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ABSTRACT

Assembly of new chromatin during S phase requires
the histone chaperone complexes CAF-1 (Cac2p,
Msi1p and RIf2p) and RCAF (Asfip plus acetylated
histones H3 and H4). Cells lacking CAF-1 and RCAF
are hypersensitive to DNA-damaging agents, such
as methyl methanesulfonate and camptothecin, sug-
gesting a possible defect in double-strand break
(DSB) repair. Assays developed to quantitate repair
of defined, cohesive-ended break structures revealed
that DSB-induced plasmid:chromosome recombina-
tion was reduced ~10-fold in RCAF/CAF-1 double
mutants. Recombination defects were similar with
both chromosomal and plasmid targets in vivo, sug-
gesting that inhibitory chromatin structures were not
involved. Consistent with these observations, ioniz-
ing radiation-induced loss of heterozygosity was
abolished in the mutants. Nonhomologous end-
joining (NHEJ) repair proficiency and accuracy were
intermediate between wild-type levels and those of
NHEJ-deficient yku70and rad50 mutants. The defects
in NHEJ, but not homologous recombination, could
be rescued by deletion of HMR-a1, a component of
the al/alpha2 transcriptional repressor complex.
The findings are consistent with the observation
that silent mating loci are partially derepressed.
These results demonstrate that defective assembly
of nucleosomes during new DNA synthesis compro-
mises each of the known pathways of DSB repair and
that the effects can be indirect consequences of
changes in silenced chromatin structure.

INTRODUCTION

DNA double-strand breaks (DSBs) can arise within cells by
several different mechanisms. Exogenous sources include
physical and chemical DNA-damaging agents, such as ioniz-
ing radiation, bleomycin and methyl methanesulfonate
(MMS). Most such agents produce multiple types of DNA
damage, but cause cell killing primarily because of unrepaired
DSBs (1,2). Endogenous sources of DSBs include intracellular
nucleases, chemicals such as highly reactive free radicals
derived from oxygen metabolism, and processes leading to
arrest and collapse of DNA replication forks (3-6). DNA
strand breaks are also associated with at-risk sequence motifs,
such as inverted repeats and triplet repeats (7,8). Conse-
quences of DSBs include arrest at damage-associated cell
cycle checkpoints, loss of cell viability and elevated DNA
instability, including increases in mutation, recombination
and chromosome rearrangements.

The two major DSB repair pathways, nonhomologous end-
joining (NHEJ) and homologous recombination, are highly
conserved in eukaryotes. In the budding yeast Saccharomyces
cerevisiae Rad50, Mrel1 and Xrs2 form a nuclease complex,
RMX, that is active in both the recombination and NHEJ
pathways (9). The recombination pathway also requires
Rad51, Rad52, Rad54, RadS5, RadS57, RadS9, the Rfa complex
(single-stranded binding protein) and other accessory proteins
(9,10). These proteins form specific associations with each
other in vitro and in vivo and mediate DNA strand annealing
and exchange.

Proteins involved in homology-independent repair by the
NHEJ pathway include the RMX, Yku70/Yku80, Dnl4/Lif1/
Nejl and Sir2/Sir3/Sird complexes (5,11-14). Past studies
have suggested that these complexes are able to bind to DNA
ends either directly or indirectly, though their exact roles in
NHEJ remain unclear (5,15).
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An essential step in the completion of S phase of the cell
cycle is the reassembly of histone octamers onto newly repli-
cated DNA and most new nucleosome assembly occurs at this
time. Two histone chaperone complexes, CAF-1 and RCAF,
are known to be involved in replication-coupled nucleosome
assembly in yeast and in other eukaryotes. CAF-1 consists of
at least three components, referred to as RI1f2, Cac2 and Msil
in S.cerevisiae (16—18). Inactivation of any of these genes leads
to partial alleviation of silencing at telomeric and mating type
loci, indicating a role for CAF-1 in maintenance of repressive
chromatin structures (17,19-24). Further evidence suggesting
a role for the complex during S-phase replication comes from
the observations that CAF-1 binds to and co-localizes with the
DNA polymerase clamp protein PCNA (proliferating cell
nuclear antigen) and replication factor C in vivo (11,25,26).

The RCAF complex was initially identified as a factor in
Drosophila embryo extracts displaying activity in an SV40-
based DNA replication/chromatin assembly assay (17). This
complex, consisting of the highly conserved protein Asfl com-
bined with partially acetylated forms of histones H3 and H4,
was found to act with CAF-1 in the assembly of chromatin
onto newly synthesized DNA (17,27). Inactivation of the yeast
ASFI gene results in hypersensitivity to DNA-damaging
agents and increased chromosome loss (17,24,28-30). Recent
experiments have demonstrated that Asfl can form associa-
tions with Rad53, a mediator of cell cycle checkpoint
responses to DNA damage, and with Hirl, a trans-acting regu-
lator of histone gene expression (24,29,31). Although Asfl
binds to Rad53 in undamaged cells, the available data are
consistent with a role for Asfl in nucleosome assembly and
DNA repair, but not in cell cycle checkpoint signaling (29).

