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In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the
presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-
multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-
robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in
the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing
parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the
scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.

1. Introduction

Mixture experiments, a special study area of response sur-
face methodology (RSM), are performed in many areas of
product development and improvement. The purpose of
mixture experiments is to model the blending surface with
some forms of the mathematical equation. In general, for
modeling well-behaved mixture system, the specific models
such as Scheffé canonical polynomials are used in developing
the appropriate response model. The parameter estimates
of the Scheffé canonical polynomials are obtained by the
ordinary least squares (OLS) method. However, in mixture
experiments, multicollinearity is more frequent than the
other experimental studies because of the constraints of com-
ponents composing the mixture. Therefore, OLS estimates
of the Scheffé canonical polynomials may be statistically
insignificant with wrong sign and their variances are large
so they may be far from the true values due to constraints
on the mixture components [1–3]. To reduce the effect of
multicollinearity in the analysis of mixture experiments,
variable transformation or ordinary ridge regression (ORR),
suggested by Hoerl and Kennard [4], is widely used as a
classical method.

In mixture experiments, the detailed application of ORR
estimator is given by St. John [1]. To evaluate the performance
of ORR estimator, the graphical approaches apart from the
analytical methods have been proposed in mixture experi-
ments. These graphical approaches are based on plots of the
scaled prediction variance (SPV) trace, which is suggested
by Vining et al. [5]. The plot of SPV traces is used to
compare the quality of prediction for designs in mixture
experiments [5, 6]. Using the plot of SPV traces, Jang and
Yoon [7] suggested a graphical method for evaluating and
selecting an appropriate biasing parameter 𝑘 that balances the
bias-variance tradeoff. With this approach, the SPV values
are plotted along prediction rays that correspond to Cox
directions. On the other hand, Jang and Anderson-Cook [8]
used fraction of design space (FDS) plots, which is developed
by Zahran et al. [9], and violin plots to illustrate and evaluate
the effect ofORR estimatorwith respect to the SPVvalues and
to guide the decision about the value of biasing parameter 𝑘.

In mixture experiments, apart from the problems due to
multicollinearity, another important problem which needs
attention in parameter estimation is the presence of outliers in
the data set [3, 10, 11]. In this case, outliers affect the efficiency
of OLS estimates [12]. To overcome this problem, robust
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estimationmethods like𝑀-estimator, leastmedian of squares
(LMS) estimator, least trimmed sum of squares (LTS) estima-
tor, 𝑆-estimator, and MM-estimator are proposed (see [12–
16]). However, although robust estimators are the resistant
techniques used to obtain the parameter estimates which are
not affected by outliers, they are frequently unstable when the
design matrix is ill-conditioned [12]. Therefore, effects due to
both outliers and multicollinearity in the analysis of mixture
experiments can be reduced to a certain extent by using
alternative approaches. One of these approaches is to use
biased-robust estimators for the estimation of the coefficients.
In literature, it is recommended to use alternative ridge-
type robust estimators for both outliers and multicollinearity
problem in data set (see [17–22]).

The purpose of this study is to apply and evaluate vari-
ous ridge-type robust estimators in the analysis of mixture
experiments. Also, the performance of ridge-type robust
estimators is dependent on the biasing parameter. In this case,
to determine the biasing parameter apart from the analytical
methods, alternative plots which are used in comparison
and evaluation of the designs and which are based on the
SPV values or the scaled mean squared error of prediction
(SMSEP) values can be used. Considering the SPV values
in evaluating and comparing designs is important, but bias
properties of designs should also be considered [23]. There-
fore, our studywill focus on the use of FDS plots as a graphical
tool for evaluating the effect of various ridge-type robust
estimators with respect to the SMSEP values and for guiding
the decision about the value of the biasing parameter.

This paper is organized as follows. In the next sec-
tion, the concise information about the analysis of mixture
experiments with robust methods is given. In Section 3, the
ridge-type robust estimators based on the𝑀-estimator, GM-
estimator, and MM-estimator are introduced. In Section 4,
the FDS plots are introduced for the selection of biasing
parameter 𝑘. The suggested approach is illustrated on Hald
cement data in Section 5. Finally, the obtained results are
given in Section 6.

2. Mixture Experiments

Inmixture experiments, themeasured response depends only
on the proportions of the components present in the mixture
and not on the amount of the mixture. For example, the
measured response might be the strength of concrete which
is a mixture of cement, sand, and water, or it might be octane
rating of a blend of gasoline. The aim of these experiments is
to find optimal component proportions that provide desired
values of some product performance characteristics [24].

