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Background: Delayed enhancement CT (CT-DE) has been evaluated as a tool for the

detection of myocardial scar and compares well to the gold standard of MRI with late

gadolinium enhancement (MRI-LGE). Prior work has established that high performance

can be achieved with manual reading; however, few studies have looked at quantitative

measures to differentiate scar and healthy myocardium on CT-DE or automated analysis.

Methods: Eighteen patients with clinically indicated MRI-LGE were recruited for CT-DE

at multiple 80 and 100 kV post contrast imaging. Left ventricle segmentation was

performed on both imaging modalities, along with scar segmentation on MRI-LGE.

Segmentations were registered together and scar regions were estimated on CT-DE. 93

radiomic features were calculated and analysed for their ability to differentiate between

scarred and non-scarred myocardium regions. Machine learning (ML) classifiers were

trained using the strongest set of radiomic features to classify segments containing

scar on CT-DE. Features and classifiers were compared across both tube voltages and

combined-energy images.

Results: There were 59 and 51 statistically significant features in the 80 and 100 kV

images respectively. Combined-energy imaging increased this to 63 with more features

having area under the curve (AUC) above 0.9. The 10 highest AUC features for each

image were used in the ML classifiers. The 100 kV images produced the best ML

classifier, a support vector machine with an AUC of 0.88 (95%CI 0.87–0.90). Comparable

performance was achieved with both the 80 kV and combined-energy images.

Conclusions: CT-DE can be quantitatively analyzed using radiomic feature calculations.

These features may be suitable for ML classification techniques to prospectively identify

AHA segments with performance comparable to previously reported manual reading.

Future work on larger CT-DE datasets is warranted to establish optimum imaging

parameters and features.

Keywords: radiomics analysis, machine learning, delayed enhancement cardiac computed tomography, scar

imaging, computed tomography

INTRODUCTION

Imaging of myocardial fibrosis is routinely used for patient diagnosis, prognosis and procedure
planning. The clinical gold standard is cardiac magnetic resonance imaging (MRI) with late
gadolinium enhancement (LGE) (1). As an alternative to MRI-LGE, delayed enhancement CT
(CT-DE) has been proposed in those patients who are unable to undergo MRI scanning owing to
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availability, cost, claustrophobia, the presence of metallic
implants or body size. CT is both cheaper and more widely
available than MRI. Even with a delayed enhancement protocol,
a cardiac CT scan is much shorter to perform than MRI-LGE,
while also providing a higher spatial resolution.

Previous research studies have established that CT-DE can
identify myocardial scar using MRI-LGE as a reference standard,
in both animal models (2) and patients (3–5). Expert delineated
myocardial scar on CT-DE also has a good agreement with
invasive electro-mapping of scar (6). Previous studies have shown
that visual assessment by expert readers can identify segments
containing scar on CT-DE, with accuracy as high as 90% (3).
However, there remain questions about the optimal acquisition
parameters for CT-DE, and whether using combined-energy
imaging can improve scar detection.

Quantitative analysis and the potential for automated analysis
of CT-DE has been less well-explored. Radiomic features have
been shown to be useful in other quantitative evaluations of CT,
such as coronary plaque vulnerability (7) and identification of
myocardial infarction (8). One previous study has attempted to
assess radiomic features of scar on CT-DE (9), but only used
first order parameters and did not use scar confirmation with a
reference modality.

The aim of this study was therefore to extract radiomic
features which indicate myocardial scar on CT-DE, as
determined by the clinical gold standard of MRI-LGE, and
to investigate their potential to identify regions with myocardial
scar. We also compare multiple energy levels for their suitability
for CT-DE scar radiomic analysis.

METHODS

Study Design
In a single center study we recruited 18 patients who had
MRI proven late gadolinium enhancement on MRI imaging
performed for clinical indications. The study was approved
by the local ethics committee and patients provided written
informed consent.

