression. To

test this, we treated embryos, from matings of wdr68hi3812/+ adult zebrafish, raised at 24˚C with

10μM Dorsomorphin (DM) starting at the 14–15 somites stage. We chose to start treatments at

this relatively late stage in order to avoid perturbing the very early developmental roles of BMP

signaling. When grown at 24˚C, wdr68hi3812/hi3812 embryos displayed only mild M-PQ joint

fusions (see Fig 1B). We found that DMSO-treated wildtype (+/�) embryos exhibited normal

cartilage formation while wdr68hi3812/hi3812 embryos exhibited M-PQ joint fusions (compare Fig

4A to 4B). Genotypic analysis of embryo tails separated from heads prior to Alcian blue staining

confirmed that 6/6 embryos like that shown in Fig 4B were wdr68hi3812/hi3812 mutants. DM-

treated wildtype (+/�) embryos appeared the same as DMSO-treated wildtypes (compare Fig 4C

to 4A). However, DM-treated wdr68hi3812/hi3812 mutants lost M and also had severely reduced

PQ cartilages while vehicle treated mutants displayed only joint fusions between M and PQ

(compare Fig 4D to 4B). Genotypic analysis confirmed that 6/6 embryos like that shown in Fig

4D were wdr68hi3812/hi3812 mutants. We also quantified the fraction of mutants in each treatment

exhibiting the mild M-PQ fusion and found that 23.2% of DMSO-treated animals displayed the

M-PQ fusion versus only 4.2% of the DM-treated animals (Fig 4E, blue bars, p<0.046). Con-

versely, we found that only 3.7% of DMSO-treated animals displayed severe losses of M and PQ

versus 20.0% of DM-treated animals (Fig 4E, orange bars, p<0.040).

To test whether partial inhibition of BMP signaling in mild wdr68hi3812/hi3812 embryos

would yield a synergistic reduction of edn1 expression, we again treated embryos raised at

24˚C with DM starting at the 14–15 somites stage. We then used ISH to observe expression of

edn1 at the 20 somites stage. In embryos treated with DMSO, we found normal expression of
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Fig 3. Wdr68 restricts expression of jag1b, hey1, and grem2 from ventral territory. ISH analysis on embryos

raised at 32˚C. A) normal expression of jag1b in dorsal territory at the prim-25 stage, B) expansion of jag1b into

ventral territory in wdr68hi3812/hi3812 mutants, C) normal expression of hey1 in dorsal territory at the prim-25 stage,
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edn1 in wildtype (+/�) siblings (Fig 4F, red arrowhead) and reduced but still barely detectable

expression of edn1 in wdr68hi3812/hi3812 mutants (Fig 4G, red arrowhead). Genotypic analysis

confirmed that 7/7 embryos in Fig 4F were wildtype (+/�) and 5/5 embryos shown in Fig 4G

were wdr68hi3812/hi3812 mutants. In embryos treated with DM, we found mildly reduced expres-

sion of edn1 in wildtype (+/�) siblings (Fig 4H, red arrowhead) that is consistent with the

known role of DM as a BMP signaling antagonist (Yu et al., 2008) and with the fact that edn1
is a downstream target of BMP signaling (Alexander et al., 2011; Zuniga et al., 2011). In the

DM-treated wdr68hi3812/hi3812 mutants, we were unable to detect edn1 expression (Fig 4I, red

arrowhead). Genotypic analysis confirmed that 8/8 embryos shown in Fig 4H were wildtype

(+/�) and that 5/5 embryos shown in Fig 4I were wdr68hi3812/hi3812 mutants.

A BMP agonist can partially rescue Meckel’s cartilage formation and

edn1 expression in wdr68 mutants

If wdr68 facilitates BMP induction of edn1, then treating wdr68 mutants with a BMP agonist

should at least partially rescue M cartilage formation and edn1 expression. To test this, we

treated embryos raised at 32˚C with the BMP signaling agonist isoliquiritigenin (ISL) starting at

the 14–15 somites stages [57]. Embryos were raised at 32˚C so that mutants would exhibit

severe loss of the M cartilage from which potential rescue of M cartilage formation could be

most clearly assessed (see Fig 1C). Alcian blue stained zebrafish cartilages were dissected and

flat mounted on slides for additional clarity. At 32˚C, we found that DMSO-treated wildtype

zebrafish developed the M cartilage as expected (Fig 5A, red arrowhead). Also at 32˚C, we

found that most DMSO-treated mutants exhibited complete loss of M and reduction of PQ as

previously described (Fig 5B, red arrowhead). ISL-treated wildtype embryos were indistinguish-

able from DMSO-treated wildtype (compare Fig 5C to 5A). In contrast, ISL-treated mutants

raised at 32˚C exhibited a partial restoration of the M cartilage (compare Fig 5D to 5B, red

arrowheads). However, ISL treatment did not appear to significantly restore formation of the

PQ (compare Fig 5D to 5A and 5C). We quantified the fraction of mutants in each treatment

exhibiting a discernible M-like cartilage element and found that 59% of ISL-treated animals dis-

played an M-like cartilage versus only 17% of DMSO-treated animals (Fig 5E, p<0.006).

To determine whether enhanced BMP signaling in severe wdr68hi3812/hi3812 embryos would

partially rescue edn1 expression, we again treated embryos raised at 32˚C with 5μM ISL start-

ing at the 14–15 somites stages. We then used ISH to observe expression of edn1 at the 20

somites stage. In embryos treated with DMSO, we found normal expression of edn1 in wild-

type siblings (Fig 5F) but were unable to detect edn1 expression in wdr68hi3812/hi3812 mutants

(Fig 5G). Genotypic analysis confirmed that 10/10 embryos phenotypically like that shown in

Fig 5F were wildtype (+/�) and 5/5 embryos phenotypically like that shown in Fig 5G were

wdr68hi3812/hi3812 mutants. Strikingly in embryos treated with ISL, no embryos displayed a

severe reduction of edn1 expression. Genotyping was performed to unequivocally identify

wildtypes and mutants. Wildtype siblings displayed normal expression of edn1 (compare Fig

5H to 5F). The known BMP agonist role for ISL suggested we might see overexpression of

edn1 in these animals but that was not observed (Vrijens et al., 2013). Instead, the ISL-treated

embryos appeared to yield no phenotypic mutants with respect to edn1 expression level (com-

pare Fig 5I to 5G). Consistent with that notion, random genotypic analysis revealed that 2/9

embryos with normal edn1 expression levels were indeed wdr68hi3812/hi3812 mutants (Fig 5I).

D) expansion of hey1 into ventral territory in wdr68hi3812/hi3812 mutants, E) normal expression of grem2 in dorsal

territory at the prim-25 stage, F) expansion of grem2 into ventral territory in wdr68hi3812/hi3812 mutants.

doi:10.1371/journal.pone.0166984.g003
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Thus, ISL treatment rescued edn1 expression in wdr68hi3812/hi3812 mutants to near-normal

levels.

Live confocal imaging of Tg(sox10:mCherryCAAX);wdr68hi3812/hi3812 mutants revealed con-

sistent defects (6/6 mutants genotyped) within the 1st arch CNCC region at the prim-5 and

later stages (S5D, S5F and S5H Fig, blue dotted outline). At the prim-5 stage, reduced mCher-

ryCAAX signal was observed in both dorsal and ventral regions of the 1st arch (S5D Fig, com-

pare blue outline to S5C Fig). By the prim-12 stage, the dorsal defect was less apparent but the

ventral reduction was still evident (S5F Fig, compare blue outline to S5E Fig) and persisted

through at least the prim-25 stage (S5H Fig, compare blue outline to S5G Fig). The mCherry-

CAAX signal remained detectable through to 4dpf (S5I–S5L Fig). ISL treatment yielded a

modest but consistent (4/4 mutants genotyped) rescue of mCherryCAAX signal in the ventral

region of the 1st arch (S5N Fig, compare blue outline to S5H Fig).

