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Background: Kurarinone, a prenylated flavonone isolated from the roots of Sophora

flavescens, is known to be cytotoxic against many human cancer cells but not human small

cell lung carcinoma (SCLC) yet. Also, the exact molecular mechanism of kurarinone for

induction cytotoxicity remains unknown.

Material and methods: We investigated the effects of kurarinone on cell proliferation,

apoptosis, and migration in H1688 SCLC cells. Cell viability was determined by the MTT

assay. Apoptotic indices such as cell cycle, mitochondrial membrane potential, cytochrome c

release, caspase activity, and death receptors were evaluated by flow cytometry. Transwell

migration and invasion assays were also included.

Results: Our results indicated that kurarinone significantly decreased H1688 cell viability

and induced the accumulation of sub-G1 fractions by activating caspase-3, -9, and PARP

cleavage accompanied by the elevated release of cytochrome c and mitochondrial dysfunc-

tion in H1688 cells. Additionally, kurarinone promoted Fas and TRAIL receptor-1 and -2

expression via the caspase-8/Bid pathway, suggesting that kurarinone triggered apoptosis via

the mitochondria-mediated and receptor-mediated apoptotic pathways. We also observed that

kurarinone repressed migration and invasion capabilities of SCLC cells by suppressing the

expression of epithelial-mesenchymal transition-related proteins and matrix

metalloproteinases.

Conclusion: Our findings provided evidence that kurarinone can induce apoptosis in SCLC

cells via multiple mechanisms and delayed the cell migration and invasion of SCLC cells.

Keywords: kurarinone, small cell lung carcinoma, apoptosis, caspase, migration,

invasiveness

Introduction
Lung cancer is the second most common cancer in the world and the leading cause of

cancer-related deaths.1 Small cell lung cancer (SCLC) is one of the most aggressive

cancers, exhibiting rapid tumor growth and early onset of metastases, often at

presentation.2 Despite the use of numerous combinations of treatments including che-

motherapy, radiation, and targeted therapy, the outcomes of SCLC patients remains

poor.3,4 Most SCLC patients experience relapse within 2 years, and the 5-year overall

survival is approximately 6.5% for limited-stage and 5% for extensive-stage disease.5

Furthermore, currently-used therapies have been demonstrated to have toxic side effects

to the bone marrow, esophagus, normal lung tissue, and heart.6,7 Thus, the identification

of novel and promising agents for the treatment of SCLC is greatly needed.

Kurarinone, isolated from Sophora flavescens Ait (Leguminosae), has several

known biological activities. This compound has been used in traditional Chinese
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medicine as an antipyretic, analgesic, anthelmintic, and sto-

machic drug.8 Several lines of evidence indicate that kurar-

inone exhibits anti-inflammatory, anti-bacterial, and anti-

viral activity.9–11 Kurarinone is also reported to have anti-

tumor activity against many types of cancer.12–15 A recent

study by Yang et al found that kurarinone exerts potent

activity against human non-small cell lung cancer

(NSCLC) cell line A549 by activating the mitochondrial

apoptosis signaling pathway and repressing the endoplasmic

reticulum and AKT pathways.14 In vivo, kurarinone has been

observed to inhibit the growth of A549 cells in xenograft

mouse models, with no apparent signs of toxicity.

However, to the best of our knowledge, no published

study has investigated the effects of kurarinone on SCLC.

Hence, this study aimed to evaluate the antitumor activ-

ities of kurarinone in human SCLC cells. In addition, the

mechanism underlying the antitumor activities of kurari-

none was also investigated.

Materials and methods
Chemicals
Kurarinone was purchased from Sigma-Aldrich (St. Louis

MO, USA) and directly dissolved in dimethyl sulfoxide

(DMSO) (Sigma-Aldrich) at the stock concentration of

50 mM. Prior to adding to cells, kurarinone was serially

diluted with DMSO to 25, 12.5, 6.25, and 3.125 mM

followed by 1:1000 of dilution with complete culture

medium. Following the addition of kurarinone, the culture

plates were gently rocked to evenly diffuse the kurarinone

in wells, and the final concentrations of kurarinone fell

between 3.125 and 50 μM throughout the study.