RCAF works synergistically with CAF-1 in assays of
nucleosome assembly, possibly acting as a histone donor in
the process (16,17). Yeast cells lacking both complexes (e.g.
rlf2 asfl double mutants) are viable, but grow slowly and have
greater defects in the assembly of silenced chromatin at the
mating loci and at telomeres than single mutants. Past studies
have also suggested a role in repair of damaged chromosomal
DNA. For example, r/f2 mutants (CAF-1") exhibit slight sen-
sitivity to ultraviolet (UV), possibly due to impacts on the
RADG6/RADI18 pathway of post-replication repair (32), and
asfl (RCAF™) cells were previously found to be moderately
sensitive to UV and the chemical DNA-damaging agents
MMS and HU (17,25,29,30,32). Furthermore, double mutant
strains that have both RLF2 and ASFI inactivated are more
sensitive to UV and MMS than either single mutant (17).

Although not generally incorporated into DSB repair mod-
els, chromatin assembly and remodeling are likely to have an
impact on the rejoining of broken chromosomal DNA ends. In
the current study we have assessed the role of replication-
coupled nucleosome assembly in the repair of chemical and
radiation-induced DSBs inside cells and in the repair of a
defined, site-specific DSB by the NHEJ and homologous
recombination pathways.

MATERIALS AND METHODS
Yeast cells and growth media

Yeast strains used for this work are shown in Table 1.
Most gene disruptions were accomplished using PCR
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Table 1. Yeast strains used in this study

Strain Genotype Reference
BY4742 MATo. ura3A0 leu2A0 his3AI lys2A0 (38)
YB146 MATa ura3-52 his3-A200 lys2-801

ade2-101 trpl-Al

gal3 trpl ::[his3-A3'::HOcs his3-AS5'] 67)

YLKL644 BY4742, Acac2::HygB" This work
YLKL645 BY4742, Arlf2::HygB" This work
YLKL646 BY4742, Amsil ::HygB" This work
YLKL652 BY4742, Ayku70::HIS3 This work
YLKL687 BY4742, Arad51::LEU2 This work
YLKL689 BY4742, Arad52::LEU2 This work
YLKL728 BY4742, Aasfl::G418" This work
YLKL729 BY4742, Aasfl::G418", Arlf2::HygB" This work
YLKL730 BY4742, Aasfl::G418", Acac2::HygB" This work
YLKL753 YB146, Aasf1::G418", Arlf2::HygB" This work
YLKL755 YB146, Aasfl::G418", Acac2::HygB" This work
YLKL762 BY4742, his3A0::Nat" This work
YLKL763 BY4742, Ahmr-al : :Nat" This work
YLKL764 BYA4742, Aasfl:G418", Arlf2::HygB" This work

Ahmr-al ::Nat"
YLKL765 BYA4742, Aasfl::G418", Arlf2::HygB" This work

his3AO::Nat"
YLKL774 YLKL762, Arad51::LEU2 This work
YLKL778 YLKL762, Arad50::hisG This work

fragment-mediated deletion disruption as described previously
(33) in conjunction with plasmid-encoded genes providing
resistance to Geneticin/G418 (Life Technologies, Inc.),
hygromycin B (Boehringer Mannheim) or nourseothricin
(Hans-Knoell Institute for Natural Products Research). For
the selection of resistant yeast cells, antibiotics were added
to rich (YPDA) plates as described previously (34). Gene
disruptions involving HIS3, LEU2 or hisG-URA3-hisG
markers were performed using deletion plasmids as described
previously (33).

Cell survival and loss of heterozygosity assays

For standard survival assays using replica-pronging tech-
niques, wild-type and mutant strains were grown in YPDA
broth in 96 well microtiter plates. Cells were subsequently
pronged onto YPDA plates with or without DNA-damaging
agents following 10-fold serial dilution. MMS (Fluka),
hydroxyurea (HU) (Life Technologies, Inc.) or bleomycin
(Sigma—Aldrich) were added to media after autoclaving. For
YPDA plates containing camptothecin (Sigma—Aldrich), the
drug was added at 10 pg/ml after buffering the growth medium
with 25 mM HEPES, pH 7.2. To assess gamma radiation
survival requiring sister chromatid recombination, 10’ cells
from logarithmically growing haploid cell cultures were
exposed to 0, 40 or 80 krads, diluted serially and spread
onto YPDA plates. Colonies were counted after 3—4 days of
incubation at 30°C. To monitor gamma radiation resistance
due primarily to recombination between homologous chromo-
somes, diploid strains were created by crossing BY4742 x
YB146 (ASFI RLF2) or YLKL729 x YLKL753 (asfl rlf2)
(Table 1). The diploid cells were grown for 2 days to stationary
phase in YPDA broth, analyzed microscopically to confirm
unbudded cells (i.e. G; cells), irradiated and spread onto
YPDA plates. Four independent cultures of each strain were
assessed for the low dose experiments depicted in Figure 2B.
For the high dose experiments (inset graph in Figure 2B), two
cultures were used for each strain and the results averaged. For



4930 Nucleic Acids Research, 2005, Vol. 33, No. 15

the measurement of loss of heterozygosity (LOH) frequencies,
involving recombination within diploid ADE2/ade2 cells to
form colonies containing both Ade* (white) and Ade™ (red)
sectors, cells from two stationary phase cultures of each strain
were spread to 40-50 YPDA plates and results combined.
Plates were incubated for up to 5 days at 30°C to maximize
red color development. Two independent isolates of each gene
disrupted strain were tested using the haploid chemical and
radiation sensitivity assays and gave comparable results. Sub-
sequent tests of DSB repair used multiple cultures of one
independent isolate characterized in the mutagen survival
experiments.