Canonical BMP signaling is not impaired in cells lacking Wdr68

expression

To further examine whether Wdr68 might directly impact BMP signaling, we used CRISPR/

Cas9 gene targeting technology to generate loss-of-function deletions in the Wdr68/Dcaf7

locus in mouse C2C12 cells. Western blot analysis and DNA sequencing confirmed the genera-

tion of two independently isolated mutant sublines, Δwdr68-5 and Δwdr68-9 (Fig 6A and S4B

Fig) as well as a non-target control (NT1) subline. The transcriptional co-activator Yap is

reported to be important for BMP signaling in mammalian cells [58, 59]. In flies, the ortholog

of Wdr68, Riquiqui (Riq), is also reported to positively regulate the Yap ortholog yorkie
through its interaction with the kinase Minibrain (Mnb) that negatively regulates the Hippo

signaling pathway kinase Warts (Wts) [60]. Therefore, we examined both total Yap and pYap

levels in the control, Δwdr68-5, and Δwdr68-9 sublines but found no significant differences

between them (Fig 6A). To further characterize the sublines, we examined the levels of

pSmad1/5 after a one-hour treatment of the cells with 0, 1, 10, or 100ng/mL BMP4 and found

no significant reproducible differences between the sublines (Fig 6B). To determine whether

Wdr68/Dcaf7 might generally facilitate BMP signaling in a functional assay, we transfected the

control and deletion sublines with the BRE-Luc reporter plasmid [55] along with a SV40-Re-

nilla plasmid, and generated a dose-response curve to BMP4 ligand (Fig 6C). All relative light

unit responses were normalized to the vehicle-treated control subline (Fig 6C, leftmost col-

umn). Overall, no significant decreases in fold-induction were found in the Δwdr68-5 and

Δwdr68-9 sublines relative to the control subline (Fig 6C grey bars versus black bars). Immu-

nofluorescence analysis also revealed little consistent difference in pSmad1/5 levels between

wildtype and wdr68hi3812/hi3812 mutant zebrafish embryos (Fig 6E and 6F). As expected, ISL

treatment did consistently increase pSmad1/5 signal (compare Fig 6H to 6G). Thus, Wdr68/

Dcaf7 does not appear to directly modulate BMP signaling pathway activity.

Fig 4. DM treatment induces loss of M cartilage and edn1 expression in wdr68hi3812/hi3812 zebrafish. (A-D)

Ventral views of 5dpf Alcian stained craniofacial cartilages of zebrafish raised at 24˚C and treated with DMSO or

10μM DM at 14–15 somites stage. A) Wildtype embryo treated with DMSO control. B) wdr68hi3812/hi3812 mutant

treated with DMSO show joint fusions between M and PQ. C) Wildtype embryo treated with DM reveal no

defects in craniofacial cartilages. D) wdr68hi3812/hi3812 mutants treated with DM show severe reduction in PQ and

deletion of M. E) DM-treated mutants show significantly more severe defects compared to the control group

(p<0.040). (F-I) Dorsal views of edn1 ISH analysis on 20 somites stage embryos treated with DMSO or 10μM

DM starting at the 14–15 somites stage. F) Wildtype embryos treated with DMSO control. G) wdr68hi3812/hi3812

mutants treated with DMSO control show reduced edn1 expression. H) Wildtype embryos treated with DM show

mildly reduced edn1 expression. I) wdr68hi3812/hi3812 mutants treated with DM lack edn1 expression.

doi:10.1371/journal.pone.0166984.g004
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TGF-β interference with BMP signaling is enhanced in cells lacking

Wdr68 expression

TGF-β signaling is important for craniofacial development [26], and can interfere with BMP

signaling via Smad3-mediated displacement of Smad4 from pSmad1/5 complexes [29, 30].

Therefore we examined the BRE-Luc responsiveness of the NT1 control, Δwdr68-5 and

Δwdr68-9 sublines when co-treated with 10ng/mL BMP4 and 0, 0.1, 1, or 10ng/mL TGF-β1

ligand. As previously reported, we found that TGF-β1 can interfere with BRE-Luc activity in

the NT1 control cells (Fig 6D, black bars). We also found a consistent statistically significant

further decline of BRE-Luc activity in the Δwdr68-5 and Δwdr68-9 sublines at 10ng/mL TGF-

β1 (Fig 6D, grey bars versus black bars, p<0.001).

The TGF-β inhibitor SB431542 can partially rescue the M cartilage

defects and edn1 expression in wdr68 mutants

If enhanced TGF-β interference with BMP signaling contributes to the wdr68 mutant pheno-

type in zebrafish, then inhibiting TGF-β pathway function should at least partially restore car-

tilage development in wdr68 mutants. SB431542 is a well-characterized inhibitor of the TGF-β
family receptor kinases Alk4/5 [61], that is also known to inhibit TGF-β signaling activity in

the zebrafish [62–64]. To avoid perturbing earlier developmental roles of TGF-β family signal-

ing, embryos were treated with 10μM SB431542 starting at the 14- to 15-somites stages.

Embryos were raised at 32˚C so that mutants would exhibit severe loss of the M cartilage from

which potential rescue of M cartilage formation could be most clearly assessed (Fig 1C). At

32˚C, we found that DMSO-treated wildtype zebrafish developed the M cartilage as expected

(Fig 7A, red arrowhead). Also at 32˚C, we found that most DMSO-treated mutants exhibited

complete loss of M and reduction of PQ as previously described (Fig 7B, red arrowhead). 10μM

SB431542-treated wildtype embryos were indistinguishable from DMSO-treated wildtypes

(compare Fig 7C to 7A). In contrast, SB431542-treated mutants raised at 32˚C exhibited a partial

restoration of the M and PQ cartilages (compare Fig 7D to 7B, red arrowheads). Quantitation of

the changes in phenotypic severity revealed a significant shift in the number of mutants display-

ing severe versus mild phenotypes. Under DMSO treatment, mild wdr68hi3812/hi3812 embryos

were 8.6% of the total sample population whereas severe wdr68hi3812/hi3812 embryos were 14.3%

of the total population (Fig 7E, left). Under SB431542 treatment, mild wdr68hi3812/hi3812 embryos

were 19.2% of the total population whereas severe mutants were 8.0% of the total population

(Fig 7E, right). Thus, SB431542 treatment decreased the fraction of severe mutants relative to the

DMSO control (Fig 7E, red bars, p< 0.012).

To determine whether inhibiting TGF-β signaling in severe wdr68hi3812/hi3812 embryos

would partially rescue edn1 expression, we again treated embryos raised at 32˚C with 10μM

Fig 5. ISL treatment partially rescues M cartilage and edn1 expression in wdr68hi3812/hi3812 zebrafish.

(A-D) Flatmounts of 5dpf ventral cartilages of Alcian stained zebrafish raised at 32˚C and treated with DMSO

or 5μM ISL starting at the 14- to 15-somites stage. A) Wildtype zebrafish treated with DMSO control. Red

arrow indicate M. B) wdr68hi3812/hi3812 mutants treated with DMSO control show a lack of M cartilage. C)

Wildtype zebrafish treated with 5μM ISL show normal craniofacial cartilage formation. D) wdr68hi3812/hi3812

mutants treated with 5μM ISL show a partial rescue of M. E) Fraction of mutant embryos with partial M is

significantly greater in the ISL treated group (p<0.006). (F-I) Dorsal views of edn1 ISH analysis on 20-somites

stage embryos treated with DMSO or 5μM ISL starting at the 14- to 15-somites stage. F) Wildtype embryos

treated with DMSO control. G) wdr68hi3812/hi3812 mutants treated with DMSO control show lack of edn1

expression. H) Wildtype embryos treated with ISL show similar expression compared to wild type. I)

wdr68hi3812/hi3812 mutants treated with ISL are indistinguishable from that of wildtype.

doi:10.1371/journal.pone.0166984.g005

Wdr68 Mediates D-V Patterning Events for Craniofacial Development

PLOS ONE | DOI:10.1371/journal.pone.0166984 November 23, 2016 18 / 30



Fig 6. TGF-β interference with BMP signaling is enhanced in cells lacking Wdr68 expression. A) Isolation of Wdr68/Dcaf7 knock-

out C2C12 cell sublines and expression levels in growth medium (GM) versus differentiation medium (Diff). Panel A1) Lanes 1 and 4,

Wdr68 protein was detected in the control NT1 cells. Lanes 2 and 5, Δwdr68-5 lacks wildtype Wdr68 protein expression. Lanes 3 and 6,

Δwdr68-9 lacks wildtype Wdr68 protein expression. Panel A2) β-tubulin expression was used as a loading control and did not differ

substantially between lanes. Panel A3) pYap1 levels did not differ substantially between lanes. Panel A4) Total Yap1 levels did not differ

substantially between lanes. B) pSmad1/5 induction was not substantially altered in Δwdr68-5 or Δwdr68-9 sublines. Panel B1) pSmad1/