Cell lines
Two human small-cell lung cancer (SCLC) cell lines,

H1688 and H146, and an immortalized bronchial epithelial

cell line, BEAS-2B, were purchased from the Food

Industry Research and Development Institute (Hsinchu,

Taiwan). The cells were cultured in RPMI-1640 supple-

mented with 10% fetal bovine serum (FBS), 100 g/mL of

penicillin, and 100 μg/mL of streptomycin (all from Gibco

Laboratory, Grand Island, NY), at 5% CO2 and 37°C.

MTT cell viability assay
The cells were seeded into 24-well plates at 2×104 cells/

well and incubated with different concentrations of kurar-

inone (3.125–50 μM) or with DMSO (0.1%) as a vehicle

control for 24 h. To measure cell viability, 200 μL/well of

5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetra-

zolium bromide solution (MTT) (Sigma-Aldrich) was

added to wells and incubated for 4 h at 37°C. The super-

natant then was removed, and 600 μL of DMSO was

added to each well to dissolve the formazan complex.

The amount of colored formazan was determined by its

absorbance at 540 nm using a microplate reader (Tecan

Sunrise, San Jose, CA, USA). Data are presented as the

percent absorbance of kurarinone-treated cells relative to

DMSO-treated cells. The 50% inhibitory concentration

(IC50) values were calculated using Microsoft Excel soft-

ware for semi-log curve fitting with regression analysis.

Colony-forming assays
Colony-formation assays were carried out to test the effect

of kurarinone on the clonogenicity of SCLC cells. Briefly,

cells were seeded into 6-well plates at 500 cells/well and

incubated for 24 h. The cells then treated with different

concentrations of kurarinone (6.25, 12.5, and 25 μM) for

one week to allow colonies to form. Crystal violet (2%)

(Sigma-Aldrich) was used to stain colonies, and the num-

ber of colonies in each well was counted under an inverted

microscope (Olympus, Tokyo, Japan).

Western blot analysis
Cells (2×105/well) were seeded into 6-well plates and treated

with the indicated concentrations of kurarinone. After 24 hrs,

the cells were lysed in RIPA buffer (Sigma-Aldrich) supple-

mented with freshly-added 1% protease inhibitor cocktail

(Sigma-Aldrich). Lysate protein concentrations were deter-

mined using the BCA Protein Assay Kit (Thermo Fisher

Scientific, Waltham, MA, USA) SDS-PAGE and then trans-

ferred to Immobilon-P Transfer Membrane (Merck

Millipore, Billerica, MA, USA). Membranes were incubated

in 5% bovine serum albumin (BSA) (Sigma-Aldrich) block-

ing buffer for 1 h at room temperature and then overnight

with primary antibody at 4°C. Immunoblotting was per-

formed using the following antibodies: anti-cleaved PARP

(clone 19F4, 1:2000), anti-cleaved caspase-3 (clone 5A1E;

1:1000), anti-cleaved caspase-8 (clone 11G10; 1:1000), anti-

Bcl-2 (50E3; 1:1000), anti-Bcl-xl (clone 54H6; 1:1000), anti-

Bax (clone D2E11; 1:1000) (All from Cell Signaling

Technology, Danvers, MA, USA), cleaved Bid (cat no.

ab10640, 1:1000) (Abcam, Cambridge, MA, USA), anti-N-

cadherin (EPR1792Y, 1:50,000) (Epitomics, Burlingame,

CA, USA), anti-vimentin (clone 9E7E7, 1:1000), anti-E-

cadherin (clone H-108, 1:1000), anti-MMP-3 (clone 1B4,

1:1000) (All from Santa Cruz Biotechnology), anti-MMP-2
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(cat no. GTX104577, 1:500),, anti-MMP-9 (cat no.