Let 𝑥
𝑖
represent the proportion of the 𝑖th component

present in a 𝑞 component mixture; then

0 ≤ 𝑥
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑞,

𝑞

∑

𝑖=1

𝑥
𝑖
= 1. (1)

The mixture constraints (1) produce a regular (𝑞 − 1)-
dimensional simplex experimental region. However, the

experimental region (1) is sometimes subjected to additional
constraints on individual mixture components of the form

0 ≤ 𝐿
𝑖
≤ 𝑥
𝑖
≤ 𝑈
𝑖
≤ 1 𝑖 = 1, 2, . . . , 𝑞, (2)

where 𝐿
𝑖
and𝑈

𝑖
denote lower and upper bounds, respectively.

In general, restriction (2) reduces the experimental region
given by (1) to an irregular (𝑞 − 1)-dimensional hyperpolyhe-
dron. Mixture experimental designs are discussed by Cornell
[24] for regular and irregular simplex regions.

In general, the presence of natural constraints or/and
some additional linear constraints between the components
requires the use of specific polynomialmodels such as Scheffé
canonical polynomials for the modeling of the mixture
system [25]. Formodelingwell-behavedmixture system, gen-
erally the Scheffé canonical polynomials are sufficient [24].
The first- and second-degree Scheffé canonical polynomial
are given as

𝑦 =

𝑞

∑

𝑖=1

𝛽
𝑖
𝑥
𝑖

𝑦 =

𝑞

∑

𝑖=1

𝛽
𝑖
𝑥
𝑖
+

𝑞

∑

𝑖=1

𝑞

∑

𝑖<𝑗

𝛽
𝑖𝑗
𝑥
𝑖
𝑥
𝑗
.

(3)

As usual, we can represent the Scheffé canonical polyno-
mial models in matrix form by

y = X𝛽 + 𝜀, (4)

where y is 𝑛 × 1 vector of observations on the response
variable, X is 𝑛 × 𝑝(≥ 𝑞) matrix, where 𝑝 is number of the
terms in the model, 𝛽 is 𝑝 × 1 vector of parameters to be
estimated, and 𝜀 is 𝑛 × 1 vector of random errors satisfying
𝐸(𝜀) = 0 and 𝑉(𝜀) = 𝜎

2I. The vector of unknown parameters
𝛽 can be generally estimated using OLS method. The OLS
estimator for 𝛽 is

𝛽̂OLS = (X󸀠X)
−1

X󸀠y. (5)

When the observations y in model (4) are normally dis-
tributed, the OLS is a good parameter estimation procedure
in the sense that it produces an estimator of the parameter
vector𝛽 that has good statistical properties [12]. For example,
𝛽̂OLS is the best linear unbiased estimator of 𝛽 and also the
maximum-likelihood estimator of 𝛽. On the other hand,
there are many situations where the distribution of the
response variable is nonnormal. Under conditions of non-
normal distributions, particularly heavy-tailed distributions,
OLS estimator no longer has these desirable properties.These
heavy-tailed distributions tend to generate outliers, and these
outliers may have improper effect on the OLS estimates. To
deal with this, several robust-to-outliers methods have been
proposed in the literature [12, 16].

Robust regression methods are well-designed statistical
techniques to produce regression coefficients which are not
sensitive to outliers and nonnormal error distributions [13].
The most popular of all robust estimation techniques is 𝑀



The Scientific World Journal 3

estimation, proposed by Huber [26]. The 𝑀-estimator is
defined as

𝛽̂
𝑀

= arg min
𝛽

𝑛

∑

𝑢=1

𝜌(
𝑒
𝑢
(𝛽)

𝑠
) , (6)

where 𝑒
𝑢
denote the residuals as 𝑒

𝑢
= 𝑒
𝑢
(𝛽̂) = 𝑦

𝑢
− x󸀠
𝑢
𝛽̂,

where x󸀠
𝑢
denote the 𝑢th row of X, and 𝑠 is a robust estimate

of scale. The scale 𝑠 is required to gain scale equivariance and
either can be an external scale estimate or can be estimated
simultaneously. The function 𝜌 is related to the likelihood
function for an appropriate choice of the error distribution.
Different choices for 𝜌 lead to different variants of 𝑀-
estimators. As with most𝑀-estimation procedures, both the
Huber weight function and the Tukey biweight function are
two common choices [16].

To minimize (6), equate the first partial derivatives of 𝜌
with respect to each parameter which leads to 𝑝 equations of
the form

𝑛

∑

𝑢=1

𝑥
𝑢𝑗
𝜓(

𝑒
𝑢
(𝛽)

𝑠
) = 0, 𝑗 = 1, 2, . . . , 𝑝, (7)

where 𝜓(⋅) is the partial derivative of 𝜌 with respect to
parameters. In general, the 𝜓 function in (7), a nonlinear
function,must be solved by iterativemethods.Themost com-
mon solution is iteratively reweighted least squares (IRLS),
resulting in an estimator

𝛽̂
𝑀

= (X󸀠WX)
−1

X󸀠Wy, (8)

where W is an 𝑛 × 𝑛 diagonal matrix of weights 𝑤
𝑢

=

𝜓(𝑒
𝑢
/𝑠)/(𝑒

𝑢
/𝑠), 𝑢 = 1, 2, . . . , 𝑛. IRLS estimation procedure

updatesWmatrix until a convergence criterion has been met
[12].