5 levels in control (NT1) or Δwdr68-5 (5) cells after 1 hour of exposure to 0, 1, 10, or 100ng/mL BMP4 in DM. Panel B2) β-tubulin

expression was used as a loading control and did not differ substantially between lanes. Panel B3) pSmad1/5 levels in control (NT1) or

Δwdr68-9 (5) cells after 1 hour of exposure to 0, 1, 10, or 100ng/mL BMP4 in DM. Panel B4) β-tubulin expression was used as a loading
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SB431542 starting at the 14- to 15-somites stages. We then used ISH to observe expression of

edn1 at the 22-somites stage. In embryos treated with DMSO, we found normal expression of

edn1 in wildtype siblings (Fig 7F) but were unable to detect edn1 expression in wdr68hi3812/hi3812

mutants (Fig 7G). Genotypic analysis confirmed that 4/4 embryos phenotypically like that

shown in Fig 7F were wildtype (+/�) and 5/5 embryos phenotypically like that shown in Fig 7G

were wdr68hi3812/hi3812 mutants. In embryos treated with SB431542, we also found normal

expression of edn1 in wildtype siblings (Fig 7H). Importantly, SB431542-treated mutants

displayed greater edn1 expression levels than could be observed in DMSO-treated mutants

(Fig 7I, compare to Fig 7G), albeit at levels clearly still lower than wildtype siblings (Fig 7I,

compare to Fig 7H). Genotyping confirmed that 5/5 embryos phenotypically like that shown in

Fig 7H were wildtype (+/�) and 5/5 embryos phenotypically like that shown in Fig 7I were

wdr68hi3812/hi3812 mutants. Thus, SB431542-treatment partially rescued edn1 expression in

wdr68hi3812/hi3812 mutants.

The TGF-β inhibitor SB431542 can partially rescue dorsal dlx2a

expression in wdr68 mutants

A molecular explanation for the absence of the PQ in wdr68hi3812/hi3812 mutants is still lacking.

Interestingly, SB431542-treated wdr68hi3812/hi3812 mutants not only displayed partial rescue of

the ventral M cartilage, but also a consistent partial rescue of the dorsal PQ cartilage (Fig 7D).

This was in contrast to either ectopic expression of edn1 (Fig 2C), or ISL-treatment (Fig 5D),

both of which failed to restore the dorsal PQ cartilage in wdr68hi3812/hi3812 mutants. It has been

previously reported that simultaneous antisense knockdown of dlx1a and dlx2a causes loss of

the PQ while retaining the M and PTP [65]. The reported dlx1a/2a-MO phenotype bears simi-

larities to the residual defects we observed for both ectopic edn1 (Fig 2C) and ISL-treatment

(Fig 5D) in wdr68hi3812/hi3812 mutants. Therefore, we re-examined the expression of the dlx1a
and dlx2a genes at the prim-12 stage in wdr68hi3812/hi3812 mutant embryos raised at 32˚C (Fig

8). In wildtype sibling embryos, we found robust expression of dlx2a in both dorsal and ventral

CNCCs of the 1st and 2nd arches (Fig 8A and 8B). In contrast, we found severely reduced dlx2a
expression in the anterior portion of the 1st arch in wdr68hi3812/hi3812 mutants (Fig 8C and 8D,

compare red underline between 8D and 8B). Consistent with the relatively minor 2nd arch-

derived cartilage defects in wdr68hi3812/hi3812 mutants (Figs 1C, 2B, 5B and 7B), expression

of dlx2a in the 2nd arch was relatively unchanged in wdr68hi3812/hi3812 mutants (Fig 8D

compare blue underline to 8B). To determine whether inhibiting TGF-β signaling in severe

wdr68hi3812/hi3812 embryos would partially rescue dlx2a expression, we again treated embryos

raised at 32˚C with 10μM SB431542 starting at the 14- to 15-somites stages. While SB431542

treatment yielded no discernible changes in wildtype siblings, we found partial rescue of ante-

rior dorsal and ventral 1st arch expression of dlx2a in wdr68hi3812/hi3812 mutants (Fig 8E and 8F,

compare red underline to Fig 8C and 8D). Analysis of dlx1a expression revealed a similar loss

control and did not differ substantially between lanes. C) Transient transfection of NT1, Δwdr68-5, and Δwdr68-9 sublines with BRE-Luc

and SV40-Renilla plasmids and induced with 0, 1, 10, or 100ng/mL BMP4 in GM. No significant differences were found between control and

deletion sublines. Representative experiment shown from at least 3 independent trials. D) Transient transfection of NT1,Δwdr68-5, and

Δwdr68-9 sublines with BRE-Luc and SV40-Renilla plasmids, induced with 10ng/mL BMP4, and then challenged with 0, 0.1, 1.0, or

10ng/mL TGF-®1. At 10ng/mL TGF-®1 interference with BRE-Luc activity was significantly greater in the Δwdr68-5 and Δwdr68-9 sublines

relative to NT1 controls (* = p < 0.002). Representative experiment shown from at least 3 independent trials. E-H) Immunofluorescence

detection of pSmad1/5 in prim-12 stage zebrafish embryos raised at 32˚C. E) wildtype sibling embryo. F) wdr68hi3812/hi3812 mutant embryo.

G) DMSO-treated wildtype sibling. H) ISL-treated wildtype sibling.

doi:10.1371/journal.pone.0166984.g006
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of anterior dorsal and ventral 1st arch expression in wdr68hi3812/hi3812 mutants (Fig 8H, com-

pare red underline to Fig 8G).

Discussion

Temperature dependence of the wdr68 mutant phenotype

Here we report that modest differences in maternally-derived protein stability, caused by incu-

bation at different temperatures, can yield dramatic shifts in phenotypic severity even for

mutants that are otherwise expected to be null mutations (Fig 1A–1D). This finding suggests

that conducting forward genetic screens at temperatures other than the field standard of

28.5˚C may reveal additional mutable loci that have as yet gone undetected.

wdr68 functions upstream of edn1 during a period between the

17-somites and prim-5 stages to induce and restrict dorsal-specifying

genes from ventral territory

We identified a developmental period between the 17-somites and prim-5 stages during which

wdr68 function is particularly important for craniofacial development (Fig 1D and 1E). Nota-

bly, this window contains the point at which edn1 expression begins, around the 18-somites

stage [18], and overlaps substantially with the period during which Edn1 signaling is important

for craniofacial patterning [9, 10]. Specifically, Alexander et al., 2011 found that restoring

Edn1 expression as late as the prim-5 stage was able to partially rescue the defects caused by

dnBmpr1 expression. In contrast, restoring Edn1 expression around the prim-25 stage was too

late, similar to our findings with Wdr68. We found that ectopic expression of edn1 in wdr68
mutants was able to partially restore the 1st arch expression of a canonical edn1-dependent tar-

get gene, dlx6a, consistent with the model that wdr68 functions upstream of edn1 (Fig 2). How-

ever, we also found that ectopic edn1 expression was insufficient to restore 1st arch hand2
expression in the absence of wdr68 (S3 Fig). The expression of hand2 depends on both

edn1!dlx6a and BMP signaling [9]. Thus, interference with BMP signaling to hand2 in a

wdr68 mutant might prevent edn1!dlx6a induction of hand2. As an attempt to test this

model, we treated wdr68 mutants with ISL to enhance BMP signaling and edn1 expression

simultaneously, but the treatment failed to restore hand2 expression (S4C and S4D Fig). While

that result may simply reflect a shortcoming of the experimental procedure (e.g. insufficient

levels of BMP signaling, edn1!dlx6a expression, or both), it may also indicate a distinct

wdr68-dependent requirement for hand2 expression. Nonetheless, and consistent with the

known role for edn1 expression, we found that wdr68 is required to properly restrict jag1b,

hey1, and grem2 from ventral territory (Fig 3). The simplest explanation for these ventral

expansions of dorsal territory markers is the failure of edn1 expression in wdr68 mutants.