GTX100458; 1:500) (Both from GeneTex, Irvine, CA,

USA), and anti-glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) (Abcam, clone 9484, 1:1000). Membranes were

washed 3 times (10 min each) in Tween buffer before incu-

bating with horseradish peroxidase (HRP)-conjugated goat

anti-mouse or rabbit secondary antibody (Jackson

ImmunoResearch Laboratories, West Grove, PA, USA) at

4°C overnight. Protein bands were visualized using the

enhanced chemiluminescence detection kit reagent (GE

Healthcare Life Sciences, Piscataway, NJ, USA) and the

Hansor Luminescence Image system (Taichung, Taiwan).

All bands in the blots were normalized to GAPDH in each

lane. The intensity of the bands was quantified using Image J

software version 1.50 (National Institutes of Health,

Bethesda, MD, USA).

Analysis of cell apoptosis by flow

cytometry
The extent of apoptosis was evaluated by flow cytometry

using an Annexin V-FITC/PI apoptosis detection kit (BD

Biosciences, Franklin Lakes, NJ, USA). Cells (2×105/well)

were treated with kurarinone (0, 6.25, 12.5, or 25 µM) for

24 h and then harvested and washed thrice with phosphate

buffered saline (PBS). Cells were incubated with 5 μL of

Annexin V-FITC (20 μg/mL) and 5 μL of propidium

iodide (PI) (50 μg/mL) at room temperature for 10 min

in the dark. Apoptotic cells were detected using an

AccuriTM C5 cytometer (BD Biosciences) and analyzed

using BD Accuri C6 Software version 1.0.264.21.

Determination of DNA content by flow

cytometry
Cells were seeded into 6-well plates (2×105 cells/well) and

treated with kurarinone (6.25, 12.5, or 25 μM) for 24 h. The

cells were harvested using trypsin, washed twice with PBS,

and fixed in 70% ethanol overnight at −20°C. The fixed cells
were stained in propidium iodine solution containing 1mL of

PBS, 50 μg/mL of propidium iodide (Sigma-Aldrich),

100 μg/mL of RNase A, and 0.1% Triton X-100 (Sigma-

Aldrich) in constant darkness at room temperature for

20 min. Apoptotic cells in the sub-G1 population were

detected using an AccuriTM C5 cytometer.

Measurement of δψm
Changes in mitochondrial membrane potential were assessed

using the JC-1Mitochondrial Potential Assay Kit (Invitrogen

Life Technologies, Carlsbad, CA, USA). H1688 cells were

seeded into 6-well plates (2×105 cells/well) and treated with

the indicated concentrations of kurarinone for 24 h. The cells

were harvested and then incubated with 1 mL medium con-

taining JC-1 fluorescent dye for 20 min in the dark at 37°C.

Cells then were washed twice in staining buffer followed by

flow cytometry analysis for detecting ΔΨm. JC-1 monomers

and J-aggregates were detected in the FL1 and FL2 channels,

respectively, and variations in the red/green fluorescence

intensity ratio reflect changes in themitochondrial membrane

potential.

In vitro assay for cytochrome c release

from mitochondria by flow cytometry
Measurement of cytochrome c release via FITC-anti-cyto-

chrome c antibody (Santa Cruz Biotechnology) was

described in a previous study.16 Briefly, cells were seeded

in 6-well plates (2×105 cells/well) and then treated with

the indicated concentrations of kurarinone for 24 h.

Afterwards, cells were resuspended thoroughly in 100 µL

digitonin lysis buffer (50 µg/mL digitonin and 100 mM

KCl in 1× PBS) for 5 min on ice to permeabilize the

plasma membranes and then fixed with 4% paraformalde-

hyde (Sigma-Aldrich) in PBS at room temperature for

30 min. Cells were washed 3 times with PBS and incu-

bated in 0.5 mL labeling buffer (2% BSA in 0.05% Triton

X-100 PBS) containing 10 μL of FITC-anti-cytochrome c

antibody at 4°C for 1 h followed by detecting cytochrome

c-expressed cells with flow cytometry.