On the other hand, 𝑀-estimators are not robust to high
leverage points. As a remedy to this problem, bounded-
influence generalized 𝑀-estimators (GM-estimators) have
been proposed. The most commonly used GM-estimator is
the Schweppe-type estimator. Handschin et al. [27] proposed
an objective functionwith associated normal equations of the
form

𝑛

∑

𝑢=1

𝜓(
𝑒
𝑢
(𝛽)

𝜋
𝑢
𝑠

)𝜋
𝑢
x
𝑢
= 0, (9)

where, for appropriate values of 𝜋
𝑢

= 𝜋
𝑢
(x
𝑢
), the GM-

estimator can downweight outliers with high leverage points.
Several suggestions for𝜋

𝑢
have beenmade that involve typical

OLS outlier diagnostics, including studentized residuals or
DFFITS [28]. The resulting estimator is (8), except the
weights which become 𝑤

𝑢
= 𝜓(𝑒

𝑢
/𝜋
𝑢
𝑠)/(𝑒
𝑢
/𝜋
𝑢
𝑠). In the

literature, several GM estimation approaches are suggested
using various combinations of GM components (objective
function, initial estimate, scale estimate, 𝜋 function, etc.)
[29, 30].

The breakdown point and efficiency are two practical
concerns that should be taken into account when selecting
a robust estimation procedure [12, 16]. According to these

properties, GM-estimators possess the same efficiency and
asymptotic distributional properties as 𝑀-estimators. But
their breakdown points may not be much better than the
worst case 1/𝑛. In these cases, both 𝑀-estimation and GM-
estimation can be improved by starting with a good initial
estimate. In general, an alternative desirable initial estimator
with a high breakdown point can be 𝑆-estimator [29, 30].

𝑆-estimator proposed by Rousseeuw and Yohai [14] is
based on minimizing the dispersion of the residuals. The
objective function for 𝑆-estimation is

𝛽̂
𝑆
= arg min

𝛽

𝜎̂
𝑆
(𝑒
1
(𝛽) , . . . , 𝑒

𝑛
(𝛽)) , (10)

where the dispersion function 𝜎̂
𝑆
is found implicitly as the

solution to

1

𝑛

𝑛

∑

𝑢=1

𝜌(
𝑒
𝑢
(𝛽)

𝜎̂
𝑆

) = 𝜅, (11)

where 𝜅 is a tuning constant defined as 𝜅 = 𝐸
Φ
[𝜌(𝑒)] and Φ

represent the standard normal distribution. The solution 𝜎̂
𝑆

is called an 𝑀-estimator of scale. But it is impossible for 𝑆-
estimator to achieve a high breakdown point as well as a high
efficiency [16].

Other most commonly used robust estimators, proposed
by Yohai [15], are MM-estimators, which combine high
breakdown with high asymptotic efficiency. Estimates are a
modification of the typical 𝑀-estimates and are obtained
through a three-step process [16]. Let 𝛽̂

𝑆
be an 𝑆-estimator,

and let 𝜎̂
𝑆
be the corresponding𝑀-estimator of scale, solving

(11) for 𝛽 = 𝛽̂
𝑆
. The MM-estimator is then defined as local

solution of

𝛽̂MM = arg min
𝛽

𝑛

∑

𝑢=1

𝜌(
𝑒
𝑢
(𝛽)

𝜎̂
𝑆

) (12)

obtained with IRLS and initial value 𝛽̂
𝑆
. The initial 𝑆-

estimator guarantees a high breakdown point and the final
MM-estimate a high Gaussian efficiency. In both the initial 𝑆-
estimator and the final MM-estimator, a standard choice of 𝜌
is Tukey biweight function. The tuning constant 𝜅 can be set
to 1.547 for the 𝑆-estimator to guarantee a 50% breakdown
point, and it can be set to 4.685 for the second step MM-
estimator in (12) to guarantee a 95% efficiency of the final
estimator [16].

3. Ridge-Type Robust Estimators

Multicollinearity and outliers are two main problems for
researchers using regression estimation methods. In the
presence of multicollinearity, several alternative estimation
techniques are proposed. One of them is the ORR estimator
which was proposed by Hoerl and Kennard [4]. The ORR
estimator which is the most popular method for dealing with
multicollinearity is defined by

𝛽̂ORR = (X󸀠X + 𝑘I)
−1

X󸀠X𝛽̂OLS, 𝑘 > 0, (13)
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where 𝑘 is called biasing parameter. Since 𝛽̂ORR depends
on 𝛽̂OLS, 𝛽̂ORR is sensitive to outliers. Therefore, outliers
may have also improperly effect on the ridge estimates.
The problem is further complicated when both outliers and
multicollinearity are present in the data [31].