Fig 7. Inhibition of TGF-β signaling partially rescues M cartilage and edn1 expression in

wdr68hi3812/hi3812 zebrafish. (A-D) Ventral views of 5dpf Alcian stained craniofacial cartilages of zebrafish

raised at 32˚C and treated with DMSO or 10μM SB431542 at 14- to 15-somites stage. A) Wildtype zebrafish

treated with DMSO control. Red arrow indicates M-PQ joint region. B) wdr68hi3812/hi3812 mutants treated with

DMSO control show a lack of M cartilage. C) Wildtype zebrafish treated with 10μM SB431542 show normal

craniofacial cartilage formation. D) wdr68hi3812/hi3812 mutants treated with 10μM SB431542 show a partial

rescue of M. E) SB431542-treated mutants show a significantly reduced fraction of severe defects compared

to the control group (p<0.012). (F-I) Dorsal views of edn1 ISH analysis on 22-somites stage embryos treated

with DMSO or 10μM SB431542 starting at the 14- to 15-somites stage. F) Wildtype embryos treated with

DMSO control. G) wdr68hi3812/hi3812 mutants treated with DMSO control show lack of edn1 expression. H)

Wildtype embryos treated with SB431542 show similar expression compared to wild type. I) wdr68hi3812/hi3812

mutants treated with SB431542 show partial restoration of edn1 expression.

doi:10.1371/journal.pone.0166984.g007
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Fig 8. dlx1a and dlx2a expression is wdr68-dependent and responsive to inhibition of TGF-β signaling in

wdr68hi3812/hi3812 zebrafish. (A-H) ISH analysis of prim-12 stage embryos raised at 32˚C. A-F) dlx2a expression with

red underline for anterior portion of 1st arch and blue underline for 2nd arch. A, C, E) lateral view. B, D, F) dorso-lateral

view. A, B) DMSO-treated wildtype sibling showing normal dlx2a. C, D) DMSO-treated wdr68hi3812/hi3812 mutant
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The expansion of dorsal-specifying markers into ventral territory (Fig 3) is often accompa-

nied by transformation of ventral cartilages into dorsal cartilages [9, 10]. Curiously, such trans-

formations are not observed in wdr68 mutants, which instead display losses of both dorsal and

ventral cartilage elements. Our findings on the wdr68-dependence of dlx1a and dlx2a expres-

sion suggests that jag1b-mediated transformation of CNCCs may require the dlx1a/2a expres-

sion program.

The losses of dlx1a/2a expression (Fig 8) combined with the observed reductions of Tg

(sox10:mCherryCAAX) label in wdr68 mutants (S5 Fig) raises the possibility that a subset of

the CNCCs in wdr68 mutants may be lost due to apoptosis. This is an intriguing possibility

that will require further investigation. However, the detection of dorsal-specifying markers

such as jag1b and hey1 in both dorsal and ventral territory (Fig 3) indicates that a population

of CNCCs remains within the 1st arch of wdr68 mutants at least until about the prim-25 stage.

The ultimate fate of the mis-patterned cells remains unclear.

wdr68 function does not directly modulate BMP signaling but may

interfere with TGF-β signaling

Although a BMP antagonist and agonist yielded expected exacerbations and rescues of the

defects in wdr68 mutants, respectively (Figs 4 and 5), we found no strong evidence of a direct

impact on BMP signaling pathway function (Fig 6). Notably, while analysis of the edn1 pro-

moter sequence revealed the presence of DNA sequence elements associated with BMP

responsiveness (unpublished observations), it is unclear whether Smad1/5 complexes directly

regulate the edn1 promoter.

Interestingly, we found that TGF-β interference with BMP signaling was enhanced in

mouse C2C12 cells lacking Wdr68 and that inhibition of TGF-β signaling partially restored

jaw cartilage development, edn1, and dlx2a expression in zebrafish wdr68 mutants (Figs 6D, 7

and 8). Nonetheless, is remains unclear whether these wdr68—TGF-β pathway interactions are

direct or indirect.

The ISL-mediated rescue of edn1 expression (Fig 5I) was more robust than the

SB431542-mediated rescue of edn1 expression (Fig 7I). Yet, ISL-mediated rescue of the jaw

cartilages was less complete (Fig 5D) than the SB431542-mediated rescue of the jaw cartilages

(Fig 7D). This discrepancy can be explained by the potency of edn1 plus the absence of dlx1a
and dlx2a expression in wdr68 mutants. First, fairly low levels of edn1 expression can still

mediate M formation (Fig 4G). Second, SB431542 treatment was able to also rescue dlx2a (Fig

8E and 8F) while ISL treatment did not (S4E and S4F Fig). Thus, the combined actions of a rel-

atively potent edn1 signaling molecule and simultaneous restoration of edn1 and dlx2a in

SB431521-treated embryos likely underlies the relatively well formed jaw cartilages. That said,

the mechanism by which SB431542 restores jaw development in wdr68 mutants is still poorly

understood and will require further investigation.

Wdr68 is a scaffolding protein and a large number of interacting factors have been identi-

fied by various high- and low-throughput approaches. Interestingly, Wdr68 has been reported

to physically interact with Smad2, Smad3, and Ski [42, 66]. Wdr68 also interacts with the

kinases Dyrk1a and Dyrk1b [38], that are reported to interact with Smad3 [42] and Ski [67],

respectively. Thus, Wdr68 may organize a multi-subunit complex capable of modulating TGF-

β pathway function. Together, the interactions of these factors potentially impact numerous

showing loss of anterior 1st arch dlx2a. E, F) SB431542-treated wdr68hi3812/hi3812 mutant showing partial rescue of

anterior 1st arch dlx2a. G, H) dlx1a expression. G) wildtype sibling showing normal dlx1a. H) wdr68hi3812/hi3812 mutant

showing loss of anterior 1st arch dlx1a.

doi:10.1371/journal.pone.0166984.g008
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disease states including cleft lip/palate, auriculocondylar syndrome, Alagille syndrome, and

Down syndrome. Future investigations aimed at testing these potential roles are needed.

Supporting Information

S1 Fig. Detection of endogenous Wdr68 and ectopic GFP-Wdr68 fusion protein in zebra-

fish embryos. A-D) Immunofluorescence detection of endogenous Wdr68. A) Wdr68 expres-

sion in a wildtype 15-somites stage embryo raised at 32˚C. B) a wdr68 mutant lacking Wdr68

protein. C) Wdr68 expression in a wildtype prim-5 stage embryo raised at 32˚C. D) a wdr68
mutant lacking Wdr68 protein. E-F) live imaging of GFP fluorescence in Tg(hsp70l:GFP-
wdr68)csu9 animals. E) transgenic animal with the only detected GFP expression coming from

the cmlc:eGFP marker for transgenesis. F) same animal as in E but after a 0.5 hour heat shock

(HS) at 39˚C followed by 7 hours of recovery at 28.5˚C. G) western blot analysis of Tg(hsp70l:
GFP-wdr68)csu9 animals after various lengths of heat shock exposure. Panel G1) GFP-wdr68
expression is induced by heat shock. Panel G2) β-tubulin expression was used as a loading con-

trol and did not differ substantially between lanes.

(TIF)

S2 Fig. Phenotypes and distributions observed in ectopic GFP-Wdr68 fusion protein

expressing embryos and control siblings. A-F) ventral views of 5dpf alcian blue stained carti-

lages from embryos raised at 28.5˚C. A) heat shocked wildtype sibling displaying normal carti-

lages. B) heat shock induced Tg(hsp70l:GFP-wdr68) overexpression yielded no discernible

cartilage phenotype. C) wdr68-MO injected animal showing the mild M-PQ joint fusion phe-

notype. D) wdr68-MO injected animal showing the severe loss of M and PQ phenotype. E)

wdr68-MO injected heat shock induced Tg(hsp70l:GFP-wdr68) animal showing rescued nor-

mal M and PQ cartilages. F) wdr68-MO injected heat shock induced Tg(hsp70l:GFP-wdr68)
animal showing rescued mild M-PQ joint fusions. G) plot of the distribution of phenotypes

observed in a representative experiment on wdr68-MO injected Tg(hsp70l:GFP-wdr68) ani-

mals.