Caspase activity assay by flow cytometry
Cells were seeded in 6-well plates (2×105 cells/well) and

then treated with the indicated concentrations of kurari-

none for 24 h. Cells were harvested and tested for caspase-

3, −8, and −9 activities using the appropriate CaspGLOW

fluorescein active caspase staining kits (Biovision,

Milpitas, CA, USA) according to the manufacturer’s pro-

tocol. The caspase activity was detected using an

AccuriTM C5 cytometer.

Analysis of death receptors and ligands by

flow cytometry
Cells were seeded in a 6-well plate at 2×105 cells per well

and then treated with indicated concentrations of kurari-

none for 24 h followed by harvesting and staining with the

following antibodies from eBioscience (San Diego, CA,

USA): anti-DR4-PE (clone DJR1, 1:1000), anti-DR5-PE
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(clone DJR2-4, 1:1000,), anti-Fas-PE (clone DX2,

1:1000), anti-TRAIL-PE (clone N2B2, 1:1000), or anti-

FasL-PE (clone MFL3, 1:1000) at 4°C for 1 h. The expres-

sion level of each protein was determined by flow

cytometry.

Scratch wound healing assay
Cells were seeded into 6-well plates at 2×105 cells/well

and then treated with the indicated concentrations of kur-

arinone for 24 h. After treatment, the cells were collected

and seeded (1.2×104 cells/mL) into Culture-Insert (ibidi

GmbH, Planegg, Germany) in 70-μl cell suspensions.

After cell attachment, the Culture-Insert was gently

removed to form a cell-free gap. Images were taken before

and 24 h after treatment under an optical microscope (Carl

Zeiss, Jena, Germany) at 100 × magnification. The wound

areas were quantified and analyzed using AxioVision Rel.

4.8 software (Carl Zeiss).

Transwell migration and invasion assays
For cell migration assays, 1×105 of H1688 cells were

planted into the top chamber of a 24-well Transwell plate

(Millipore), and 600 μL of medium containing 10% FBS

was added to the lower chamber. Kurarinone of varying

concentrations was added to both chambers. Cells in the

upper chamber were then allowed to migrate for 24 h prior

to removal with a cotton swab. The migrated cells were

fixed in 4% paraformaldehyde, stained with 0.5% crystal

violet (Sigma-Aldrich), and visualized under an inverted

microscope (Olympus) at 100× magnification. The crystal

violet in the filter membrane containing stained cells was

dissolved using ethanol/acetic acid (49.9%, 0.1%, v/v)

solution, and the OD of the solution was measured at

600 nm. For cell invasion assay, the upper chamber was

coated with Matrigel (Sigma-Aldrich). Subsequent opera-

tions were similar to the cell migration assays. Data are

expressed as the migration or invasion rate as compared to

the DMSO-treated control group.

Statistical analysis
Data are reported as the mean ± SD throughout the study.

Data acquisition and analysis of variance (ANOVA) by

Tukey’s posttest was performed for comparisons between

groups using GraphPad Prism 5 (GraphPad Software Inc.,

San Diego, CA, USA). p<0.05 was considered statistically

significant. Similar results were obtained from 3 indepen-

dent experiments.

Results
Kurarinone decreased cell viability and

induced apoptosis in small-cell lung

cancer cell lines
As shown in Figure 1A and B, 24-h treatment with kurar-

inone (0−50 μM) decreased the proliferation of H1688 and

H1466 cells in a dose-dependent manner. Kurarinone

exhibited a moderate antiproliferative effect on human

bronchial epithelial cells BEAS-2B (Figure 1A). MTT

assay results show that the IC50 values for kurarinone

were 12.5±4.7, 30.4±5.1 and 55.8±4.9 μM for H1688,

H146, and BEAS-2B cells, respectively (Table 1).

