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Abstract: Background: Metabolomic characterization of tumours can potentially improve prediction of
cancer prognosis and treatment response. Here, we describe efforts to validate previous metabolomic
findings using a historical cohort of breast cancer patients and discuss challenges with using older
biobanks collected with non-standardized sampling procedures. Methods: In total, 100 primary
breast cancer samples were analysed by high-resolution magic angle spinning magnetic resonance
spectroscopy (HR MAS MRS) and subsequently examined by histology. Metabolomic profiles were
related to the presence of cancer tissue, hormone receptor status, T-stage, N-stage, and survival.
RNA integrity number (RIN) and metabolomic profiles were compared with an ongoing breast
cancer biobank. Results: The 100 samples had a median RIN of 4.3, while the ongoing biobank had a
significantly higher median RIN of 6.3 (p = 5.86 × 10−7). A low RIN was associated with changes in
choline-containing metabolites and creatine, and the samples in the older biobank showed metabolic
differences previously associated with tissue degradation. The association between metabolomic
profile and oestrogen receptor status was in accordance with previous findings, however, with a
lower classification accuracy. Conclusions: Our findings highlight the importance of standardized
biobanking procedures in breast cancer metabolomics studies.
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1. Introduction

Breast cancer is a highly heterogenous disease ranging from localized curable disease with
minor impact on life expectancy to incurable metastatic disease with a poor prognosis. Treatment
and prediction of prognosis are guided by anatomical and molecular characteristics of the tumour.
However, current methods are not sufficiently accurate for predicting treatment benefit. Treatment is
currently guided by clinical stage, expression of hormone receptors and human epidermal growth
factor receptor 2 (HER2), and the proliferation marker Ki-67. Gene expression analyses have shown
that breast cancer can be divided into intrinsic subtypes of prognostic value, with further stratification
based on protein expression and metabolism being studied [1–4].

Tissue metabolism has also been associated with several prognostic and predictive factors in
breast cancer, such as hormone receptor status [5] and treatment response [6,7]. We have previously
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suggested lactate and glycine as prognostic biomarkers in oestrogen receptor positive (ER+) breast
cancer [7,8], and have further shown that breast cancer may be divided into metabolic subtypes based
on the metabolomic profile of the tumour [3].

Analysis of samples from historical biobanks provides several research opportunities, including
increased availability of tissue samples, and assessment of long-term survival. Further, the validation
of previous findings in an independent cohort is a necessary step if they are to be used clinically. In this
study, we used a historical biobank, OsloVal, consisting of surgical breast cancer biopsies gathered at
Oslo University Hospital, Norway, between 1983 and 1997, and compared it with biopsies from Oslo2,
an ongoing biobank. Because of the age of this biobank and the fact that a subset of it was not sampled
or stored according to modern protocols, its suitability for metabolomic analyses was uncertain. This
short communication describes our efforts to reproduce previous metabolomic findings in a historical
biobank and highlights several issues with working with such samples.

2. Results

2.1. Tissue Integrity

The 100 samples in the OsloVal cohort were collected from two different time periods, 1983–1989
(n = 83) and 1994–1997 (n = 17). The median RNA integrity number (RIN) for samples collected
after 1994 was 6.4, while samples collected from 1983–1989 had a median RIN of 4.0 (p = 0.077).
The median RIN of the ongoing biobank, Oslo2 (n = 395, collected between 2006–2009), was 6.3.
This was significantly higher than the RIN of the older samples of OsloVal (p < 0.001), but not
significantly different from samples collected after 1994 (p = 0.78). When combining the OsloVal and
Oslo2 data, OPLS-DA correctly classified samples as above or below median RIN with an accuracy
of 64.3% (p < 0.001). The score and loading plots showed that the main discriminating metabolites
were choline-containing compounds and creatine, with low-RIN-samples having higher levels of
glycerophosphocholine (GPC) and choline and lower levels of creatine and phosphocholine (Pcho)
(Figure 1A,B).
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Figure 1. (A,B) OPLS-DA score- and loading plots for separating samples with RIN above the median
from below the median. Labeled metabolites:glycerophosphocholine (GPC), phosphocholine (Pcho),
choline (Cho), creatine (Cr). The loadings are colored according to VIP-scores.
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2.2. Histopathology and Immunohistochemistry