(TIF)

S3 Fig. Epistatic analysis of wdr68 and edn1. A-B) ISH analysis for edn1 expression on

25-somites stage animals raised at 28.5C that were heat shocked at the bud and 20-somites

stages. A) wildtype sibling with normal edn1 expression. B) Tg(hsp70l:GFP-wdr68) embryo

overexpressing GFP-Wdr68 with near-normal edn1 expression. C-D) ISH analysis on prim-12

stage embryos. C) wildtype control sibling with normal dlx6a expression. D) Et1-MO;

wdr68hi3812/hi3812 mutant lacking dlx6a expression in all arches. E-F) merged green-red channel

fluorescence on prim-5 stage embryos injected with either GFP/dsRed (G/R) or GFP/Edn1

(G/Edn1) plasmid mixtures. E) broad GFP/dsRed expression in a G/R embryo. F) broad GFP

expression in a G/Edn1 embryo. G-H) lateral view of 5dpf alcian blue stained embryo. G)

Et1-MO injected animal showing loss of M and CH but retention of PQ. H) Et1-MO;

wdr68hi3812/hi3812 mutant showing loss of M, CH, and PQ. I-P) ISH analysis for hand2 expres-

sion on prim-12 stage animals raised at 32˚C. Red arrowhead points at 1st arch expression of

hand2. I, K, M, O) dorsal view. J, L, N, P) lateral view. I, J) wildtype sibling injected with G/R

mix showing normal hand2. K, L) wdr68hi3812/hi3812 mutant injected with G/R mix showing

loss of 1st arch hand2. M, N) wildtype sibling injected with G/Edn1 mix showing normal

hand2. O,P) wdr68hi3812/hi3812 mutant injected with G/Edn1 mix showing loss of 1st arch

hand2.

(TIF)
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S4 Fig. BMP4, C2C12 deletions, and ISL controls. A) ISH analysis of prim-25 stage wildtype

and wdr68 mutant animals revealed no differences in expression of bmp4. B) C2C12 wildtype

and deletion subline sequences at the targeted locus in exon-5. The yellow highlight indicates

the guide RNA target sequence followed by the TGG PAM sequence. C and D) ISH analysis

for hand2 expression. C) ISL-treated wildtype sibling. D) ISL-treated mutant sibling lacking

rescue. E and F) ISH analysis for dlx2 expression. E) ISL-treated wildtype sibling. F) ISL-

treated mutant sibling lacking rescue.

(TIF)

S5 Fig. Live confocal analysis of Tg(sox10:mCherryCAAX);wdr68hi3812/hi3812 mutants and

wildtype siblings. A-N) Confocal images of the pharyngeal arch regions of embryos live-

mounted in 0.7% agarose containing 0.0167% Tricaine. A) 25-somites stage wildtype sibling.

B) 25-somites stage wdr68hi3812/hi3812 mutant. C) prim-5 stage wildtype sibling with 1st arch

region outlined in blue. D) prim-5 stage wdr68hi3812/hi3812 mutant with same outline as in C to

indicate regions of reduced mCherryCAAX signal. E) prim-12 stage wildtype sibling with ven-

tral 1st arch region outlined in blue. F) prim-12 stage wdr68hi3812/hi3812 mutant with same out-

line as in E to indicate reduced ventral mCherryCAAX signal. G) prim-25 stage wildtype

sibling with ventral 1st arch region outlined in blue. H) prim-25 stage wdr68hi3812/hi3812 mutant

with same outline as in G to indicate reduced ventral mCherryCAAX signal. I) lateral view of

4-dpf wildtype sibling cartilages. J) lateral view of 4-dpf wdr68hi3812/hi3812 mutant severely

reduced M and PQ cartilages. K) ventral view of animal in I. L) ventral view of animal in J. M)

ISL-treated prim-25 stage wildtype sibling with ventral 1st arch region outlined in blue. N)

ISL-treated prim-25 stage wdr68hi3812/hi3812 mutant with same outline as in M, H, G to indicate

modest rescue of ventral 1st arch mCherryCAAX signal.

(TIF)

Author Contributions

Conceptualization: RMN.

Data curation: RMN.

Formal analysis: EA MY GA RS TW AM BW RMN.

Funding acquisition: RMN.

Investigation: EA MY GA RS TW AM AP BW RMN.

Methodology: EA MY GA RS TW AM YY AP AB BW RMN.

Project administration: RMN.

Resources: EA MY GA YY AB BW RMN.

Validation: EA MY RMN.

Visualization: RMN.

Writing – original draft: EA MY GA RS TW RMN.

Writing – review & editing: EA MY RMN.

References
1. WHO. Global strategies to reduce the health-care burden of craniofacial anomalies.: World Health

Organization; 2002.

Wdr68 Mediates D-V Patterning Events for Craniofacial Development

PLOS ONE | DOI:10.1371/journal.pone.0166984 November 23, 2016 26 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166984.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166984.s005


2. Liu W, Sun X, Braut A, Mishina Y, Behringer RR, Mina M, et al. Distinct functions for Bmp signaling in lip

and palate fusion in mice. Development. 2005; 132(6):1453–61. Epub 2005/02/18. doi: dev.01676 [pii]

doi: 10.1242/dev.01676 PMID: 15716346.

3. Suzuki S, Marazita ML, Cooper ME, Miwa N, Hing A, Jugessur A, et al. Mutations in BMP4 are associ-

ated with subepithelial, microform, and overt cleft lip. Am J Hum Genet. 2009; 84(3):406–11. Epub

2009/03/03. doi: S0002-9297(09)00063-9 [pii] doi: 10.1016/j.ajhg.2009.02.002 PMID: 19249007;

PubMed Central PMCID: PMC2667991.

4. Rieder MJ, Green GE, Park SS, Stamper BD, Gordon CT, Johnson JM, et al. A human homeotic trans-

formation resulting from mutations in PLCB4 and GNAI3 causes auriculocondylar syndrome. Am J Hum

Genet. 2012; 90(5):907–14. Epub 2012/05/09. doi: S0002-9297(12)00202-9 [pii] doi: 10.1016/j.ajhg.

2012.04.002 PMID: 22560091; PubMed Central PMCID: PMC3376493.

5. Gordon CT, Petit F, Kroisel PM, Jakobsen L, Zechi-Ceide RM, Oufadem M, et al. Mutations in endothe-

lin 1 cause recessive auriculocondylar syndrome and dominant isolated question-mark ears. Am J Hum

Genet. 2013; 93(6):1118–25. doi: 10.1016/j.ajhg.2013.10.023 PMID: 24268655; PubMed Central

PMCID: PMCPMC3853412.

6. Romanelli Tavares VL, Gordon CT, Zechi-Ceide RM, Kokitsu-Nakata NM, Voisin N, Tan TY, et al.

Novel variants in GNAI3 associated with auriculocondylar syndrome strengthen a common dominant

negative effect. Eur J Hum Genet. 2015; 23(4):481–5. doi: 10.1038/ejhg.2014.132 PMID: 25026904;

PubMed Central PMCID: PMCPMC4666574.

7. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, et al. Alagille syndrome is caused by mutations

in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997; 16(3):243–51. doi: 10.1038/

ng0797-243 PMID: 9207788.

8. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, et al. Mutations in the human Jagged1

gene are responsible for Alagille syndrome. Nat Genet. 1997; 16(3):235–42. doi: 10.1038/ng0797-235

PMID: 9207787.

9. Alexander C, Zuniga E, Blitz IL, Wada N, Le Pabic P, Javidan Y, et al. Combinatorial roles for BMPs and

Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development. 2011; 138

(23):5135–46. Epub 2011/10/28. dev.067801 [pii] 10.1242/dev.067801. PMID: 22031543; PubMed

Central PMCID: PMC3210495. doi: 10.1242/dev.067801

10. Zuniga E, Rippen M, Alexander C, Schilling TF, Crump JG. Gremlin 2 regulates distinct roles of BMP

and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development. 2011; 138

(23):5147–56. Epub 2011/10/28. dev.067785 [pii] doi: 10.1242/dev.067785 PMID: 22031546; PubMed

Central PMCID: PMC3210496.

11. Zuniga E, Stellabotte F, Crump JG. Jagged-Notch signaling ensures dorsal skeletal identity in the verte-

brate face. Development. 2010; 137(11):1843–52. Epub 2010/05/01. dev.049056 [pii] doi: 10.1242/dev.

049056 PMID: 20431122; PubMed Central PMCID: PMC2867320.

12. Clouthier DE, Schilling TF. Understanding endothelin-1 function during craniofacial development in the

mouse and zebrafish. Birth Defects Res C Embryo Today. 2004; 72(2):190–9. PMID: 15269892. doi:

10.1002/bdrc.20007

13. Crump JG, Maves L, Lawson ND, Weinstein BM, Kimmel CB. An essential role for Fgfs in endodermal

pouch formation influences later craniofacial skeletal patterning. Development. 2004; 131(22):5703–16.