Nonhomologous end-joining and ends-in homologous
recombination assays

Plasmid-based NHEJ repair assays were performed by LiAc
transformation as described previously (33) using uncut or
Ncol-cut plasmid p315URA3 (CEN/ARS URA3 LEU2) and
selection for Leu™ transformant colonies. p315URA3 was gen-
erated by inserting the 1.2 kb HindIIl fragment containing
URA3 from YEp24 into the HindIII site of plasmid pRS315
(35). Ncol cleaves uniquely within the URA3 gene and muta-
tional events associated with NHEJ repair were assessed by
replica-plating Leu™ colonies to synthetic plates lacking uracil.
In all experiments transformation efficiencies for broken
plasmid DNAs were normalized to efficiencies for uncut cen-
tromeric control plasmids performed concurrently with the
same competent yeast cell preparations.

‘Ends-in” recombination proficiencies of cells were
assessed by transformation with the integrating vector
pLKL37Y (HIS3 URA3) that had been cut inside HIS3 with
Bcll. To allow digestion by the methylation-sensitive enzyme
Bcll, plasmid DNA was prepared from dam™ Escherichia coli
SCS110 cells (Stratagene). After Bcll digestion and trans-
formation, His* colonies formed by recombinational integra-
tion of the plasmid into the his3-Al locus were scored. Repair
efficiencies (measured as transformants per microgram of
DNA) were normalized to those for uncut CEN/ARS plasmid
DNA (pRS313). Results presented are the mean + SD of
3-5 experiments for each strain.

For recombination assays involving exchange between lin-
earized plasmid DNA and either a chromosomal target or a
plasmid target, pRS303 (HIS3) was used after cleavage with
Bcell. To generate the target plasmid used in the assays,
the his3-Al locus on chromosome XV of BY4742 was PCR
amplified using primers 5'BamHIS3 (ATGCGTACGGATC-
CGCCTCCTCTAGTACACTCTATATT) and 3'BamHIS3
(ATGCGTACGGATCCGCAGCTTTAAATAATCGGTGT-
CACQ). The resulting PCR fragment was digested with BamHI
and cloned into BamHI-cut YCp50 (36) to create plasmid
pLKL71Y (CEN/ARS URA3 his3-Al). Host cells for the assays
were BY4742 cells in which his3-Al had been converted to
a complete deletion of the HIS3 gene by insertion of Nat'
(encoding resistance to nourseothricin). Strain YLKL762
and repair-deficient derivatives were used for the experiments
(Table 1). To confirm that Bcll-cut pRS303 DNA efficiently
recombined in vivo with pLKL71Y after transformation,
20 His* transformant colonies were replica-plated to synthetic
plates containing 5-fluoroorotic acid (5-FOA) (Zymo-
Research). The resulting Ura™ cells were all His™, indicating
that loss of the URA3 plasmid was always associated with

loss of HIS3 as expected if both markers were on the
plasmid.

RESULTS

Role of replication-coupled nucleosome assembly in the
repair of chemical and radiation-induced DSBs

The sensitivity of RCAF/CAF-1 double mutants (asfl rlf2
cells) to MMS, which is thought to produce strand breaks
by indirect mechanisms after DNA methylation (37), sug-
gested a possible role for the complexes in repair of DSBs
(17). This led us to investigate the role of CAF-1 and RCAF in
each of the major DSB repair pathways. A series of four single
mutants and all three CAF-1 RCAF double mutants containing
deletions of RLF2, CAC2, MSII and/or ASFI were created in
the haploid strain BY4742 (Table 1). This strain background
was used previously to create an ordered library of yeast gene
deletion mutants (28,38,39). The resistance of cells lacking
RCAF (asflA) or CAF-1 (rlf2A, cac2A or msil A strains) to
MMS, hydroxyurea (HU) and camptothecin was assessed by
performing serial dilutions (10-fold) and pronging cells as
shown in Figure 1A. HU is an inhibitor of ribonucleotide
reductase and camptothecin is a widely used inhibitor of topoi-
somerase I that creates DSBs by a distinctly different mecha-
nism than MMS or HU (3). DSB repair-deficient rad52
mutants were included as controls.

asfl mutants exhibited sensitivity to each of the drugs,
but were not as sensitive as recombination-deficient rad52
cells. In contrast, the three CAF-1 single mutants exhibited
only a slight inhibition at doses that reduced the growth of asf/
mutants by more than two orders of magnitude. At a higher
dose of MMS (2 mM), inhibition of all three CAF-1 single
mutants relative to wild-type cells was apparent (Figure 1A).
A previous study using 0.01% MMS (~1 mM) concluded that
rlf2 mutants are essentially resistant to this agent (17), but the
results in Figure 1 suggest that higher doses may have been
required to see an effect. The three CAF-1 RCAF double
mutants exhibited greater inhibition in the presence of each
chemical than any of the single mutants. This was most evident
for the plates containing 10 pg/ml camptothecin and was also
readily apparent when lower doses of each drug were used
(Figure 1B and data not shown).