Image Acquisition
Magnetic resonance imaging was performed as part of the
patient’s clinical care on a 1.5 Tesla scanner (Siemens
Healthineers) at the Edinburgh Heart Center. Sequences were
acquired according to the clinical indication, but included
localisers, axial HASTE images, and standard breath-held and
electrocardiogram-gated CINE sequences. Delayed enhancement
images (gradient echo inversion recovery sequences) were
performed 10min after injection of gadolinium contrast agent
(0.2 mmol/kg).

Patients underwent cardiac CT imaging using a 320
multidetector scanner (Aquillion One, Canon Medical Systems)
at Edinburgh Imaging, University of Edinburgh. Participants
with a heart rate of greater than 60 beats/min received
intravenous beta blockade prior to CT imaging. Sublingual
glyceryl trinitrate was administered prior to CT imaging, unless
contraindicated. Electrocardiogram-gated CT was performed
4min after injection of 100ml of iodinated contrast (Iomeron

400). Patients underwent CT using four tube voltages in rapid
succession (80, 100, 120, and 135 kV). Only the 80 and 100 kV
images were used in this study. Tube current was automatically
set based on scout image attenuation. Mean radiation dose of
80 kV images was 1.6± 0.4 millisievert (mSv) and 100 kV images
was 2.6± 1.2 mSv (conversion factor 0.028 mSv/mGy.cm).

Myocardial Scar Region Estimation
The MRI-LGE scans were used to generate image masks for
scar regions on the CT-DE scans. Images from both modalities
were segmented separately using Siemens Healthineers prototype
software, which was previously described by Behar et al. (10). CT-
DE segmentation for both 80 and 100 kV as well as MRI CINE
segmentation was automatic for the left ventricle. The MRI-LGE
scar region segmentation was performed using the same tool.
Scar was segmented initially using the full width at half maximum
method, with manual corrections by an operator with 3 years
experience at this task.

The resulting left ventricle meshes were registered using
iterative closest point (ICP) registration performed in custom
software using the VTK C++ library (11). Registration was
performed in three steps. First the major axis of each mesh is
calculated and then registered together. Then the right ventricle
insertion points, which are outputted by the segmentation tool,
are registered to correctly rotate the LVs from the two modalities.
Finally, the whole endocardiummeshes are registered to fine tune
the registration. The resulting registration transform is applied to
the MRI-LGE scar mesh to generate a scar mesh registered to the
CT anatomy.

Registrations were assessed manually for correctness by
matching the aortic valves and apex in both meshes. 60 short-
axis slices were then obtained across the CT left ventricle,
with myocardium and scar masks calculated from the meshes
(Figure 1). The mesh registration and slicing software can
be made available on request. All scar regions, regardless of
their transmurality, were labeled as transmural to account for
differences in phase between the MRI and CT.

Radiomic Analysis
Radiomic features were calculated using the open-source
PyRadiomics package (12) (version 3.0.1). 93 features were
calculated for both 80 and 100 kV images. A full list can be found
in Supplementary Table S1. These were 18 first order statistics,
24 gray level co-occurrence matrix (GLCM) features, 14 gray
level dependence matrix (GLDM) features, 16 gray level size
zone matrix (GLSZM) features, 16 gray level run length matrix
(GLRLM) features and 5 neighboring gray tone difference matrix
(NGTDM) features. Details of the parameters used are included
in the Supplementary Methods.

Each feature was tested for discrimination ability using two
methods. Statistical difference between scar and non-scar region
feature values was determined using a two-sided Student’s t-test.
Linear regression was performed using patient-wise stratified 5-
fold cross validation. From this receiver operating characteristic
metrics were calculated, with confidence intervals calculated
using bootstrapping on 1,000 samples with replacement.
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FIGURE 1 | Segmentation and registration. (A) Magnetic resonance imaging (MRI) segmentation using CINE MRI for anatomical 3D mesh and MRI late gadolinium

enhancement (LGE) for scar mesh. Endocardial (red) and scar meshes (white) shown (B) Delayed enhancement computed tomography (CT-DE) segmentation to

generate a 3D mesh of left ventricle from CT. CT endocardial mesh is shown in blue. (C) CT scar mesh generated by iterative closest point (ICP) registration from the

MRI to CT left ventricle anatomical meshes. Applying the resulting transform to the MRI-LGE mesh produces a CT aligned scar mesh. This provides locations to mask

for scar on the CT-DE.