PMID: 15509770. doi: 10.1242/dev.01444

14. David NB, Saint-Etienne L, Tsang M, Schilling TF, Rosa FM. Requirement for endoderm and FGF3 in

ventral head skeleton formation. Development. 2002; 129(19):4457–68. PMID: 12223404.

15. Nissen RM, Yan J, Amsterdam A, Hopkins N, Burgess SM. Zebrafish foxi one modulates cellular

responses to Fgf signaling required for the integrity of ear and jaw patterning. Development. 2003; 130

(11):2543–54. PMID: 12702667.

16. Kimmel CB, Miller CT, Kruze G, Ullmann B, BreMiller RA, Larison KD, et al. The shaping of pharyngeal

cartilages during early development of the zebrafish. Dev Biol. 1998; 203(2):245–63. doi: 10.1006/dbio.

1998.9016 PMID: 9808777

17. Kimmel CB, Miller CT, Moens CB. Specification and morphogenesis of the zebrafish larval head skele-

ton. Dev Biol. 2001; 233(2):239–57. PMID: 11336493. doi: 10.1006/dbio.2001.0201

18. Miller CT, Schilling TF, Lee K, Parker J, Kimmel CB. sucker encodes a zebrafish Endothelin-1 required

for ventral pharyngeal arch development. Development. 2000; 127(17):3815–28. PMID: 10934026

19. Depew MJ, Simpson CA, Morasso M, Rubenstein JL. Reassessing the Dlx code: the genetic regulation

of branchial arch skeletal pattern and development. J Anat. 2005; 207(5):501–61. Epub 2005/11/30.

JOA487 [pii] doi: 10.1111/j.1469-7580.2005.00487.x PMID: 16313391; PubMed Central PMCID:

PMC1571560.

20. Nair S, Li W, Cornell R, Schilling TF. Requirements for Endothelin type-A receptors and Endothelin-1

signaling in the facial ectoderm for the patterning of skeletogenic neural crest cells in zebrafish.

Wdr68 Mediates D-V Patterning Events for Craniofacial Development

PLOS ONE | DOI:10.1371/journal.pone.0166984 November 23, 2016 27 / 30

http://dx.doi.org/10.1242/dev.01676
http://www.ncbi.nlm.nih.gov/pubmed/15716346
http://dx.doi.org/10.1016/j.ajhg.2009.02.002
http://www.ncbi.nlm.nih.gov/pubmed/19249007
http://dx.doi.org/10.1016/j.ajhg.2012.04.002
http://dx.doi.org/10.1016/j.ajhg.2012.04.002
http://www.ncbi.nlm.nih.gov/pubmed/22560091
http://dx.doi.org/10.1016/j.ajhg.2013.10.023
http://www.ncbi.nlm.nih.gov/pubmed/24268655
http://dx.doi.org/10.1038/ejhg.2014.132
http://www.ncbi.nlm.nih.gov/pubmed/25026904
http://dx.doi.org/10.1038/ng0797-243
http://dx.doi.org/10.1038/ng0797-243
http://www.ncbi.nlm.nih.gov/pubmed/9207788
http://dx.doi.org/10.1038/ng0797-235
http://www.ncbi.nlm.nih.gov/pubmed/9207787
http://www.ncbi.nlm.nih.gov/pubmed/22031543
http://dx.doi.org/10.1242/dev.067801
http://dx.doi.org/10.1242/dev.067785
http://www.ncbi.nlm.nih.gov/pubmed/22031546
http://dx.doi.org/10.1242/dev.049056
http://dx.doi.org/10.1242/dev.049056
http://www.ncbi.nlm.nih.gov/pubmed/20431122
http://www.ncbi.nlm.nih.gov/pubmed/15269892
http://dx.doi.org/10.1002/bdrc.20007
http://www.ncbi.nlm.nih.gov/pubmed/15509770
http://dx.doi.org/10.1242/dev.01444
http://www.ncbi.nlm.nih.gov/pubmed/12223404
http://www.ncbi.nlm.nih.gov/pubmed/12702667
http://dx.doi.org/10.1006/dbio.1998.9016
http://dx.doi.org/10.1006/dbio.1998.9016
http://www.ncbi.nlm.nih.gov/pubmed/9808777
http://www.ncbi.nlm.nih.gov/pubmed/11336493
http://dx.doi.org/10.1006/dbio.2001.0201
http://www.ncbi.nlm.nih.gov/pubmed/10934026
http://dx.doi.org/10.1111/j.1469-7580.2005.00487.x
http://www.ncbi.nlm.nih.gov/pubmed/16313391


Development. 2007; 134(2):335–45. Epub 2006/12/15. dev.02704 [pii] doi: 10.1242/dev.02704 PMID:

17166927.

21. Ozeki H, Kurihara Y, Tonami K, Watatani S, Kurihara H. Endothelin-1 regulates the dorsoventral bran-

chial arch patterning in mice. Mech Dev. 2004; 121(4):387–95. PMID: 15110048. doi: 10.1016/j.mod.

2004.02.002

22. Ruest LB, Xiang X, Lim KC, Levi G, Clouthier DE. Endothelin-A receptor-dependent and -independent

signaling pathways in establishing mandibular identity. Development. 2004; 131(18):4413–23. doi: 10.

1242/dev.01291 PMID: 15306564; PubMed Central PMCID: PMCPMC2818681.

23. Zecchin E, Conigliaro A, Tiso N, Argenton F, Bortolussi M. Expression analysis of jagged genes in zeb-

rafish embryos. Dev Dyn. 2005; 233(2):638–45. doi: 10.1002/dvdy.20366 PMID: 15830385.

24. Lorent K, Yeo SY, Oda T, Chandrasekharappa S, Chitnis A, Matthews RP, et al. Inhibition of Jagged-

mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects

compatible with an Alagille syndrome phenocopy. Development. 2004; 131(22):5753–66. doi: 10.1242/

dev.01411 PMID: 15509774.

25. Medeiros DM, Crump JG. New perspectives on pharyngeal dorsoventral patterning in development and

evolution of the vertebrate jaw. Dev Biol. 2012; 371(2):121–35. doi: 10.1016/j.ydbio.2012.08.026 PMID:

22960284; PubMed Central PMCID: PMCPMC3466404.

26. Chai Y, Ito Y, Han J. TGF-beta signaling and its functional significance in regulating the fate of cranial

neural crest cells. Crit Rev Oral Biol Med. 2003; 14(2):78–88. PMID: 12764071.

27. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;

113(6):685–700. Epub 2003/06/18. S009286740300432X [pii]. PMID: 12809600.

28. Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;

95(6):737–40. Epub 1998/12/29. S0092-8674(00)81696-7 [pii]. PMID: 9865691.

29. Gronroos E, Kingston IJ, Ramachandran A, Randall RA, Vizan P, Hill CS. Transforming growth factor

beta inhibits bone morphogenetic protein-induced transcription through novel phosphorylated Smad1/

5-Smad3 complexes. Mol Cell Biol. 2012; 32(14):2904–16. doi: 10.1128/MCB.00231-12 PMID:

22615489; PubMed Central PMCID: PMCPMC3416179.

30. Upton PD, Davies RJ, Tajsic T, Morrell NW. Transforming growth factor-beta(1) represses bone mor-

phogenetic protein-mediated Smad signaling in pulmonary artery smooth muscle cells via Smad3. Am J

Respir Cell Mol Biol. 2013; 49(6):1135–45. doi: 10.1165/rcmb.2012-0470OC PMID: 23937428;

PubMed Central PMCID: PMCPMC3931109.

31. de Vetten N, Quattrocchio F, Mol J, Koes R. The an11 locus controlling flower pigmentation in petunia

encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev. 1997; 11

(11):1422–34. PMID: 9192870.

32. Stirnimann CU, Petsalaki E, Russell RB, Muller CW. WD40 proteins propel cellular networks. Trends

Biochem Sci. 2010; 35(10):565–74. Epub 2010/05/11. S0968-0004(10)00072-1 [pii] doi: 10.1016/j.tibs.

2010.04.003 PMID: 20451393.

33. Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, et al. The

TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin

biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 1999; 11(7):1337–50. PMID:

10402433.