Similarly, colony formation assays showed dose-depen-

dent inhibition of H1688 cells (Figure 1B) after 1 week

of treatment with kurarinone, confirming the growth inhi-

bition effect of kurarinone. Our data indicates that H1688

cells were more sensitive to kurarinone than H146 and

BEAS-2B cells and as such, H1688 cells could be an

adequate in vitro model to investigate the anti-cancer

mechanism of kurarinone.

To determine whether apoptosis was involved in the

cytotoxic effects induced by kurarinone, we aimed to

investigate the apoptotic indicators, including Annexin V,

poly(ADP-ribose) polymerase (PARP), caspase cascade,

and mitochondria membrane permeability. PARP is the

caspase-3 substrate which could be subsequently cleaved

by active caspase-3 during apoptosis.17 Thus, the expres-

sion of poly(ADP-ribose) polymerase (PARP) can be used

as a marker for detecting apoptotic cells.18,19 Western blot

analysis of the expression of cleaved PARP showed that

kurarinone dose-dependently increased the cleaving of

PARP in H1688 cells at 24 h (Figure 2A). Moreover, the

apoptosis and cell-cycle distribution in H1688 cells were

determined by using Annexin V-FITC and propidium

iodide staining and flow cytometry analysis. As shown in

Figure 2B, 24-h kurarinone treatment of H1688 cells

resulted in dose-dependent increases in both the early

(Annexin V+/PI−) and late (Annexin V+/PI+) apoptotic

cell populations (Figure 2B). The total apoptotic cell popu-

lations (early and late apoptosis) were 2.4%±1.8, 10.3%

±0.9, 33.3%±2.9 and 73.1%±3.0 at 0, 6.25, 12.5 and

25 μM of kurarinone, respectively. Additionally, the frac-

tions of sub-G1 phase cells (apoptotic cells) increased

markedly from 1.4% of DMSO-treated cells to 59.3%

along with kurarinone treatments for 24 h (Figure 2C).

These results suggest that kurarinone treatment induced

considerable apoptosis in H1688 cells.
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Kurarinone treatment altered

mitochondrial membrane potentials and

induced the intrinsic mitochondrial

apoptotic pathway in H1688 cell
Mitochondria play a key role in activating apoptotic signaling

via intrinsic and extrinsic apoptotic pathways, which subse-

quently converge to induce permeabilization of the mitochon-

drial membranes in mammalian cells. As such, the change of

mitochondrial membrane potential and release of cytochrome

c are regarded as mitochondrial apoptotic indications.20,21 To

explorewhether themitochondria-mediated apoptotic pathway

is involved in kurarinone-induced apoptosis, we first analyzed

disruption or loss of themitochondrial membrane permeability

(Δψm) using JC-1 fluorescent cationic dye. JC-1 forms aggre-

gates (red fluorescence) in the mitochondria of live cells, but

these aggregates leak out from the damaged mitochondria into

the cytosol as monomers (green fluorescence) in apoptotic

cells. Our results in Figure 3A show that 24-h kurarinone

treatments increased the ratio of green to red fluorescence,

with a 21.1-fold increase at 12.5 μM and 31.0-fold increase

at 25 μM. Also, we detected elevated cytochrome c in the

cytosol of cells in a dose-dependent style upon kurarinone

treatments (Figure 3B), indicating the disruption of the mito-

chondrial membrane within H1688 cells

Mitochondrial dysfunction activates pro-caspase-9, which

activates downstream caspase-3, leading to the cleavage of

substrates such as PARP. Anti-apoptotic proteins, Bcl-2 and

Bcl-xl, as well as pro-apoptotic molecule, Bax, are also fre-

quently involved in mitochondrial dysfunction.22 To explore

the effect of kurarinone on the expression of these apoptotic

proteins, H1688 cells were exposed to kurarinone for 24 h and

the cells or cell lysates were subjected to flow cytometry or

Western blot analysis, respectively. Kurarinone treatment sig-

nificantly increased caspase-3 (Figure 3C and E) and caspase-9

activity (Figure 3D) in H1688 cells. Kurarinone treatment also

resulted in the downregulationof the anti-apoptotic proteinsBcl-

2 and Bcl-xl and the upregulation of the apoptotic protein Bax

(Figure 3E). Taken together, these results suggest that kurari-

none induced apoptosis in SCLC cells via the intrinsic mito-

chondrial apoptotic pathway.