The resistance of cells to gamma radiation, which produces
DSBs by both free radical attack (via ionization of water) and
direct deposition of energy onto DNA, was also assessed.
Interestingly, logarithmically growing haploid asf/ cells and
asf1 rlf2 double mutants were slightly more resistant to radia-
tion doses of 40 and 80 krads than wild-type cells (Figure 2A).
asfl and asfl rlf2 cell cultures have previously been shown to
contain cells that primarily have an elevated, G, phase content
of DNA (17,24,28). Since the resistance of haploid yeast cells
to ionizing radiation is primarily due to sister chromatid
recombination occurring in late S and G, phase (28), the
resistance of asfl and asfl rlf2 mutants is likely due to the
population being enriched for such cells.

Unlike haploids, diploid cells have the potential for recom-
binational repair of DSBs using homologous chromosomes as
well as sister chromatids. To address the impact of the com-
bined CAF-1 and RCAF complexes on repair between homo-
logous chromosomes, we examined the survival of wild-type
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Figure 1. (A and B) Sensitivity of chromatin assembly mutants to S-phase clastogens camptothecin (camp), hydroxyurea (HU) and methyl methanesulfonate
(MMS). Overnight cultures of each strain were serially diluted 10-fold and pronged to YPDA plates containing the indicated concentrations of each drug.
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Figure 2. Impact of inactivation of replication-coupled chromatin assembly
genes on sensitivity to damage induced by ionizing radiation. (A) Logarith-
mically growing haploid cell cultures were exposed to gamma radiation and
subsequently spread onto rich (YPDA) plates. (B) Stationary phase diploid cells
were irradiated as for (A). The inset graph in (B) indicates a separate experiment
performed using high radiation doses. Open squares, wild-type diploid cells;
filled squares, RCAF/CAF-1 double mutant cells.

and mutant cells grown to stationary phase. In stationary phase
diploid cells (mostly G) survival after exposure to low doses
of gamma radiation is primarily dependent upon recombina-
tional repair between homologous chromosomes. The ability
of cells lacking RCAF and CAF-1 to effect this type of repair
was assessed in Figure 2B. Results for asfl rif2/asfl rif2
diploid mutants are presented in the figure. Results with
another RCAF/CAF-1 mutant, asfl cac2/asfl cac2, gave simi-
lar results (data not shown) and other mutant combinations
were not tested. At low doses of radiation (0-20 krads), the
mutants consistently exhibited greater killing than wild-type
cells. This increased sensitivity was only detected at low
doses, as the wild-type and mutant curves converged at ~20%
survival at 80 krads (Figure 2B, inset graph). This percentage
of resistant cells corresponded to the approximately 20-25%
of cells that were budded (mostly G, phase), determined by
phase contrast microscopy. These survival data suggest that
inefficient nucleosome assembly associated with new DNA
synthesis reduces recombinational repair between homologous
chromosomes, but not between sister chromatids.

Repair of a single, cohesive-ended DSB by homologous
recombination and NHE]J is reduced in the
chromatin assembly mutants

To assess directly the role of CAF-1/RCAF-mediated nucleo-
some assembly in the two major pathways of DSB repair,
recombination between homologous DNAs and repair by
NHEJ were assessed separately using DNA substrates that
contain a single, site-specific DSB with complementary
ends. As shown in Figure 3A, the recombination assays
employed an integrating plasmid containing both HIS3 and
URA3. After the creation of a DSB in the HIS3 gene by diges-
tion with Bcll and subsequent transformation into yeast cells,
His™ Ura™ recombinants were identified that had arisen by
recombination with the his3-Al allele on chromosome XV.
An advantage of this ‘ends-in’ type of assay is that a large
window of recombination proficiencies can be assessed. For
example, rad50, mrel I and xrs2 mutants typically exhibit only
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containing a cohesive-ended, site-specific DSB within the coding region of a gene (HIS3 or URA3) was monitored after transformation of haploid yeast cells.

modest deficiencies of 3- to 5-fold in spontaneous or DSB-
induced mitotic recombination assays (5,9,40), but have up to
50-fold reductions in this assay (depending on the specific
plasmid constructs used). For each assay, transformation effi-
ciencies of linearized plasmid DNA were normalized to those
for uncut CEN/ARS plasmids transformed into the same com-
petent cell preparations (40). As shown in Figure 4A and B,
site-specific recombination was reduced 47- and 121-fold,
respectively, in control recombination pathway-deficient
rad50 and rad51 strains. Frequencies were only slightly
reduced in CAF-1 or RCAF single mutants (ranging from
1.6- to 2.7-fold relative to wild type), but the three double
mutant strains (72 asfl, cac2 asfl and msil asfl) exhibited
strong reductions in recombination (8- to 11-fold) (Figure 4B).