In recent years, major efforts have been made to obtain
reliable estimates especially in the presence of outliers
and also multicollinearity. When both outliers and multi-
collinearity occur in a data set, it would seem beneficial
to combine methods designed to deal with these problems
individually. It is hoped that the resulting ridge-type robust
estimators will be resistant to outliers and less affected by
multicollinearity [19, 21, 31].

A ridge-type𝑀-estimator, suggested by Silvapulle [19], is
defined by

𝛽̂RM = (X󸀠X + 𝑘I)
−1

X󸀠X𝛽̂
𝑀

= Z𝛽̂
𝑀
, 𝑘 > 0, (14)

where 𝛽̂
𝑀
is the𝑀-estimators of 𝛽. Silvapulle [19] shows that

MSE[𝛽̂RM] < MSE[𝛽̂ORR] is obtained under some conditions
and a positive 𝑘

1
exists which depends on the unknown

parameters such that MSE[𝛽̂RM] < MSE[𝛽̂
𝑀
], for 0 < 𝑘 < 𝑘

1
.

On the other hand, Maronna [22] stated that Z matrix
and 𝛽̂

𝑀
estimator in (14) are also sensitive to leverage points.

Therefore, a ridge-type robust estimatorwhich is not sensitive
to both 𝑥- and 𝑦-outliers is given by

𝛽̂RR = (X󸀠WX + 𝑘I)
−1

X󸀠WX𝛽̂
𝑅
, 𝑘 > 0, (15)

where 𝛽̂
𝑅
is one of the robust estimators (such as GM-

estimator or MM-estimator) of 𝛽. In this case, the use of
ridge-type robust estimators is a good method for obtaining
more stable parameter estimates for the model.

The ridge-type robust estimator given in (15) depends on
the biasing parameter 𝑘. For selection of biasing parameter,
Silvapulle [19] proposed the two different types of adaptive
choices based on Hoerl et al. [32] (abbreviated to HKB) and
Lawless andWang [33] (abbreviated to LW).The same results
can be extended to 𝛽̂RR estimators. The resulting two choices
of 𝑘 are

𝑘̂HKB =
𝑝𝐴
2

󵄩󵄩󵄩󵄩󵄩
𝛽̂
𝑅

󵄩󵄩󵄩󵄩󵄩

2
, 𝑘̂LW =

𝑝𝐴
2

∑
𝑝

𝑖=1
𝜆
𝑖
𝛽2
𝑅𝑖

, (16)

where 𝐴
2

= 𝑠
2
{(𝑛 − 𝑝)

−1
∑𝜓
2
(𝑒
𝑢
/𝑠)}{𝑛

−1
∑𝜓
󸀠
(𝑒
𝑢
/𝑠)}
−2 and

𝜆
𝑗
is the 𝑗th eigenvalue of X󸀠WX. Also for ORR estimator,

there are several methods for selecting the biasing parameter
𝑘 in literature. Most of these methods have been reviewed
by Clark and Troskie [34]. Recommended methods can be
similarly extended to the ridge-type robust estimators.

4. The Graphical Method for Evaluating
Biasing Parameter

Due to the fact that there is not a definite rule for selection
of biasing parameter, the graphical approaches developed
for the ORR estimator can be used to select the biasing

parameter of the ridge-type robust estimators. Different than
analytical methods, determination of the biasing parameter
with graphical approach is useful since it helps the researcher
to examine the prediction properties of design based on
the different biasing parameters visually. The prediction
properties of a design, specifically the SMSEP values, also
depend on the fitted model. Therefore multicollinearity due
to the fitted model also influences the performance of the
prediction properties of design completely. In this case, to
examine the graphical approaches developed for comparison
of the performance of designs based on the different biasing
parameter for a single design is a useful method [7, 8].

For using the suggested methods on the analysis of
mixture experiments, firstly we define the predicted response
at x
𝑢
. When we use 𝛽̂RR estimator, the predicted response

value at x
𝑢
is given as

𝑦
𝑘
(x
𝑢
) = x󸀠
𝑢
𝛽̂RR = x󸀠

𝑢
(X󸀠WX + 𝑘I)

−1

X󸀠WX𝛽̂
𝑅
. (17)

The mean squared error of 𝑦
𝑘
(x
𝑢
), also known as the mean

squared error of prediction (MSEP), is given by

MSE [𝑦
𝑘
(x
𝑢
)] = var [𝑦

𝑘
(x
𝑢
)] + {Bias [𝑦

𝑘
(x
𝑢
)]}
2
, (18)

where Bias[𝑦
𝑘
(x
𝑢
)] = 𝐸[𝑦

𝑘
(x
𝑢
)] − 𝑦(x

𝑢
) is the bias associated

with estimating 𝑦(x
𝑢
).