Combined-Energy Radiomic Analysis
Features were also calculated on combined-energy images, by
combining the 100 kV and 80 kV images. Three combinations
were considered, with the 100 kV images contributing 40, 50, and
60% to the final image.

Combined-energy images were generated by registering the
100 kV images to the 80 kV using the open source Medical Image
Registration Toolkit (MIRTK). The resulting registered 100 kV
image was added to corresponding 80 kV images at the three
contribution levels to generate the final images.

Features were calculated using the 80 kV segmentation and
registered scar meshes from themain analysis. Comparisons with
the single-energy images were made by comparing area under
receiver operator characteristic curves (AUC) across significant
features, which were determined using the same method.

Per Segment Scar Classification
To demonstrate possible clinical usage of these radiomic features

we trained classifiers to identify myocardial segments as scar
or non-scar. Myocardial segments were defined according to

the American Heart Association (AHA) 16 segment model.

Myocardial scar ground truths were determined by the

percentage of the total segment volume which had scar present.

Scar thresholds of 10, 20, and 30% total volume were compared as
ground truths. This was determined by theMRI-LGE registration
and as a proportion of the total region size (Figure 2). This was
considered important as a low threshold could produce radiomic
features too close to normal myocardium and a higher threshold
would miss substantial scar regions. While the previous radiomic
analysis compared the whole scar region to healthy myocardium,
these classification experiments aim to assess the ability to predict
scar using known radiomic features on a meaningful region for
evaluating scar burden. Classifiers were compared also across 80
kV, 100 kV, and the best combined-energy level image.

We compared support vector machine (SVM), logistic
regression and random forest classifiers implemented with the
open source Scikit-learn (13) Python library (version 1.0.1).
Parameters were optimized with grid search and 5-fold cross-
validation was used. The 10 radiomic features which showed
the largest difference between healthy and scared myocardium
from the radiomic analysis were used as input features
to the classifiers after being scaled to unit length. Feature
importance was calculated using the Scikit-learn implementation
of permutation importance, which determines the importance
of each input feature by re-calculating accuracy metrics after
removing each feature.
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FIGURE 2 | (A) Pipeline and results of classification methods using the top 10 radiomic features per myocardial segment. (B) Receiver operating characteristics (ROC)

curves for classifiers on the 100 kV images in the segmental analysis. (C) Permutation feature importance across the 10 features used in the support vector machine

(SVM) for the 100 kV segmental classification. GLDM, Gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix.

RESULTS

Study Population
Of the 18 available cases, 16 cases had good MRI-LGE
segmentation and were suitable for registration. Exclusions were
due to a missing or unsuitable short-axis sequence in MRI. 15
cases were used for the 80 kV analysis, with one being excluded
due to low contrast between the left ventricle myocardium and
the blood pool resulting in a poor wall segmentation. 14 were
used for the 100 kV analysis, with poor segmentation results
meaning two cases were excluded.

Mean age of the included patients was 62 ± 8.8 and 90%
were male. 11 patients had a history of previous myocardial
infarction (8 ST elevation and three non-ST elevation myocardial
infarction). One patient had previously undergone coronary
artery bypass graft surgery.

Radiomic Analysis
For the 80 kv analysis there were 15 patients with 431 valid
slices to perform radiomic analysis and for the 100 kv analysis
there were 14 patients with 388 valid slices. The combined-energy
analysis included 13 patients with 321 slices.

For the 80 kV images, 59 out of the 93 (63%) features were
statistically significant predictors of the presence of myocardial
scar, whereas 51 (54%) were statistically significant for the 100
kV images. Many of these had low AUCs below 0.7. Above an

AUC of 0.7 there were 16 (17%) and 29 (31%) features for the
80 and 100 kV images, respectively. Above 0.8 this was 11 and
10, respectively. There was a clear overlap in features which
presented a significant difference between energy levels. Figure 3
displays the AUC values across all features per energy level. The
best five AUC values are shown in Figures 4, 5.