The impact of inactivation of replication-coupled chromatin
assembly on the other DSB repair pathway, NHEJ, was
assessed using a plasmid-based assay designed to assess
both efficiency and accuracy of repair by end-joining
(Figure 3B). Briefly, a centromeric plasmid containing LEU?2
and URA3 was linearized by cleavage at the Ncol site in

URA3. This region of the plasmid lacks homology with cel-
lular DNA since the host strains have a deletion of the URA3
gene (ura3-A0). After transfer into cells, transformant colonies
arise by recombination-independent repair of the broken mole-
cules to form stable, single-copy plasmids in the nucleus. This
system also permits monitoring of the accuracy of NHEJ repair
by determining the number of stable Leu* colonies that are
Ura™ versus Ura™. Repaired plasmids in some NHEJ mutants
(e.g. ku and sir strains) have high frequencies of associated
small deletions near the joined ends (5). NHEJ efficiencies
were near-wild type in each of the four nucleosome assembly
single mutants (<2-fold effect) under conditions where NHEJ-
deficient rad50 and yku70 cells exhibited reductions of 15- and
19-fold, respectively (Figure 4C). In contrast, each of the three
CAF-1 RCAF double mutants showed a consistent, modest
reduction in NHEJ repair of 3- to 4-fold (Figure 4D). In addi-
tion, the accuracy of NHEJ repair was reduced in each of the
double mutants (Figure 4E). Approximately 1 in 200 Leu®
transformants of wild-type cells contained an associated muta-
tion in URA3 (resulting in Leu” Ura™ colonies). This level of
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mutagenic repair (normalized to 1.0 in Figure 4E) was
increased 10- to 15-fold in yku70 and rad50 mutants
(Figure 4E). ura3 gene mutations were increased 4- to 5-fold
in each of the chromatin assembly double mutants, an inter-
mediate level consistent with the modest reductions in NHEJ
repair efficiency in the same strains.

Transcriptional silencing at telomeres, rRNA and the mat-
ing loci HML and HMR is partially derepressed in rlf2 (cacl)
mutants and more strongly reduced in cells lacking both
CAF-1 and RCAF (e.g. rlf2 asfl mutants) (17,20,22,23,41).
Reduced silencing at the mating loci also occurs in sir2, sir3
and sir4 mutants, leading to production of the al/a2 transcrip-
tional repressor, an inhibitor of NEJI gene expression, and
reduced efficiency of NHEJ repair (11-14). To test if the
partial reduction in end-joining in the three CAF-1 RCAF
double mutants was due to the derepression of HMR-al and
HML-02, the HMR-al gene was deleted in the MATo. strain
background used above and levels of DSB repair by NHEJ and
homologous recombination were assessed separately as before.
As shown in Figure 5A, the defect in end-joining observed in
rlf2 asfl double mutants was completely abolished when the
expression of the al/o2 repressor complex was prevented

(in al rlf2 asfl cells). In contrast, the large decrease in
ends-in recombination seen in these mutants was not affected
by deletion of HMR-al (Figure 5B). The intermediate (4-fold)
reduction in accuracy of NHEJ repair seen in the double
mutants was also restored to wild-type levels in the a/-deleted
mutants (Figure 5C). These results demonstrate that the reduc-
tion of NHEJ, but not homologous recombination, in the chro-
matin assembly mutants is an indirect consequence of
derepression of silencing at the mating loci.

Recombination defects are not altered when the target
lacks higher order chromatin structure

The recombination assays employed here involve recombina-
tion between a broken DNA molecule and an intact chromo-
some in vivo. Chromosomes contain highly ordered local
nucleosome arrays that are packaged into more complex struc-
tures, e.g. 30 nm fibers and higher order fibers and loops
(18,42). In contrast, small circular plasmid DNAs propagated
in the nucleus contain nucleosomes, but lack higher order
protein—-DNA folding (43). It is possible that the strong
recombination defects of the CAF-1/RCAF mutants are caused
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the entire HIS3 coding sequence on chromosome XV.

by specific impairment of one or more steps in the homologous
recombination pathway, potentially through reduced assembly
of nucleosomes onto newly repaired and replicated DNA.
However, there might also be indirect effects on repair due
to alteration of higher order chromatin structures, possibly
reducing access of enzymes of the recombination machinery

to the DNA. To address potential effects resulting from
changes in higher order chromatin structure, another recomb-
ination assay system was devised that involved targeting the
homologous DNA fragment containing a DSB to either a
chromosomal locus or to the same target gene present only
on a single-copy plasmid in the cell. As depicted in Figure 6A
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Figure 7. Similar reductions in recombination proficiency using chromosomal (A) or intracellular plasmid (B) targets in RCAF CAF-1 double mutants. For
experiments performed in (B), recombination events were targeted to the his3-Al plasmid pLKL71Y. ‘No pLKL71Y indicates the background of His" cells produced

when the host strain YLKL762 (his3-A0) did not contain a target plasmid.