The variance of 𝑦
𝑘
(x
𝑢
), also known as the prediction

variance, is given by

var [𝑦
𝑘
(x
𝑢
)] = x󸀠

𝑢
(X󸀠WX + 𝑘I)

−1

X󸀠WXvar [𝛽̂
𝑅
]

× X󸀠WX(X󸀠WX + 𝑘I)
−1

x
𝑢
,

(19)

where var[𝛽̂
𝑅
] is the variance-covariance matrix of 𝛽̂

𝑅
. There

are various approximations for determination of covariance
matrix of the robust estimators in the literature [13]. Huber
[13] has shown that a reasonable approximation for the
covariance matrix of 𝛽̂

𝑅
is var[𝛽̂

𝑅
] ≈ 𝐾

2
𝐴
2
(X󸀠X)

−1, where
𝐾 = 1 + (𝑝/𝑛)(var(𝜓󸀠(𝑒

𝑢
))/[𝐸(𝜓

󸀠
(𝑒
𝑢
))]
2

) is correction factor.
Using (17), the bias of 𝑦

𝑘
(x
𝑢
) at x
𝑢
is approximately given

by

Bias [𝑦
𝑢
(x
𝑢
)] ≈ x󸀠

𝑢
[(X󸀠WX + 𝑘I)

−1

X󸀠WX − I]𝛽. (20)

By combining the result in (19) and (20), an approximate
expression for the MSE of 𝑦

𝑘
(x
𝑢
) is given by

MSE [𝑦
𝑘
(x
𝑢
)] ≈ 𝐾

2
𝐴
2x󸀠
𝑢
(X󸀠WX + 𝑘I)

−1

X󸀠WX(X󸀠X)
−1

×X󸀠WX (X󸀠WX + 𝑘I)
−1

x
𝑢
+ 𝑘
2x󸀠
𝑢

× (X󸀠WX + 𝑘I)
−1

𝛽𝛽
󸀠
(X󸀠WX + 𝑘I)

−1

x
𝑢
.

(21)

Note that MSE[𝑦
𝑘
(x
𝑢
)] is a function of the biasing parameter

𝑘, the location of mixture x
𝑢
in the design space, the model

matrix, and the weights matrix. It should also be noted that
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MSE[𝑦
𝑘
(x
𝑢
)] depends on 𝛽, which is unknown. To calculate

the MSE[𝑦
𝑘
(x
𝑢
)] in (21), the unknown parameters can be

replaced by suitable estimates of the parameters.
When design comparison focuses on prediction, the

MSEP is generally scaled by 𝑛/𝜎
2 to create a scale-free

quantity that reflects the design size.The scaledmean squared
error of prediction (SMSEP) at the 𝑢th observation for a
ridge-type robust estimator is written as

SMSE [𝑦
𝑘
(x
𝑢
)] =

𝑛

𝑠2
MSE [𝑦

𝑘
(x
𝑢
)] , (22)

where 𝑛 denotes the design size. The multiplication by 𝑛

serves to adjust theMSE for the total number of observations.
This practice, which is quite common in RSM, makes it
possible to use the SMSEP as a design criterion for comparing
several designs [6].

In an experimental region, determination of the mixture
points x

𝑢
, SMSE[𝑦

𝑘
(x
𝑢
)] values along with a constant 𝑛 value

can be compared for different 𝑘 values. Instead of comparing
SMSE[𝑦

𝑘
(x
𝑢
)] values arbitrarily, a graphical approach which

examines the distribution of the values of SMSE[𝑦
𝑘
(x
𝑢
)] on

the experimental region can be used. So, an appropriate
𝑘 > 0 value which achieves SMSE[𝑦

𝑘
(x
𝑢
)] < SMSE[𝑦(x

𝑢
)]

condition on the experimental region can be determined.
To evaluate the distribution of SMSE[𝑦

𝑘
(x
𝑢
)] values on

the constrained experimental design, the FDS plots which
are used in comparison and evaluation of the designs can
be used. The main advantage of the use of FDS plots is to
display characteristics of SMSE[𝑦

𝑘
(x
𝑢
)] values throughout a

multidimensional design region on a two-dimensional graph.
Therefore, we can use the FDS plots as a graphical tool for
evaluating the effect of ridge-type robust estimators with
respect to the SMSEP values and for selecting an appropriate
value of the biasing parameter 𝑘. In this case, instead of just
considering a single FDS curve for a design, we examine the
impact of the biasing parameter on the MSEP performance
throughout the experimental region.