Kurarinone induced activation of the

caspase-8/tBid pathway in H1688 cells
Once active, caspase-8 directly cleaves caspase-3 and indirectly

cleaves Bid (23 kDa) into tBid, initiating the mitochondria-

dependent apoptosis pathway.23,24 We investigated whether
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Figure 1 (A) Cell viability of kurarinone-treated H1688, H146, and BEAS-2B cells.

Cells were treated with 0.1% DMSO (0 μM of kurarinone), or kurarinone at 3.125,

6.25, 12.5, 25, or 50 μM for 24 h. Cell viability was examined by MTTassay. *P<0.05,
***P<0.001 versus 0.1% DMSO group. (B) Colony formation assay of H1688 cells

following treatment with kurarinone for one week. Data are presented as the

mean ± SD in 3 replicates for each treatment. Different letters (a,b,c) indicate

statistically significant differences between groups (one way ANOVA followed by

Tukey test, p<0.05).

Table 1 IC50 of kurarinone for cell viability of human SCLC cell

lines H1688 and H146 and human bronchial epithelial cells BEAS-

2B

Cells IC50 [µM]

H1688 12.5±4.7

H146 30.4±5.1

BEAS-2B 55.8±4.9

Notes: Cell viability of SCLC cell lines and BEAS-2B after 24 h of treatment with

kurarinone was measured by MTT assay. Microsoft Excel software for semi-log

curve fitting with regression analysis was used for normalization and transformation

of the data to calculate IC50.
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caspase-8 would be activated upon kurarinone treatment by

treating H1688 cells with different doses of kurarinone for

24 h. Our results show that kurarinone significantly increased

caspase-8 activity (Figure 4A) and increased the levels of

cleaved caspase-8 and Bid (Figure 4B).

To confirm the role of caspase-8 in kurarinone-induced

intrinsic mitochondrial apoptosis, we applied a selective cas-

pase-8 inhibitor, Z-IETD-FMK, to H1688 cells in the presence

or absence of kurarinone. Our results show that pretreatment

with Z-IETD-FMK markedly increases cell viability

(Figure 4C), inhibits cell apoptosis (Figure 4D), and prevents

tBid formation (Figure 4E), Δψm loss (Figure 4F) and cas-

pase-8 (Figure 4G), and caspase-9 activation (Figure 4H).

Taken together, these data indicate that caspase-8 plays a

critical role in kurarinone -induced apoptosis via the indirect

activation of the mitochondrial pathway via cleaved Bid.

Since caspase-8 cleavage is induced through the stimulation

of death receptors such as Fas (APO-1/CD95) and TRAIL

receptor-1 and −2 (TRAIL-R1/DR4, TRAIL-R2/DR5) via

their respective ligands,25 we examined the surface expression

Figure 2 Apoptosis induced by kurarinone on H1688 cells. Cells were treated with or without kurarinone at indicated concentrations for 24 h. (A) Expression levels of

cleaved poly (ADP-ribose) polymerase (PARP) were investigated by Western blotting using GAPDH as a loading control. (B) Cell apoptosis was determined via flow

cytometry using the Annexin V-FITC apoptosis detection kit and PI. The percentage of necrotic (Annexin V−/PI+), early apoptotic (Annexin V+/PI−), and late apoptotic

(Annexin V+/PI+) (mean ± SD) from triplicate samples of each treatment were plotted in the bar graphs. (C) The cell cycle was investigated using flow cytometry analysis via

PI staining. The percentages of sub-G1 cells (mean ± SD) were plotted based on triplicated samples. Different letters (a,b,c,d) indicate statistically significant differences

between groups (one way ANOVA followed by Tukey test, p<0.05).
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levels of these proteins using flow cytometry after a 24 h treat-

ment with kurarinone. We observed an increase in the expres-

sion of DR4, DR5, and TRIAL (Figure 5A), as well as Fas and

FasL (Figure 5B) after treatment with 12.5 and 25 μM kurar-

inone. These results suggest that kurarinone induces apoptosis

by activating the death-receptor pathway.