and B, a DNA fragment generated by Bcll-cleavage of the
integrating plasmid pRS303 (within HIS3) was transformed
into either his3-Al host cells to monitor chromosomal target-
ing or into HIS3-deleted cells containing Ais3-Al on the cen-
tromeric plasmid pLKL71Y to assess plasmid targeting.
Recombination with the chromosomal target was reduced
7- and 11-fold in rad50 and rad5] mutants, respectively
(Figure 7A). Recombination was reduced 4- to 5-fold in
rlf2 asfl double mutants in the same assay (and also in the
rlf2 asfl hmr-al mutants included as an additional control). In
assays using a plasmid target (Figure 7B), rad50 and rad51
controls were down 6- and 14-fold, respectively, and once
again recombination in rlf2 asfl mutants was consistently
reduced by ~4-fold. We confirmed that the linearized pRS303
DNA recombined in vivo with pLKL71Y by replica-plating
His" tranformants to plates containing 5-FOA acid and dem-
onstrating that loss of the URA3 plasmid was always associ-
ated with loss of HIS3, as expected if both markers were on
the plasmid (see Materials and Methods). As an additional
control for these experiments, HIS3-deleted host cells without
the his3-Al target plasmid were also assayed. Mean His"
frequencies were 280-fold lower than in cells with a plasmid
target, indicating a baseline level for the assays (Figure 7B).
These rare transformants likely arise by recircularization and
recombination-independent integration of the HIS3 fragment
into chromosomal DNA. The nearly identical decreases in
recombination at plasmid and chromosomal DNA targets in
the nucleosome assembly mutants suggest that the defects are
not caused by changes in higher order chromosome packing.

Altered spontaneous and radiation-induced
recombination between homologous chromosomes
in RCAF CAF-1 mutants

Diploid G, phase cells lacking RCAF and CAF-1 are more
sensitive to ionizing radiation than wild-type cells (Figure 2B),
suggesting a defect in DSB repair involving recombination
between homologous chromosomes. To address this possibil-
ity more directly, spontaneous and gamma radiation-induced
LOH at the ADE2 locus was monitored in normal and chro-
matin assembly-deficient diploid cells. Several previous stud-
ies have demonstrated that spontaneous and damage-induced
LOH events (such as ADE2/ade2—ade2/ade2) occur primar-
ily by homologous recombination that is initiated during G

Table 2. Spontaneous and ionizing radiation-induced LOH frequencies®

Red-white sectored colonies

Strain 0 krad 40 krads 80 krads

ASF1 CAC2 <0.01% (1/9541) 6.4% (36/562) 3.7% (59/1591)
ASF1 CAC2

asfl rlf2 0.58% (48/8239) 0.39% (3/764) 0.46% (12/2637)
asfl rif2

“Spontaneous and gamma radiation-induced loss of heterozygosity (LOH) at
ADE?2 was assessed in stationary phase diploid cells. Numerals in parentheses
indicate number of colonies exhibiting red (ade2/ade2) sectors and the total
number of colonies examined.

phase in yeast cells (44—47). ADE2/ade?2 heterozygotes grow
as white colonies, but homozygous ade2/ade2 cells are red (or
pink) due to the accumulation of a pigmented adenine biosyn-
thetic intermediate. Thus, early LOH recombination events are
detectable as sectored colonies that contain both white and red
colored regions. In wild-type cells, the frequency of sponta-
neous LOH events was low (<0.01%; only one event detected
out of ~10000 colonies examined), but was several hundred
fold higher after exposure to 40 or 80 krads (becoming 4-6%
of all colonies) (Table 2). RCAF/CAF-1 mutants exhibited a
much higher spontaneous level than wild-type cells, 0.6%, that
did not increase after exposure to radiation (remaining at
~0.5%). This striking lack of induced LOH in the mutant
cells is consistent with the site-specific DSB recombination
assays and points to a strong requirement for replication-
mediated chromatin assembly for each of these types of
DSB repair events.

DISCUSSION

We have demonstrated an important role for the replication-
coupled nucleosome assembly complexes CAF-1 and RCAF
in repair of DNA DSBs that arise by different mechanisms.
The reduced chromatin assembly in RCAF/CAF-1 double
mutants was found to be associated with markedly decreased
repair by both the recombination and nonhomologous end-
joining pathways.

Although earlier studies did not detect MMS sensitivity in
CAF-1 deletion strains, we observed enhanced killing in all
three CAF-1 single mutants (r/f2, cac2 and msil) when higher
doses of MMS were employed (up to 2 mM). This result
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suggests a modest requirement for the replication-coupled
nucleosome assembly provided by CAF-1 alone for the repair
of DNA alkylation-induced damage. This conclusion is
supported by the previously reported MMS-sensitivity of an
unusual msil (cac3) truncation mutant (48). The results
are also in accord with work demonstrating direct
association of CAF-1 and PCNA with each other and with
damaged DNA (25,26,49). Recent demonstration that gross
chromosome rearrangements are increased in 7/f2 mutants and
reach high levels after exposure to MMS provides another
indication that chromosome stabilization mechanisms are
compromised in CAF-1 mutants (50).