34. Mazmanian G, Kovshilovsky M, Yen D, Mohanty A, Mohanty S, Nee A, et al. The zebrafish dyrk1b gene

is important for endoderm formation. Genesis. 2010; 48(1):20–30. Epub 2009/12/17. doi: 10.1002/dvg.

20578 PMID: 20014342; PubMed Central PMCID: PMC2806492.

35. Miyata Y, Nishida E. DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and

induces its nuclear translocation. Biochim Biophys Acta. 2011; 1813(10):1728–39. Epub 2011/07/23.

S0167-4889(11)00189-3 [pii] doi: 10.1016/j.bbamcr.2011.06.023 PMID: 21777625.

36. Nissen RM, Amsterdam A, Hopkins N. A zebrafish screen for craniofacial mutants identifies wdr68 as a

highly conserved gene required for Endothelin-1 expression. BMC Dev Biol. 2006; 6(1):28. PMID:

16759393. doi: 10.1186/1471-213X-6-28

37. Ritterhoff S, Farah CM, Grabitzki J, Lochnit G, Skurat AV, Schmitz ML. The WD40-repeat protein

Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. Embo J. 2010; 29

(22):3750–61. Epub 2010/10/14. emboj2010251 [pii] doi: 10.1038/emboj.2010.251 PMID: 20940704.

38. Skurat AV, Dietrich AD. Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family pro-

tein kinases. J Biol Chem. 2004; 279(4):2490–8. PMID: 14593110. doi: 10.1074/jbc.M301769200

39. Altafaj X, Dierssen M, Baamonde C, Marti E, Visa J, Guimera J, et al. Neurodevelopmental delay, motor

abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine

model of Down’s syndrome. Hum Mol Genet. 2001; 10(18):1915–23. PMID: 11555628.

Wdr68 Mediates D-V Patterning Events for Craniofacial Development

PLOS ONE | DOI:10.1371/journal.pone.0166984 November 23, 2016 28 / 30

http://dx.doi.org/10.1242/dev.02704
http://www.ncbi.nlm.nih.gov/pubmed/17166927
http://www.ncbi.nlm.nih.gov/pubmed/15110048
http://dx.doi.org/10.1016/j.mod.2004.02.002
http://dx.doi.org/10.1016/j.mod.2004.02.002
http://dx.doi.org/10.1242/dev.01291
http://dx.doi.org/10.1242/dev.01291
http://www.ncbi.nlm.nih.gov/pubmed/15306564
http://dx.doi.org/10.1002/dvdy.20366
http://www.ncbi.nlm.nih.gov/pubmed/15830385
http://dx.doi.org/10.1242/dev.01411
http://dx.doi.org/10.1242/dev.01411
http://www.ncbi.nlm.nih.gov/pubmed/15509774
http://dx.doi.org/10.1016/j.ydbio.2012.08.026
http://www.ncbi.nlm.nih.gov/pubmed/22960284
http://www.ncbi.nlm.nih.gov/pubmed/12764071
http://www.ncbi.nlm.nih.gov/pubmed/12809600
http://www.ncbi.nlm.nih.gov/pubmed/9865691
http://dx.doi.org/10.1128/MCB.00231-12
http://www.ncbi.nlm.nih.gov/pubmed/22615489
http://dx.doi.org/10.1165/rcmb.2012-0470OC
http://www.ncbi.nlm.nih.gov/pubmed/23937428
http://www.ncbi.nlm.nih.gov/pubmed/9192870
http://dx.doi.org/10.1016/j.tibs.2010.04.003
http://dx.doi.org/10.1016/j.tibs.2010.04.003
http://www.ncbi.nlm.nih.gov/pubmed/20451393
http://www.ncbi.nlm.nih.gov/pubmed/10402433
http://dx.doi.org/10.1002/dvg.20578
http://dx.doi.org/10.1002/dvg.20578
http://www.ncbi.nlm.nih.gov/pubmed/20014342
http://dx.doi.org/10.1016/j.bbamcr.2011.06.023
http://www.ncbi.nlm.nih.gov/pubmed/21777625
http://www.ncbi.nlm.nih.gov/pubmed/16759393
http://dx.doi.org/10.1186/1471-213X-6-28
http://dx.doi.org/10.1038/emboj.2010.251
http://www.ncbi.nlm.nih.gov/pubmed/20940704
http://www.ncbi.nlm.nih.gov/pubmed/14593110
http://dx.doi.org/10.1074/jbc.M301769200
http://www.ncbi.nlm.nih.gov/pubmed/11555628


40. Smith DJ, Stevens ME, Sudanagunta SP, Bronson RT, Makhinson M, Watabe AM, et al. Functional

screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning

defects associated with Down syndrome. Nat Genet. 1997; 16(1):28–36. doi: 10.1038/ng0597-28

PMID: 9140392.

41. Di Vona C, Bezdan D, Islam AB, Salichs E, Lopez-Bigas N, Ossowski S, et al. Chromatin-wide profiling

of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase. Mol Cell. 2015; 57

(3):506–20. doi: 10.1016/j.molcel.2014.12.026 PMID: 25620562.

42. Brown KA, Ham AJ, Clark CN, Meller N, Law BK, Chytil A, et al. Identification of novel Smad2 and

Smad3 associated proteins in response to TGF-beta1. J Cell Biochem. 2008; 105(2):596–611. Epub

2008/08/30. doi: 10.1002/jcb.21860 PMID: 18729074; PubMed Central PMCID: PMC2700048.

43. Wang B, Doan D, Roman Petersen Y, Alvarado E, Alvarado G, Bhandari A, et al. Wdr68 requires

nuclear access for craniofacial development. PLoS One. 2013; 8(1):e54363. Epub 2013/01/26. doi: 10.

1371/journal.pone.0054363 PONE-D-12-25170 [pii]. PMID: 23349862; PubMed Central PMCID:

PMC3551808.

44. Chocron S, Verhoeven MC, Rentzsch F, Hammerschmidt M, Bakkers J. Zebrafish Bmp4 regulates left-

right asymmetry at two distinct developmental time points. Dev Biol. 2007; 305(2):577–88. Epub 2007/

03/31. S0012-1606(07)00179-0 [pii] doi: 10.1016/j.ydbio.2007.03.001 PMID: 17395172.

45. Monteiro R, van Dinther M, Bakkers J, Wilkinson R, Patient R, ten Dijke P, et al. Two novel type II recep-

tors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish. Dev Biol.

2008; 315(1):55–71. Epub 2008/01/29. S0012-1606(07)01565-5 [pii] doi: 10.1016/j.ydbio.2007.11.038

PMID: 18222420.

46. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N. Identification of 315 genes

essential for early zebrafish development. Proc Natl Acad Sci U S A. 2004; 101(35):12792–7. PMID:

15256591. doi: 10.1073/pnas.0403929101

47. Askary A, Mork L, Paul S, He X, Izuhara AK, Gopalakrishnan S, et al. Iroquois Proteins Promote Skele-

tal Joint Formation by Maintaining Chondrocytes in an Immature State. Dev Cell. 2015; 35(3):358–65.

doi: 10.1016/j.devcel.2015.10.004 PMID: 26555055; PubMed Central PMCID: PMCPMC4758819.

48. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, et al. The Tol2kit: a multisite

gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007; 236

(11):3088–99. Epub 2007/10/17. doi: 10.1002/dvdy.21343 PMID: 17937395.

49. Walker MB, Miller CT, Coffin Talbot J, Stock DW, Kimmel CB. Zebrafish furin mutants reveal intricacies

in regulating Endothelin1 signaling in craniofacial patterning. Dev Biol. 2006; 295(1):194–205. Epub

2006/05/09. S0012-1606(06)00224-7 [pii] doi: 10.1016/j.ydbio.2006.03.028 PMID: 16678149.

50. Angelo S, Lohr J, Lee KH, Ticho BS, Breitbart RE, Hill S, et al. Conservation of sequence and expres-

sion of xenopus and zebrafish dHAND during cardiac, branchial arch and lateral mesoderm develop-

ment [In Process Citation]. Mech Dev. 2000; 95(1–2):231–7. PMID: 10906469

51. Akimenko MA, Ekker M, Wegner J, Lin W, Westerfield M. Combinatorial expression of three zebrafish

genes related to distal- less: part of a homeobox gene code for the head. J Neurosci. 1994; 14(6):3475–

86. PMID: 7911517

52. Ellies DL, Stock DW, Hatch G, Giroux G, Weiss KM, Ekker M. Relationship between the genomic orga-

nization and the overlapping embryonic expression patterns of the zebrafish dlx genes. Genomics.