To confirm the presence of tumour tissue and the ER-status of the analysed samples, histopathology
was performed on the OsloVal samples after HR MAS MRS. Out of the 100 samples, two were excluded
because of indeterminate oestrogen receptor status due to cytoplasmic staining, and two samples
were lost during preparation. In total, 22 samples did not contain tumour tissue, 21 of which were
from 1983–1989. The clinical characteristics of the remaining 74 patients are given in Table 1. After
reassessing ER status, 61 out of 74 samples retained their original classification collected from patient
journals. In the 58 samples from the older subset of OsloVal in which receptor status was determined
using dextran-coated charcoal assay, three changed status from positive to negative and three changed
from negative to positive. In the 16 most recent OsloVal samples, four changed status from positive to
negative and two changed from negative to positive.

Table 1. Clinical cohort description for OsloVal.

OsloVal-Cohort Description, n = 74

Age 57.7 (33–85)

ER-status 49 ER+, 25 ER-

PR-status 40 PR+, 30 PR-, 4 unknown

Grade (1-3) 8 (Grade 1), 28 (Grade 2), 24 (Grade 3), 14 (Unknown)

T-stage 30 (T1), 29 (T2), 5 (T3), 6 (T4), 4 (Unknown)

N-stage 40 (N0), 21 (N1), 5 (N2), 6 (N3), 2 (Unknown)

Adjuvant chemotherapy * 24 (Yes), 50 (No)

Endocrine therapy * 24 (Yes), 50 (No)

Five year survival 68%

Ten year survival 54%

Abbreviations: ER = Oestrogen receptor, PR = Progesterone receptor. * All patients who received chemotherapy
also received endocrine therapy, and vice versa.

2.3. Metabolic Comparison of OsloVal and Oslo2

The metabolomic profiles of the two cohorts could be significantly discriminated using OPLS-DA,
achieving a classification accuracy of 93.9%. The score and loading plots (Figure 2A,B) indicated that
higher full width half maximums and peak shift for some peaks in OsloVal influenced the comparison.
The FWHM of NMR peaks reflects homogeneity of the magnetic field, where high FWHM values result
from inhomogeneities in the field.

In order to minimize differences due to shimming, shift correction, and lipid content, all samples
in OsloVal in which lipids comprised more than 95% of the spectral area were removed (11 samples
collected from 1983–1989, and two samples collected from 1994–1997) and normalized integrals from
the processed spectra were used as model input instead of spectral data. The two cohorts could then
be discriminated with an accuracy of 77.1% (p < 0.001). The score and loading plots from integrals
show that samples from Oslo2 had higher levels of lactate, ascorbate, myo-inositol, and scyllo-inositol,
while the OsloVal samples had higher levels of choline, glycine, tyrosine, glutamate, and succinate
(Figure 2C,D).



Metabolites 2019, 9, 278 4 of 12

 

3 

 

 

Figure 2. OPLS-DA score- and loading plots for separating samples from OsloVal and Oslo2. (A,B) show
results from using spectral data. (C,D) show results using metabolite integration and after removing
high-lipid samples. Variables in (D) are colored by VIP-score. Labeled metabolites: beta-glucose (bglc),
ascorbate (asc), lactate (lac), tyrosine (tyr), creatine (cr1), glutamate/glutamine (glu/gln), myo-inositol
(mI1), glycine (gly), myo-inositol (mI2), taurine (tau1), glycerophosphocholine (gpc), phosphocholine
(pcho), choline (cho), creatine (cr2), glutamine (gln1), succinate (succ), glutamate (glu), glutamine (gln2),
alanine (ala), total choline (totcho).