To calculate the FDS, two sampling methods with nearly
same results are generally explored to sample mixture points
x
𝑢
from the design space [35].The first uses shrunken regions

by Piepel et al. [36] and randomly selects a number of
points on each shrinkage level proportional to that level. The
second method selects points completely at random that fit
within the constraints of the region [35]. In this study, we
will use second method for generation of the sample points
on the experimental region. Once the points are generated,
the SMSE[𝑦

𝑘
(x
𝑢
)] values are calculated for each point. The

empirical cumulative distribution function is then calculated
for the SMSE[𝑦

𝑘
(x
𝑢
)] values and plotted on the FDS plot.The

minimum SMSE[𝑦
𝑘
(x
𝑢
)] value is shown at FDS of 0 and the

maximum value is shown at the fraction 1. Along the FDS
curve, the fraction of the design space at or below a particular
SMSE[𝑦

𝑘
(x
𝑢
)] value can be determined. A good design starts

with small values and remains flat throughout. Therefore,
with FDS plot, we see the relationship between the different
biasing parameters 𝑘 and we see the pattern of SMSE[𝑦

𝑘
(x
𝑢
)]

changing as 𝑘 increases. By examining several different values
of 𝑘, we can determine the smallest possible value of 𝑘, which
stabilizes the SMSE[𝑦

𝑘
(x
𝑢
)] distribution.

5. Example: The Hald Cement Data

To evaluate the performances of ridge-type robust estimators,
we will draw on a mixture experiment given by Piepel and
Redgate [37]. Piepel and Redgate [37] pointed out that the
data from a cement example published by Hald [38] can be
analyzed in the framework of the mixture experiments. The
purpose of the experiment is to investigate the influence of
the components on the heat of hardening (calories/gram),
measured after the cements cured for 180 days. The data
given in Table 1 contains the 𝑥

𝑖
values (weight fractions,

wf) computed from the 13 oxide weight percent clinker
compositions. Additional information on the analyzing of the
Hald cement experiment can be found in Piepel and Redgate
[37] and Smith [3].

When we use first-degree Scheffé canonical polynomial,
the obtained model is as follows:

𝑦 = −433.7
(33.64)

𝑥
1
+ 54.9
(64.35)

𝑥
2
− 252.7
(32.21)

𝑥
3
+ 56.7
(88.58)

𝑥
4
+ 309.2
(16.76)

𝑥
5
,

(23)

where the quantities in parentheses are estimated as standard
errors of the coefficient estimates. Statistics for detecting
influential observations for theHald cement data set are given
in Table 2.

Based on the result of Table 2, 𝑒
8
ordinary residual seems

suspiciously large. Also, observation 3 has a high leverage
value. The parameter estimates of the robust estimators are
given in Table 3. In Table 3, the quantities in parentheses are
estimated as standard errors of the coefficient estimates and
AICR is the robust version of Akaike Information Criterion
which is used for model selection [16].

Table 4 displays the final weights for robust estimators.
In 𝑀-estimation, there is considerably downweight only
at point 3. In case of GM-estimation, both point 3 and
point 8 are significantly downweight. On the other hand, all
observations are moderately downweight in MM-estimation.
But, we note that neither point 3 nor point 8 is significantly
downweight in MM-estimation, despite the fact that these
points have the largest Cook’s distance and ordinary residual,
respectively.

In addition, the condition number of X󸀠X matrix is
101.034. So, the designmatrixX ismoderately ill-conditioned.
Therefore, due to themulticollinearity and outliers, the ridge-
type GM-estimator or the ridge-type MM-estimator can be
used. For the ridge-type GM-estimator, we can calculate the
biasing parameter as 𝑘̂HKB ≈ 𝑘̂LW = 0.00001. For the ridge-
type MM-estimator, the biasing parameter can be estimated
as 𝑘̂HKB = 0.00007 and 𝑘̂LW = 0.00002 based on the methods
proposed by Silvapulle [19].

To evaluate the biasing parameter 𝑘 for the ridge-type
GM-estimator and the ridge-type MM-estimator, randomly
generatedmixture points on the experimental region are con-
sidered. For different 𝑘 values, the FDS plots of SMSE[𝑦

𝑘
(x
𝑢
)]

values based on 𝛽̂GM and 𝛽̂MM estimators are given in Figures
1 and 2, respectively.

In Figures 1 and 2, as the biasing parameter 𝑘 increases,
the distribution of SMSE[𝑦

𝑘
(x
𝑢
)] values initially decreases

gradually and then increases dramatically. In this case, we
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Table 1: Hald cement data.