1997; 45(3):580–90. doi: 10.1006/geno.1997.4978 PMID: 9367683

53. Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, et al. Spatial and temporal expression of the

zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol. 2004; 77:505–19.

PMID: 15602929.

54. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/

Cas systems. Science. 2013; 339(6121):819–23. doi: 10.1126/science.1231143 PMID: 23287718;

PubMed Central PMCID: PMCPMC3795411.

55. Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important

bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002; 277

(7):4883–91. doi: 10.1074/jbc.M111023200 PMID: 11729207.

56. Bingham PM, Chapman CH. Evidence that white-blood is a novel type of temperature-sensitive muta-

tion resulting from temperature-dependent effects of a transposon insertion on formation of white tran-

scripts. Embo J. 1986; 5(12):3343–51. Epub 1986/12/01. PMID: 3028781; PubMed Central PMCID:

PMC1167332.

57. Vrijens K, Lin W, Cui J, Farmer D, Low J, Pronier E, et al. Identification of small molecule activators of

BMP signaling. PLoS One. 2013; 8(3):e59045. doi: 10.1371/journal.pone.0059045 PMID: 23527084;

PubMed Central PMCID: PMCPMC3602516.

Wdr68 Mediates D-V Patterning Events for Craniofacial Development

PLOS ONE | DOI:10.1371/journal.pone.0166984 November 23, 2016 29 / 30

http://dx.doi.org/10.1038/ng0597-28
http://www.ncbi.nlm.nih.gov/pubmed/9140392
http://dx.doi.org/10.1016/j.molcel.2014.12.026
http://www.ncbi.nlm.nih.gov/pubmed/25620562
http://dx.doi.org/10.1002/jcb.21860
http://www.ncbi.nlm.nih.gov/pubmed/18729074
http://dx.doi.org/10.1371/journal.pone.0054363
http://dx.doi.org/10.1371/journal.pone.0054363
http://www.ncbi.nlm.nih.gov/pubmed/23349862
http://dx.doi.org/10.1016/j.ydbio.2007.03.001
http://www.ncbi.nlm.nih.gov/pubmed/17395172
http://dx.doi.org/10.1016/j.ydbio.2007.11.038
http://www.ncbi.nlm.nih.gov/pubmed/18222420
http://www.ncbi.nlm.nih.gov/pubmed/15256591
http://dx.doi.org/10.1073/pnas.0403929101
http://dx.doi.org/10.1016/j.devcel.2015.10.004
http://www.ncbi.nlm.nih.gov/pubmed/26555055
http://dx.doi.org/10.1002/dvdy.21343
http://www.ncbi.nlm.nih.gov/pubmed/17937395
http://dx.doi.org/10.1016/j.ydbio.2006.03.028
http://www.ncbi.nlm.nih.gov/pubmed/16678149
http://www.ncbi.nlm.nih.gov/pubmed/10906469
http://www.ncbi.nlm.nih.gov/pubmed/7911517
http://dx.doi.org/10.1006/geno.1997.4978
http://www.ncbi.nlm.nih.gov/pubmed/9367683
http://www.ncbi.nlm.nih.gov/pubmed/15602929
http://dx.doi.org/10.1126/science.1231143
http://www.ncbi.nlm.nih.gov/pubmed/23287718
http://dx.doi.org/10.1074/jbc.M111023200
http://www.ncbi.nlm.nih.gov/pubmed/11729207
http://www.ncbi.nlm.nih.gov/pubmed/3028781
http://dx.doi.org/10.1371/journal.pone.0059045
http://www.ncbi.nlm.nih.gov/pubmed/23527084


58. Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, et al. Nuclear CDKs drive Smad transcrip-

tional activation and turnover in BMP and TGF-beta pathways. Cell. 2009; 139(4):757–69. doi: 10.1016/

j.cell.2009.09.035 PMID: 19914168; PubMed Central PMCID: PMCPMC2818353.

59. Aragon E, Goerner N, Zaromytidou AI, Xi Q, Escobedo A, Massague J, et al. A Smad action turnover

switch operated by WW domain readers of a phosphoserine code. Genes Dev. 2011; 25(12):1275–88.

doi: 10.1101/gad.2060811 PMID: 21685363; PubMed Central PMCID: PMCPMC3127429.

60. Degoutin JL, Milton CC, Yu E, Tipping M, Bosveld F, Yang L, et al. Riquiqui and Minibrain are regulators

of the Hippo pathway downstream of Dachsous. Nat Cell Biol. 2013. Epub 2013/08/21. ncb2829 [pii]

doi: 10.1038/ncb2829 PMID: 23955303.

61. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, et al. SB-431542 is a potent and

specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK)

receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002; 62(1):65–74. PMID: 12065756.

62. Casari A, Schiavone M, Facchinello N, Vettori A, Meyer D, Tiso N, et al. A Smad3 transgenic reporter

reveals TGF-beta control of zebrafish spinal cord development. Dev Biol. 2014; 396(1):81–93. doi: 10.

1016/j.ydbio.2014.09.025 PMID: 25286120.

63. Chablais F, Jazwinska A. The regenerative capacity of the zebrafish heart is dependent on TGFbeta

signaling. Development. 2012; 139(11):1921–30. doi: 10.1242/dev.078543 PMID: 22513374.

64. Ho DM, Chan J, Bayliss P, Whitman M. Inhibitor-resistant type I receptors reveal specific requirements

for TGF-beta signaling in vivo. Dev Biol. 2006; 295(2):730–42. doi: 10.1016/j.ydbio.2006.03.050 PMID:

16684517.

65. Talbot JC, Johnson SL, Kimmel CB. hand2 and Dlx genes specify dorsal, intermediate and ventral

domains within zebrafish pharyngeal arches. Development. 2010; 137:2507–17. Epub 2010/06/25.

dev.049700 [pii] doi: 10.1242/dev.049700 PMID: 20573696.

66. Rashidian J, Le Scolan E, Ji X, Zhu Q, Mulvihill MM, Nomura D, et al. Ski regulates Hippo and TAZ sig-

naling to suppress breast cancer progression. Sci Signal. 2015; 8(363):ra14. doi: 10.1126/scisignal.

2005735 PMID: 25670202; PubMed Central PMCID: PMCPMC4457509.

67. Varjosalo M, Keskitalo S, Van Drogen A, Nurkkala H, Vichalkovski A, Aebersold R, et al. The protein

interaction landscape of the human CMGC kinase group. Cell Rep. 2013; 3(4):1306–20. doi: 10.1016/j.

celrep.2013.03.027 PMID: 23602568.

Wdr68 Mediates D-V Patterning Events for Craniofacial Development

PLOS ONE | DOI:10.1371/journal.pone.0166984 November 23, 2016 30 / 30

http://dx.doi.org/10.1016/j.cell.2009.09.035
http://dx.doi.org/10.1016/j.cell.2009.09.035
http://www.ncbi.nlm.nih.gov/pubmed/19914168
http://dx.doi.org/10.1101/gad.2060811
http://www.ncbi.nlm.nih.gov/pubmed/21685363
http://dx.doi.org/10.1038/ncb2829
http://www.ncbi.nlm.nih.gov/pubmed/23955303
http://www.ncbi.nlm.nih.gov/pubmed/12065756
http://dx.doi.org/10.1016/j.ydbio.2014.09.025
http://dx.doi.org/10.1016/j.ydbio.2014.09.025
http://www.ncbi.nlm.nih.gov/pubmed/25286120
http://dx.doi.org/10.1242/dev.078543
http://www.ncbi.nlm.nih.gov/pubmed/22513374
http://dx.doi.org/10.1016/j.ydbio.2006.03.050
http://www.ncbi.nlm.nih.gov/pubmed/16684517
http://dx.doi.org/10.1242/dev.049700
http://www.ncbi.nlm.nih.gov/pubmed/20573696
http://dx.doi.org/10.1126/scisignal.2005735
http://dx.doi.org/10.1126/scisignal.2005735
http://www.ncbi.nlm.nih.gov/pubmed/25670202
http://dx.doi.org/10.1016/j.celrep.2013.03.027
http://dx.doi.org/10.1016/j.celrep.2013.03.027
http://www.ncbi.nlm.nih.gov/pubmed/23602568