2.4. Metabolomic Analyses in OsloVal

OPLS-DA correctly classified samples according to tumour cell content with a classification
accuracy of 74.6% (p < 0.001, Figure 3A,B). The score- and loading plots showed that samples with
tumour cells had lower levels of lipid residuals compared with samples without tumour cells.
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Figure 3. (A,B) OPLS-DA score- and loading plots for separating tumour tissue from non-involved
tissue. Loadings are colored according to VIP-score.
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OPLS-DA classified OsloVal-samples according to ER-status with a sensitivity and specificity
of 57.6% and 68.6%, respectively, giving a classification accuracy of 63.1% (Figure 4A,B, p = 0.008).
The score and loading plots show that ER+ samples had higher levels of creatine, taurine and
phosphocholine, while ER samples had higher levels of glycine and choline. Progesterone receptor
status could be predicted from the metabolomic profiles with a sensitivity and specificity of 63.0% and
60.2%, respectively, producing a classification accuracy of 61.9% (Figure 4C,D, p = 0.011). PR+ samples
had higher levels of taurine and Pcho, while PR- tumours had higher levels of lactate, glycine, GPC
and choline. 
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Figure 4. Score- and loading plots for prediction of oestrogen receptor status (A,B) and progesterone
receptor status (C,D) respectively. Labeled metabolites are: Glycine (Gly), lactate (Lac), taurine (Tau),
phosphocholine (Pcho), glycerophosphocholine (GPC), choline (Cho), and creatine (Cr). The loadings
are colored according to Variable Importance in Projection (VIP) scores.

OPLS-DA correctly classified samples according to tumour size (T1 or higher than T1) with a
low accuracy of 59.0%. Furthermore, samples could not be classified according to lymph node spread
(accuracy = 55.5%) or between histopathological grades (grade 1 or 2 vs. grade 3, accuracy = 52.7%).

Five-year survival could not be predicted from spectral data, giving a classification accuracy
of 57% (p = 0.18). Excluding samples with a high lipid content did not improve classification
(accuracy = 56.0%, p = 0.25), neither did exclusion of the 24 patients who received adjuvant therapy
(accuracy = 52.4%). Ten-year survival could be predicted from spectral data, however, only with a
low accuracy (58.9%, p = 0.03), and this was reduced to 54.9% after removal of high-lipid samples.
In patients who did not receive adjuvant therapy, spectral data could predict ten-year survival with an
accuracy of 69.7% (Figure 5, p = 0.013). The score and loading plots show that lipid residuals comprised
the most important discriminating metabolites, with non-survivors having more lipid signals and less
metabolites. Using normalized integrals as prediction data to minimize the effect of lipid residuals
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gave a similar accuracy of 67.3%, with signals for lactate, glutamate, glutamine and alanine being
higher in non-survivors (Figure 5C,D).

1 
 

 
Figure 5. Score- and loading plots for separating 10 year survivors from non-survivors among patients
who did not receive systemic adjuvant treatment. (A,B) show plots for prediction from spectral
data, while (C,D) show plots for prediction from integrals. Labeled metabolites: beta-glucose (bglc),
ascorbate (asc), lactate (lac), tyrosine (tyr), creatine (cr1), glutamate/glutamine (glu/gln), myo-inositol
(mI1), glycine (gly), myo-inositol (mI2), taurine (tau), glycerophosphocholine (gpc), phosphocholine
(pcho), choline (cho), creatine (cr2), glutamine (gln1), succinate (succ), glutamate (glu), glutamine (gln2),
alanine (ala), total choline (totcho). The loadings are colored according to VIP-scores.

3. Discussion

In this study, we evaluated the feasibility of using a historical biobank for NMR metabolomics
analyses. While historical biobanks provide unique opportunities to analyse samples with a long
follow-up time and to assess prognosis in patients who did not receive adjuvant treatment, working
with older biobanks is associated with possible pitfalls. We performed metabolomic and histologic
analyses of tissue samples from a historical biobank, OsloVal, in order to investigate sample suitability
for metabolomic analysis compared to an ongoing biobank.