ID
𝑥
1

SiO2
(wf)

𝑥
2

Al2O3
(wf)

𝑥
3

Fe2O3
(wf)

𝑥
4

MgO
(wf)

𝑥
5

CaO
(wf)

𝑦

H180
(cal/g)

1 0.2742 0.0376 0.0198 0.0248 0.6436 78.5
2 0.2600 0.0350 0.0510 0.0230 0.6310 74.3
3 0.2181 0.0568 0.0279 0.0498 0.6474 104.3
4 0.2465 0.0581 0.0281 0.0240 0.6433 87.6
5 0.2500 0.0390 0.0210 0.0240 0.6660 95.9
6 0.2226 0.0619 0.0279 0.0239 0.6637 109.2
7 0.2098 0.0462 0.0572 0.0211 0.6657 102.7
8 0.2357 0.0481 0.0722 0.0221 0.6219 72.5
9 0.2220 0.0464 0.0616 0.0232 0.6468 93.1
10 0.2129 0.0876 0.0119 0.0249 0.6627 115.9
11 0.2252 0.0501 0.0751 0.0220 0.6276 83.8
12 0.2132 0.0611 0.0290 0.0260 0.6707 113.3
13 0.2183 0.0558 0.0269 0.0239 0.6751 109.4

Table 2: Statistics for detecting influential observations for the Hald cement data.

ID 𝑦 𝑦 𝑒
𝑖

𝑟
𝑖

𝑒
(𝑖)

ℎ
𝑖𝑖

Cook’s
Distance DFITS

1 78.5 78.532 −0.032 −0.020 −0.019 0.489 0.000 −0.018
2 74.3 72.703 1.596 0.856 0.840 0.286 0.059 0.533
3 104.3 104.495 −0.195 −0.863 −0.848 0.989 14.074 −8.240
4 87.6 89.487 −1.887 −0.979 −0.976 0.236 0.059 −0.543
5 95.9 95.721 0.178 0.101 0.095 0.362 0.001 0.071
6 109.2 106.403 2.796 1.370 1.465 0.144 0.063 0.603
7 102.7 104.108 −1.408 −0.835 −0.817 0.415 0.099 −0.689
8 72.5 75.722 −3.222 −1.845 −2.277 0.373 0.406 −1.758
9 93.1 92.049 1.050 0.530 0.505 0.195 0.013 0.249
10 115.9 115.777 0.122 0.101 0.094 0.699 0.004 0.144
11 83.8 81.430 2.369 1.342 1.426 0.359 0.202 1.069
12 113.3 112.417 0.882 0.446 0.422 0.197 0.009 0.209
13 109.4 111.649 −2.249 −1.176 −1.210 0.249 0.092 −0.697

can select a reasonably positive small value of 𝑘 at which the
distribution of SMSE[𝑦

𝑘
(x
𝑢
)] is stable and SMSE[𝑦

𝑘
(x
𝑢
)] <

SMSE[𝑦(x
𝑢
)] condition is achieved. For the ridge-type GM-

estimator, the biasing parameter 𝑘 is approximately chosen as
𝑘 = 0.00001. Also, for the ridge-type MM-estimator, we can
select the biasing parameter 𝑘 as 𝑘 = 0.0001. The obtained
models along with MSE[𝑦

𝑘
(x
𝑢
)] values are given in Table 5.

In Tables 3 and 5, we observe that MSE[𝑦
𝑘=0.00001

(x
𝑢
)] <

MSE[𝑦(x
𝑢
)] is achieved for the ridge-type GM-estimator.

Also, when we select the biasing parameter 𝑘 as 𝑘 = 0.0001,
the same result is obtained for the ridge-type MM-estimator.
A more comprehensive comparison of the ridge-type GM-
estimator and the ridge-type MM-estimator under MSEP
sense is given in Figure 3.

From Figure 3, it can be seen that MSE[𝑦
𝑘
(x
𝑢
)]
(𝛽̂GM)

is smaller than MSE[𝑦(x
𝑢
)]
(𝛽̂GM)

for 𝑘 < 0.00012.
Also, MSE[𝑦

𝑘
(x
𝑢
)]
(𝛽̂MM)

is smaller than MSE[𝑦(x
𝑢
)]
(𝛽̂MM)

for

𝑘 < 0.00029. In addition, when we select the biasing
parameter 𝑘 as 𝑘 < 0.0006, MSE[𝑦

𝑘
(x
𝑢
)]
(𝛽̂GM)

is smaller
than MSE[𝑦

𝑘
(x
𝑢
)]
(𝛽̂MM)

. For the values of biasing parameter
𝑘 larger than 𝑘 > 0.0006, MSE[𝑦

𝑘
(x
𝑢
)]
(𝛽̂MM)

is smaller
than MSE[𝑦

𝑘
(x
𝑢
)]
(𝛽̂GM)

. As a result, which ridge-type robust-
estimator is the best seems to be dependent on the robust
estimator of 𝛽 and the choice of biasing parameter 𝑘. We
have to replace these unknown parameters by some suitable
estimates in practice. Therefore, the results of the graphical
findings may change.