The best metric for both 80 and 100 kv was gray level
dependence matrix (GLDM) gray level non-uniformity, where
the scar region metric was significantly lower than the normal
myocardium, indicating greater similarity within scar regions.
Other highly significant metrics which were used for the classifier
inputs were GLDM dependence non-uniformity, gray level run
length matrix (GLRLM) gray level non-uniformity, gray level
size zone matrix (GLSZM) size zone non-uniformity, gray level
run length matrix (GLRLM) run-length non-uniformity, total
energy, energy, GLSZM gray level non-uniformity, GLSZM zone
entropy and GLRLM run entropy. Full results for each metric
are listed in the Supplementary Methods. These results support
a measurable difference in texture in scar overlap regions as
compared to normal myocardium.

Combined-Energy Image Analysis
For the segmental classification analysis there were 1,922
segments (628 with scar) at 80 kv, 1,806 (659 with scar) at 100
kv, and 1,766 (522 with scar) for the combined-energy images.
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FIGURE 3 | Area under the ROC curves for all features across both energy levels and the 50% combined image. GLDM, Gray level dependence matrix; GLCM, gray

Level Co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone difference matrix.

The 50% 100 kV combined-energy image had the highest
number of statistically significant radiomic features to predict
scar with 63 significant features (68%). Compared to the other
energy levels and combined-energy combinations it also had the
highest AUC features, with five above anAUCof 0.9, against three
for 80 kV, 2 for 100 kV, and two for both other combined-energy
settings. Across high AUC features, the 50% combined-energy
images outperformed the other proposed combinations. The top
features matched the single-energy images except for NGTDM
coarseness, which measures the average difference between a
center pixel and its neighborhood. This was significant for all
the combined-energy image variations with high AUCs (>0.9);
whereas it was only significant for the 100 kV single-energy
images with a relatively low AUC (0.6).

Classification of Scar Using Radiomic
Features
Based on radiomic analysis the 10 best features were calculated
to identify, per segment, CT-DE scar for the 100 kV, 80 kV, and
combined-energy 50% images.

The best performing classifier across all images was the
SVM. Table 1 shows the AUCs and sensitivities for the SVM
at each image level and scar threshold. The 20% scar threshold
performed the best for all combinations. The results were similar
across image types with slightly higher results for the 100 kV

images. SVM was the best performing classification method with
a best AUC of 0.88 (95% CI 0.87–0.90) with a sensitivity of 0.79
and specificity of 0.83. The random forest had a comparable AUC
with the best being of 0.88 (CI 0.87–0.9) but a worse sensitivity
of 0.59 and specificity of 0.92. The logistic regression had a poor
AUC with the best being on the 80 kV images at 0.65 (CI 0.62–
0.67) with a sensitivity of 0.57 and specificity of 0.61. On this
small sample size, these results serve as a proof of concept for
the potential to automatically identify scar areas from CT-DE.

Figure 2C displays the feature permutation importance for
100 kV images at a 20% threshold, which displays a strong
importance across 7 of the 10 included features in terms of
changes to balanced accuracy, with the most important feature
being first order total energy.

DISCUSSION

In this study we have demonstrated the ability of radiomic
features extracted fromCT-DE to predict myocardial scar regions
compared to the gold standard assessment of MRI-LGE. Similar
features were identified as predictors of myocardial scar and non-
scar regions in all examined single-energy and combined-energy
images. Good performance was obtained using machine learning
methods to classify myocardial segments as scar or non-scar
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FIGURE 4 | ROC curves for the best 5 AUC values on the 80 kV images. GLDM,Gray level dependence matrix; GLRLM, gray level run length matrix.

FIGURE 5 | ROC curves for the best 5 AUC values on the 100 kV images. GLDM, Gray level dependence matrix; GLSZM, gray level size zone matrix.
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TABLE 1 | Area under ROC curve, sensitivity and specificity for the classifiers at all three energy levels and three scar thresholds.