Since metabolites are sensitive to degradation [9], variation in sample handling and storage could
lead to loss of metabolic information. However, there are currently no reliable methods to determine
whether this has occurred. RNases responsible for degrading RNA have temperature-dependent
activity and low RIN values are therefore often the result of improper sample handling and storage [10].
Therefore, we hypothesized that the RIN could be used as an indicator of metabolic tissue degradation.
The samples in the OsloVal cohort from before 1994 had a significantly lower RIN compared with
Oslo2. The difference in RIN is expected to have been even more pronounced if RNA from Oslo2
had been isolated with the same method as used for OsloVal, as isolation by TRIzol generally yields
lower RIN-values [11]. Interestingly, no difference in RIN could be found when comparing the
samples in the most recent part of the OsloVal biobank with the Oslo2-cohort (RIN 6.45 and 6.30,
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respectively), supporting that the most recent samples were obtained and stored in accordance with
modern standards. A low RIN was associated with higher levels of choline and GPC, and lower levels
of creatine and Pcho. The metabolic profile of OsloVal was significantly different from Oslo2, with
higher levels of choline, glycine, tyrosine, glutamate and glutamine, and lower levels of lactate and
myo-inositol. Torrell et al. investigated the effect of extended thawing on tissue metabolite levels,
and showed that for glycine, tyrosine, glutamate and glutamine, levels increased after thawing, while
levels of myo-inositol and lactate decreased [12,13]. Choline was not measured in this referred study.
In a study performed at our group by Haukaas et al., choline was found to increase with delayed
freezing time of tissue samples, while ascorbate and creatine were found to decrease [9]. Furthermore,
levels of glycine, choline, and tyrosine increased after prolonged experiment time, which we suggested
could result from physical release of metabolites due to structural degradation. As the metabolite
differences between OsloVal and Oslo2 are consistent with previous reports on the effect of thawing
and delayed freezing, it is likely that a combination of chemical and structural degradation have
occurred in OsloVal. Although variation in RIN is not exclusively caused by delayed freezing time,
we suggest that RIN can serve as an indicator of metabolic degradation when using older biobank
material for metabolomics studies.

It has been demonstrated in multiple independent cohorts that metabolite data can predict presence
of cancer tissue and ER-status in breast tumour samples with high sensitivity and specificity, and similar
metabolomic differences have been consistently seen [5,14,15]. Whether this could be reproduced
could therefore give an additional indication of the quality of the data. For prediction of cancer
tissue versus non-cancer tissue, we achieved a classification accuracy of 74.6%, with cancer samples
having less lipid residuals compared with non-cancer. While this is an expected result considering that
normal breast tissue contains significant amounts of fatty tissue, previous studies have highlighted
choline-compounds as discriminating metabolites, although different spectral regions were used [15].
For prediction of ER-status, a classification error of 63.1% was achieved. This is lower than what
has been found in other cohorts, which generally have yielded classification accuracies approaching
or exceeding 80% [5]. We found that ER+ samples had higher levels of creatine, phosphocholine
and taurine, while ER- samples had higher levels of glycine and choline, which is in accordance to
previous studies [5]. Additionally, we have previously observed higher levels of alanine and GPC
in ER- samples, but these metabolites were not readily visible in our current loading plots. When
classifying samples based on progesterone receptor status, we found that PR- samples had higher
levels of lactate, glycine, GPC and choline, while having lower levels of taurinePcho and creatine.
This is different from our previous study in which PR- samples had higher Pcho and creatine [5].
There may be several reasons for this discrepancy. Classification accuracies for determining PR status
were lower than those of ER determination, both in this cohort and in the previous [16], which could
result in less reliable loadings. Additionally, PR-status in the older part of OsloVal was determined
by dextran-coated charcoal assay, which is a method no longer in use for this purpose. Considering
that several samples changed ER-status after histological re-examination, this may also be the case for
PR determination.