Kurarinone inhibited the migration and

invasion of H1688 cells
Cell-matrix interactions and cell motility are important for

cancer cell metastasis.26 Therefore, we evaluated the effects

of kurarinone on H1688 cell migration and invasion using

wound healing analysis and transwell assays. The results

from the wound-healing assay indicated that kurarinone

treatment for 24 h significantly inhibited the migration of

H1688 cells in a dose-dependent manner (Figure 6A).

Furthermore, the transwell migration (Figure 6B) and inva-

sion (Figure 6C) assays showed that kurarinone treatment

significantly and dose-dependently decreased the cell num-

bers on the transmembrane filters, proving that cell migration

and invasion of H1688 cells were suppressed upon kurari-

none treatment.

Given the epithelial-mesenchymal-transition (EMT)-

related proteins and matrix metalloproteinases (MMPs) were

reported to link with the metastasis, irregular tumor growth,
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and tissue invasion of SCLC,27 we measured the expressions

of themesenchymal markers N-cadherin and vimentin, epithe-

lial marker E-cadherin, and three MMPs in H1688 cells via

Western blotting analysis. We found that N-cadherin and

vimentin decreased whereas E-cadherin increased dose-

dependently following kurarinone treatment (Figure 7A). In

addition, kurarinone treatment resulted in a dose-dependent

decrease in the expression of MMP-2, MMP-3, and MMP-9

(Figure 7B). These data suggest that kurarinone treatment

repressed themetastatic properties of H1688 cells via reducing

the migration and invasiveness.

Discussion
Although the anticancer effects of kurarinone to other cancer

types have been studied extensively, its effects and mechan-

isms of action are not clearly understood for SCLC. This

study investigated the effects of kurarinone on human SCLC

cell line, H1688, in terms of inhibition of tumor growth and
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explored its potential mechanisms. Consistent with previous

research, kurarinone treatment inhibited the growth of H1688

cancer cells, inducing apoptosis via receptor and mitochon-

drial pathways, including induction of cleaved caspase-8, −3,
Bid, PARP and reduction of Bax and Bcl-xl. Moreover,

H1688 cancer cell migration and invasion were inhibited by

kurarinone via suppressing the expressions of EMT-related

proteins and MMPs. Thus, kurarinone may be an effective

anti-cancer and anti-metastatic therapeutic strategy for

human SCLC.