Haploid strains lacking the RCAF complex (asf! cells) were
more sensitive to each of the three S-phase clastogens than
CAF-1 mutants, consistent with previous results (17,29,30).
Recent work (29,31) has suggested that molecules of Asfl are
normally sequestered in the cell by association with Rad53
protein, but are released after exposure to DNA-damaging
agents. In this scheme, the released Asfl then works jointly
with acetylated forms of histones H3 and H4 (forming the
RCAF complex) to mediate assembly of new nucleosomes
onto DNA. It is likely that this latter process involves the
coordinated actions of RCAF with CAF-1, based on observa-
tions that Drosophila RCAF can stimulate the nucleosome
assembly activity of CAF-1 in vitro (possibly acting as a
histone donor) and that a subunit of CAF-1 binds to and
co-localizes in vivo with Asfl (16,17,27). Although Asfl
binds to the checkpoint kinase Rad53, the protein does not
appear to play an important role in cell cycle checkpoint path-
ways (29).

Repair of radiation-induced DSBs in haploids is primarily
restricted to homologous recombination between sister chro-
matids in late S/G, phase (1,2). Since logarithmically growing
haploid cells deficient in chromatin assembly were resistant to
gamma radiation, we conclude that recombinational repair
involving sister chromatids is not greatly affected. Additional
support for this conclusion comes from a recent study that
detected elevated sister chromatid exchange in asf/ single
mutants (51), which is consistent with the observation of
increased radiation resistance. In contrast to results with
gamma radiation, the RCAF/CAF-1 mutants exhibited strong
sensitivity to MMS, HU and camptothecin. The gamma sur-
vival experiments involved a single brief exposure to radiation
while the chemical clastogen-induced DSBs were continu-
ously generated in cells that were cycling (in rich nutrient
media supplemented with the mutagen). The latter process
leads to DSB formation directly in S phase of each cell
cycle, the time when most new chromatin is assembled
(16), and this timing may the basis for the stronger sensitivity.
The possible importance of structural differences between
DSB ends produced indirectly by the chemicals and the
‘dirty’ end structures generated more directly by radiation
(primarily resulting from hydroxyl radical-mediated reactions)
is unclear (1,5). In contrast to log phase haploid cells, the G,
population present in stationary phase diploid cells lacking
RCAF and CAF-1 was radiation sensitive. This result suggests
a defect in DSB-induced recombination between homologous
chromosomes and is also consistent with the results of more
direct recombination assays involving plasmid DNA targeting
and loss of heterozygosity (see below). Interestingly, inactiva-
tion of the RDH54, SGS1 or SRS2 genes produces a similar

phenotype, i.e. reduction of recombination between homolog-
ous chromosomes, but not between sister chromatids (9,52). In
the latter case, the reduction was ascribed to an inability to
complete interhomolog strand exchange events once they had
been initiated (52,53).

Consistent with the mutagen survival results, RCAF/CAF-1
double mutants were found to have reduced ability to repair
DNA with a defined DSB structure. Specifically, all three
combinations of RCAF and CAF-1 mutations (involving
asfl combined with either rlf2, cac2 or msil) were found to
be defective in repair of a site-specific DSB by both the NHEJ
and recombination pathways. The modest defect in NHEJ
efficiency and accuracy appears to be indirect, caused by par-
tial derepression of silencing at HMRa to permit synthesis of
the al/02 complex, a repressor of the end-joining gene NEJ!
(11-14). This conclusion is supported by the demonstration
that deletion of the a/ gene restored NHEJ proficiency in asf!
rlf2 mutants and by previous reports of a partial loss of silenc-
ing at the mating loci in these mutants (16,19,20). The pro-
posed mechanism of reduced NHEJ repair is analogous to that
suggested for sir2, sir3 and sir4 mutants, which exhibit a
strong reduction in silencing at HMRa and HMLo. and in
NHE] repair. This indirect impairment suggests that DNA
replication with associated nucleosome reassembly is not an
intermediate step in repair by the NHEJ pathway.

Each of the RCAF/CAF-1 mutants exhibited an ~10-fold
reduction of ends-in recombinational repair of a defined DSB
with complementary overhangs. Deletion of the HMR-al gene
did not restore recombination proficiency, an indication that
the reduction in recombination was not due to altered tran-
scription at the mating type loci. This reduced capacity for
recombinational repair of a defined DSB is consistent with the
subsequent observation that radiation-induced LOH was abol-
ished in the mutants. Past studies have indicated that both
spontaneous and damage-induced LOH events (involving con-
version from diploid ADE2/ade? cells to ade2/ade?2 cells in the
current study) occur primarily by homologous recombination
initiated during G; phase, with a small fraction of pheno-
typically Ade™ cells arising by alternative mechanisms such
as chromosome loss or mutation at much lower frequency
(44-47). Interestingly, although the >100-fold increase in
recombination between homologous chromosomes induced
by radiation was abolished in the mutants, spontaneous LOH
events were elevated. Reduction of replication-coupled chro-
matin assembly has recently been shown to lead to increases in
spontaneous chromosome loss and mutation (30,50,54). Since
LOH phenotypes may still be generated by chromosome loss
or arm loss when recombination is defective, the increased
frequency observed in the mutants is likely due to such events.