We have previously shown that tissue metabolomic profiles are associated with prognosis,
particularly in ER+ breast cancer [8,14]. In this study, neither five- nor ten-year survival from the
whole group or the ER+ samples as a subset could be predicted from metabolomic profiles. Because
all patients who received chemotherapy also received hormonal therapy, we investigated possible
associations between metabolomic profile and survival in the 50 patients who received surgery only.
This may allow us to assess if metabolism reflects the natural aggressiveness of breast cancer in patients
who do not receive adjuvant systemic treatment. While no relationship was found for five-year
survival, ten-year survival could be predicted from spectral data with an accuracy of 69.7%. However,
the score and loading plots showed that the main discriminating metabolites were lipid residuals, with
non-survivors having more lipids. This may not reflect true metabolomic markers of aggressiveness
but rather the lipid content of the biopsy, which may vary according to surgical technique and which
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area of the tumour is biopsied. To correct for this, we repeated the analysis using metabolite integrals.
The classification of 10-year survivors and non-survivors remained significant, with an accuracy of
67.3% (p = 0.027). However, the metabolites which had higher levels in non-survivors, lactate, alanine,
glutamate and glutamine, are significantly affected by adjacent lipid peaks. Therefore, the validity of
the model remains uncertain.

The fact that the older portion of the OsloVal cohort was shown to have significantly lower
RIN-values when compared to the Oslo2-cohort and that the cohorts show metabolic differences
previously associated with tissue degradation suggests that loss of metabolic information occurred.
Based on this work, some issues with using historical biobanks for metabolomic analyses of cancer
tissue can be highlighted. The importance of standardized biobanking protocols should be emphasized.
Before starting data analyses, it is important to obtain detailed descriptions of how the patients were
selected for sampling, in order to assess the possibility of selection bias. Detailed documentation on
how samples were handled immediately after resection and how they were stored in the years leading
up to analysis is of crucial importance. If this information is lacking, measures of RNA integrity, such as
RIN, could possibly be used as a surrogate marker for tissue integrity. It should be evaluated whether
the clinical information obtained from the patients’ journals was determined using methods that
allow comparison to more modern cohorts, exemplified here by determination of hormone receptor
status. The need for histopathology to confirm the presence of tumour tissue should be considered, as
exemplified by the fact that almost all the samples that were excluded because of low tumour content
were from the older cohort. In conclusion, while older biobanks can provide valuable tissue samples as
well as opportunities to study long-term prognosis, the use of such samples requires thorough quality
assurance to ensure that the samples are suitable for metabolomics studies.

4. Materials and Methods

4.1. Sample Materials

A total of 100 primary tumour samples from patients operated between 1983 and 1997 at Oslo
University Hospital who had not received neoadjuvant chemotherapy were included in this study
(The OsloVal cohort). The study was approved by the regional ethical committee (approval number
2010/498). The samples were gathered in two different time periods, 1983–1989 and 1994–1997, during
which different sampling protocols were used. Samples gathered from 1994 to 1997 (n = 17) were taken
from the tumour centre, frozen in liquid nitrogen quickly after surgery, then stored in −80 ◦C until
the time of analysis. The remaining tumour samples from 1983–1989 (n = 83) were sampled using a
less stringent sampling protocol, in which the samples may not have been immediately frozen and
were sampled from an unknown location within the tumour. These samples were stored in −30 ◦C for
several years before being moved to storage in −80 ◦C until the time of analysis. The frozen samples
from both cohorts were cut into three pieces and the middle piece was sent for metabolomic analysis
and the remaining tissue was used for gene expression analyses.

Information about clinical stage and (ER- and PR)-status was collected from the patient journals.
ER- and PR-status in samples collected before 1994 was determined by dextran-coated charcoal assay,
while immunohistochemistry was used after 1994. We reassessed ER status for all the samples using
immunohistochemistry, as described in the next sections.