Currently, the concurrent chemoradiation (a two-drug

combination of etoposide and cisplatin) remains the standard

treatment for limited-stage SCLC.3 Other treatment options

include cyclophosphamide, doxorubicin, and vincristine (the

CAV regimen).28 For extensive-stage disease, the recom-

mended treatment is chemotherapy with radiation for sympto-

matic relief.29 However, the treatment results for SCLC have

remained stagnant over the decades and the side effects of

chemotherapy, even at usual therapeutic doses, aggravate the

patient conditions. Therefore, the kurarinone might serve as a

less-harmful natural derivative in alternative combinational

treatment of SCLC. The prenylated flavonone kurarinone

has been investigated as a potential anticancer drug because

of its anti-inflammatory, and antitumor activities.10,12,13

Although the mechanism of action of kurarinone against

cancer cells is still unclear, it is thought that the apoptotic

pathway exerted by flavonone is the major factor accounting

for the tumor cell death, similar to many chemotherapy

regimens.30 One previous study reported by Yang et al indi-

cated that kurarinone has proapoptotic activities where kurar-

inone was shown to induce apoptosis in NSCLC A549 cells

via the mitochondria-dependent pathway.14 Congruent with

the previous study, we found that kurarinone increased the

expressions of cleaved caspase-3, caspase-9 and cytochrome c

(Figure 3B–D), as well as the caspase-3-mediated PARP

cleavage. The mitochondrial membrane pro-apoptotic protein

Bak was increased and anti-apoptotic proteins, Bcl-xL and

BCl-2, were decreased following kurarinone treatments

(Figure 3E), arguing the apoptosis of human SCLC cells

induced by kurarinone is at least a caspase-dependent and

mitochondrial-mediated intrinsic apoptotic pathway.

However, our findings differ from the NSCLCA549 study

in reference to the receptor-mediated apoptosis pathway,

which they did not investigate. Death receptors such as Fas

ligand (FASL) and TNF-related apoptosis-inducing ligand

(TRAIL) are known as apoptosis-inducing ligands that stimu-

late death receptors. We observed in the current study that

kurarinone significantly increased caspase-8 and cleaved Bid

activity or expression, (Figure 4) in addition to the up-regula-

tion of FAS, FASL, TRAIL, DR4, and DR5 (Figure 5). All of

which points to that kurarinone could not only activate the

death receptor-mediated apoptosis (the extrinsic pathway) but

also induce mitochondrial-dependent apoptotic machinery

(the intrinsic pathway), contributing to the inhibition of tumor-

igenicity of H1688 cells as summarized in Figure 8. Of note,

Bid, a member of the Bcl-2 family, is considered as an adaptor
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that connects the death receptor pathway and the mitochon-

drial pathway as activated Bid will be cleaved by caspase-8 or

−10 and turn into its truncated form (tBid), which translocates

into mitochondria, facilitating the subsequent mitochondrial

pathway.25,31,32 With multiple pathways of apoptosis imple-

mented by kurarinone in SCLC cells, we believe that

kurarinone might be more effective in treating SCLC than

treating NSCLC.

Metastasis remains the major cause leading to the fail-

ure of SCLC treatment. Previous studies report that the

EMT, which alters cell to cell adhesion, plays an important

role in cancer metastasis.33,34 As a result, the EMT might
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also be associated with molecular mechanisms in SCLC

spread and metastasis, possibly contributing to its poor

prognosis. To this end, chemicals that possess anti-metas-

tasis activities, such as targeting the EMT, are attractive

candidates for treating metastatic SCLC. Our results elu-

cidate that kurarinone modulated the expressions of cell

adhesion proteins and reduced the migratory capacity. On

the other hand, the invasiveness is also an essential char-

acteristic of metastatic cancer cells. Invasive metastatic

cells manifest the secretion of MMPs to traverse biological

barriers.35 It has also been demonstrated in tumor cell

models that the metastatic potential and tumor cell growth

depends on the levels of MMP.36 We demonstrated that

kurarinone significantly decreased the expressions of can-

cer-associated MMPs (MMP-2, MMP-3, and MMP-9),

functioning in the tumor invasion process of SCLC cells

(Figure 7). Therefore, it is strongly suggested that kurar-

inone may serve as a promising anti-metastasis agent for

SCLC therapy.

Given the 5-year survival rate of SCLC patients in

2015 was only 6.5%, according to the data from National

Cancer Institute, compared to 24.6% for NSCLC, and

nearly 60% of SCLC patients had distant metastasis

when diagnosed,37 it is urgent to have multiple therapeutic

strategies available for SCLC patients, especially those

whose distal tissues have been invaded by SCLC. As a

result, our study is aimed at not only to demonstrate the

feasibility of kurarinone to induce intrinsic and extrinsic

apoptosis on SCLC cells but also provide a perspective in

utilizing flavanone for metastatic SCLC cells. Future stu-

dies will certainly be needed for evaluation of the efficacy

of kurarinone in SCLC patients and we believe that our

findings have just gradually furthered the potential devel-

opment toward the clinical use.
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