During mating type switching (a DSB-induced gene con-
version process), some normally essential recombination
proteins become dispensable when plasmid substrates are sub-
stituted for whole chromosomes in vivo (55,56). This suggests
that an important function of some repair proteins is to pro-
mote access to chromosomal DNA for critical recombination
enzymes, such as Rad52. The target molecule in the ends-in
recombination assays employed here was a chromosome.
Changing the intracellular target to a small plasmid did not
abolish the recombination defect, indicating that the decreased
DNA exchange in the mutants was not due to a change in
higher order chromatin structure. The result also implies that



access to the target DNA is not impaired in the mutants. We
note the interesting possibility that nucleosomes may form on
the linear DNA transformed into cells prior to or in conjunc-
tion with 5'—3’ strand rescission and initiation of recombina-
tion. Though unlikely to involve RCAF/CAF-1 because the
transformed DNA fragment lacks an origin and should not
replicate, it is possible that reduced availability of nucleo-
somes for assembly onto the donor DNA (the broken plasmid)
influences the efficiency of subsequent recombination
reactions.

In support of the results presented in this work, some cor-
relations between the level and/or modified state of histones
and homologous recombination have been reported previ-
ously. A variant of the core histone H2A called H2AX is
phosphorylated at sites of induced DSBs and its absence
leads to reduced levels of immunoglobulin class switching,
a form of homologous recombination (57,58). In addition, the
wrapping of DNA around histones helps to maintain the
duplex in a negatively supercoiled state that favors strand
unpairing and promotes formation of D-loops, thought to be
intermediates in strand exchange (10,59,60). A general reduc-
tion in the number of nucleosomes on chromosomal DNA, a
likely consequence of loss of RCAF and CAF-1, might lead to
a decrease in negative supercoils and make D-loop formation
more energetically unfavorable. In support of the idea that
reduced nucleosome density is detrimental to DNA metabo-
lism, a modest reduction of histone levels (presumably leading
to an increase in nucleosome-free segments and possibly local
changes in superhelical density) causes inhibition of meiosis in
diploid cells and larger histone reductions result in mitotic cell
cycle arrest (61,62). Furthermore, we note that the presence of
the linker histone H1 in yeast cells is inhibitory to some types
of recombinational repair (63) and that repositioning of whole
nucleosomes to cover recombination signal sequences at
mouse cell V(D)J junctions can lead to reduced levels of
recombinational switching (64).

Models for recombinational repair of DSBs typically pro-
pose a sequence of events that includes resection of the DSB
ends to produce 3’ overhangs, a homology search, strand
exchange with new DNA synthesis, branch migration and
then resolution followed by ligation (10,59,60). It is possible
that loss of RCAF and CAF-1 affects one or more specific
steps in the pathway. For example, RCAF and CAF-1 work
synergistically in the assembly of chromatin onto newly repli-
cated DNA (and bind to the polymerase-associated PCNA
complex and replication factor C) and have previously been
implicated in post-replication repair of UV-induced lesions via
the RADG6 pathway (25,26,32,65). Since an intermediate step
in recombinational repair involves DNA synthesis and branch
migration, reduced chromatin reassembly in RCAF/CAF-1
mutants might lead to formation of DNA regions that are
repaired, but nucleosome-depleted. Formation of such regions
is detrimental to the cell, though the precise mechanisms
involved remain unclear (61,62). In addition, Rad54 is a con-
served ATPase enzyme with homology to Swi/Snf-like chro-
matin remodeling proteins that appears to function directly in
DNA recombination along with Rad51, Rad52 and several
other proteins (10,59). The enzyme stimulates homologous
strand pairing by Rad51 and does so more efficiently with
chromatin-associated DNA than with naked DNA (59,66).
The possibility that altered DNA-nucleosome topology in
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the mutants might produce changes in affinity or processivity
of specific recombination enzymes such as Rad54 awaits
further investigation.

In summary, we have demonstrated that both major path-
ways of DSB repair are compromised when assembly of
nucleosomes associated with new DNA synthesis is reduced.
Defects in NHEJ repair were shown to be indirect effects of
alteration of the repressive chromatin structures that mediate
transcriptional silencing. The data are consistent with a post-
replicative repair function for CAF-1 and RCAF in homolog-
ous recombination, possibly involving deposition of new
histone octamers after DNA synthesis associated with strand
exchange. In combination with other data, especially the
recent demonstration of a role for phosphorylated histone
H2AX at DSBs (57,58), these findings solidify the concept
that new DNA repair models must incorporate descriptions of
both repair enzymes and nucleosomal structures at sites of
DNA lesions.
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