10% Threshold 20% Threshold 30% Threshold

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

SVM

80 kV 0.86 0.74 0.82 0.87 0.76 0.82 0.85 0.74 0.85

100 kV 0.88 0.77 0.82 0.88 0.79 0.83 0.88 0.77 0.78

50% combined Image 0.85 0.73 0.85 0.86 0.73 0.86 0.85 0.72 0.88

Random forest

80 kV 0.88 0.61 0.9 0.88 0.57 0.94 0.88 0.51 0.94

100 kV 0.87 0.66 0.89 0.88 0.59 0.92 0.88 0.63 0.91

50% combined image 0.88 0.63 0.92 0.87 0.56 0.94 0.87 0.52 0.95

Logistic regression

80 kV 0.62 0.54 0.6 0.64 0.57 0.61 0.63 0.54 0.61

100 kV 0.57 0.57 0.5 0.55 0.52 0.53 0.56 0.52 0.54

50% combined image 0.67 0.61 0.62 0.68 0.62 0.63 0.67 0.61 0.63

based on three thresholds of scar coverage, with a slightly better
performance for the 100 k images.

The ability of visual assessment of CT-DE to act as
an alternative to MRI-LGE for expert readers has been
established (2, 3, 5). However, quantitative analysis of CT-
DE could improve accuracy and repeatability of assessments
and reduce the time to report CT-DE. Here we show a
path forward for future standardization and automation of
scar detection using CT-DE. Our results correspond well-
with those of Antunes et al. (9), who found that energy,
a first order radiomic statistic, was a statistically significant
predictor to identify myocardial scar on CT-DE. However,
we have assessed a larger number of radiomic features, and
have established the top 10 best radiomic features that can
identify scared compared to non-scared myocardium. In future,
it may be possible to use these features to prospectively identify
scar on CT-DE.

Scar in this study was determined using a 3Dmesh registration
between MRI-LGE and CT-DE. This provides us with a more
accurate delimitation of the scar region compared to previous
studies, which used per segment classification (2–4). This means
that in our radiomic analysis we have calculated the most
important features without the overlap of healthy tissue within
a segment. This also means that we were able to perform the
segmental classification with assessment of different levels of
scar volume.

The performance of our method is in line with previously
shown manual reading (3). We did not find any clear advantage
of combined-energy images or large differences between energy
levels in the single-energy images. Previous studies have used
either 80 kV or 100 kV images for CT-DE assessment. Visually
80 kV images provides a higher difference between areas of
contrast enhancement and non-enhancement compared to 100
kV images, but this is at the expense of image noise. Interestingly
we found that the 80 and 100 kV images share similar radiomic
features in areas of myocardial scar. However, we showed that
there may be a small advantage of 100 kV when using radiomic
features. Thus, the choice of 80 or 100 kV for CT-DE images

should be made based on the whether visual or quantitative
assessment will be performed.

Study Limitations
This was a single center study with a small number of cases and
larger cohort studies with external validation would be required.
Our study did not differentiate between ischaemic and non-
ischaemic scar or determine the transmurality of myocardial scar.

We used an automated segmentation tool with some user
corrections to establish areas of myocardial scar. As we were
working with large regions of myocardial scar and radiomic
features calculated across them, small segmentation errors would
not have greatly affected the results. Nevertheless, more accurate
automatic or manual segmentations may produce stronger
radiomic features and resulting classifiers. While segmental
analyses are clinically useful, with additional datasets it may be
possible to produce a more specific classification of scar regions.
Convolutional neural networks have been shown capable of this
task for MRI with LGE (14) and could be applied here instead of
calculating radiomic features.

CONCLUSION

This study showed that CT-DE can identify myocardial scar using
radiomic features and machine learning methods, with good
accuracy compared to the gold standard of MRI-LGE. Further
large prospective studies are required to evaluate the use of this
technique in clinical practice.
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