6. Conclusions

In this study, we used various ridge-type robust estimators
to reduce the effect of the multicollinearity and outliers on
the model parameters to certain extent in the analysis of
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Table 3: The parameter estimates of the robust estimators.

𝛽̂
𝑅

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

𝑠 AICR MSE[𝑦(x
𝑢
)]

𝛽̂
𝑀

−431.244
(35.823)

59.539
(68.522)

−248.274
(34.294)

57.195
(94.323)

307.774
(17.845)

2.118 15.196 27.599

𝛽̂GM −444.933
(27.238)

44.524
(52.10)

−222.962
(26.075)

677.678
(71.717)

290.069
(13.568)

1.335 72.534 15.956

𝛽̂MM −432.122
(35.199)

56.987
(67.328)

−250.218
(33.697)

57.286
(92.680)

308.365
(17.534)

2.519 10.304 26.690

Table 4: Final weights from robust regressions.

ID 𝑀-estimate GM-estimate MM-estimate
1 1 1 0.9999
2 1 1 0.9669
3 1 0.0015 0.9994
4 1 1 0.9476
5 1 1 0.9993
6 1 1 0.8896
7 1 1 0.9715
8 0.8268 0.4595 0.8456
9 1 1 0.9856
10 1 1 0.9997
11 1 1 0.9281
12 1 1 0.9879
13 1 1 0.9314

SM
SE

[ŷ
k
(x

u
)]

k = 0.00001

k = 0

k = 0.00005

k = 0.0001

k = 0.0005

k = 0.001

FDS
0.2 0.4 0.6 0.8 1.0

20

40
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80

Figure 1: The FDS plots for different 𝑘 values according to the
randomly generated mixture, where 𝛽̂

𝑅
= 𝛽̂GM.

mixture experiments. We observed that the performance
of the ridge-type robust estimator depends on the robust
estimator of 𝛽 and the biasing parameter 𝑘. In this study,
as robust estimator of 𝛽, the 𝑀-estimator, GM-estimator,
and MM-estimator were discussed. By selecting the robust
estimators which are less sensitive to points outlying in the
𝑥-and/or 𝑦-direction will improve the performance of the
ridge-type robust-estimator. On the other hand, depend-
ing on the biasing parameter, to evaluate the performance
of the ridge-type robust estimators, we adapted extensive

SM
SE

[ŷ
k
(x

u
)]

k = 0.00001

k = 0

k = 0.00005

k = 0.0001

k = 0.0005

k = 0.001

FDS
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0.2 0.4 0.6 0.8 1.0

Figure 2: The FDS plots for different 𝑘 values according to the
randomly generated mixture, where 𝛽̂

𝑅
= 𝛽̂MM.
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MSE[ŷk(xu)](𝛽̂MM )
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MSE[ŷk(xu)](𝛽̂GM)

Figure 3: Comparison of the ridge-type GM-estimator and the
ridge-type MM-estimator under MSEP sense.

enlargement of the graphical approach suggested for ORR
estimator. For evaluating the biasing parameter, the FDS plots
which are based on the SMSEP values are considered. As
known in literature, the MSEP is a more powerful criterion
for comparison of the designs than the prediction variance.
Because MSEP incorporates the prediction variance and the
prediction bias associated with the fitted model, the results
obtained by FDS plots which are based on the SMSEP
values were observed to be consistent with the other analytic
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Table 5: The parameter estimates of the ridge-type robust estimators.

𝛽̂RR 𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

MSE[𝑦
𝑘
(x
𝑢
)]
(𝛽̂RR)

𝛽̂RR(𝛽̂GM)
(𝑘=0.00001)

−431.634
(27.121)

62.523
(51.491)

−230.555
(25.808)

304.331
(32.155)

297.865
(13.274)

14.124

𝛽̂RR(𝛽̂MM)
(𝑘=0.0001)

−419.691
(35.011)

72.054
(66.697)

−243.282
(33.578)

55.259
(91.264)

302.402
(17.385)

26.382

approaches used in literature. Therefore, for evaluation of
biasing parameter, the FDS plots which are based on the
SMSEP values can also be used for both the mixture models
affected by multicollinearity and outliers and other biased-
robust estimators.
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İstatistiksel Analizler [Ph.D. thesis], Cukurova Universitesi FBE,
Adana, Turkey, 2005.

[12] D. C. Montgomery, E. A. Peck, and G. Vining, Introduction to
Linear Regression Analysis, John Wiley & Sons, New York, NY,
USA, 3rd edition, 2001.

[13] P. J. Huber, Robust statistics, JohnWiley & Sons, New York, NY.
USA, 1981.

[14] P. J. Rousseeuw and V. J. Yohai, “Robust regression by means of
S-estimators,” in Robust and Nonlinear Time Series Analysis, J.
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