For quality control, we compared the samples with samples from the ongoing Oslo2-biobank [3].
Clinical information relating to the samples used from this cohort is available from the cited reference.
This cohort consists of primary breast carcinoma tissue samples from patients operated at Oslo
University Hospital (Radium Hospital and Ullevål Hospital) in the time period 2006–2009. Patients
gave written consent for participation in the research, and the study was approved by the regional
ethical committee (approval number 2016/433). The samples were fresh frozen after surgery and
stored in −80 ◦C. A piece from the tumour was cut into three parts. The middle section was used for
metabolomic analyses (n = 228) and the remaining tissue was used for gene expression analyses.
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4.2. HR MAS MRS-Experiments

Metabolomic analyses were performed by high-resolution magic angle spinning magnetic
resonance spectroscopy (HR MAS MRS) using a Bruker Avance DRX600 spectrometer (Bruker Biospin
GmbH, Germany), equipped with a 1H/13C MAS probe. The tissue samples were analysed in
accordance with the HR MAS MRS protocol described by Giskeødegård et al. [17]. Tissue samples
(mean sample weight = 6.64 mg, SD = 2.30 mg) were cut to fit a disposable 30 µL insert, with an added
3 µL of D2O (99.8%) with sodium formate (HCOONa, 25mM). The samples were cut by scalpel to
fit into a MAS insert quickly (<5 min) on a specially designed workstation cooled down with liquid
nitrogen to keep the samples frozen during preparation. The samples were spun at 5 kHz at the magic
angle. The samples were kept at 5 ◦C throughout data acquisition to minimize tissue degradation.
Data acquisition time averaged at 89 minutes for all the experiments, with a standard deviation of
14 minutes, due to differences in time spent to achieve an acceptable shim. Spectral resolution was
assessed during shimming by assessing the half-width of formate. A Carr-Purcell-Meiboom-Gill
(CPMG) sequence was used, with an effective echo time of 77 ms, a spectral width of 20 ppm (−5 to
15 ppm), and 256 scans.

4.3. Spectral Preprocessing

The free induction decays were Fourier-transformed into spectra consisting of 64,000 points,
following 0.30 Hz line broadening. Phase correction was performed automatically in TopSpin 3.1. The
spectra were then imported into MATLAB 2014a (The Mathworks, Inc., USA). The spectral region
from 4.70 ppm to 1.40 ppm was selected for analysis. The spectra were shift-referenced to creatine at
3.03 ppm. The baseline was corrected by subtracting the minimum value in the spectrum from each
point, making the lowest point in every spectrum equal to zero. Peaks were aligned using Icoshift [18].
Lipid peaks at 4.36–4.27, 2.88–2.70, 2.30–2.20, 2.09–1.93, and 1.67–1.50 ppm were excluded from the
spectra and the spectra were mean-normalized by dividing each spectral variable with the average
spectral intensity. Metabolite integrals were obtained by integrating the area under the peaks for
all visible and identifiable metabolites in the pre-processed spectra, and re-normalizing them. The
chemical shifts of the quantified metabolites and the mean spectrum after pre-processing are shown in
Figure 6.

4.4. Histologic Examination

After analysis by HR MAS MRS, the samples were fixed in 10% formalin and embedded in paraffin
blocks. A section of 5µm was taken from the middle and stained with haematoxylin, eosin and saffron.
The sections were examined for the presence of tumour tissue and samples without clear presence of
tumour tissue were excluded from further analysis. ER-status was redetermined from adjacent tissue
sections using immunohistochemistry with a cut-off of more than 1% ER-positive (ER+) tumour cells
being considered ER+. A histologic evaluation was performed with guidance from an experienced
breast cancer pathologist. For the metabolomic analyses, the redetermined ER-status from the analysed
samples was used.

4.5. Molecular Genetic Analyses

Tissue adjacent to the sample used for metabolomic analysis was used for RNA microarray-analyses.
For the OsloVal-samples, mRNA extractions were performed on the QIA symphony SP robot from
Qiagen. An amount of 400 µL RLT buffer was added to the samples while on dry ice, followed by
homogenization (Tissuelyser, Hilden, Germany). The QIA symphony RNA Kit cat# 931636 from Qiagen
was used. For the Oslo2-samples, RNA was isolated with TRIzol (Invitrogen, Carlsbad, CA, USA).
Extracted RNA was quantified using Nanodrop 1000 and the RNA integrity number (RIN) determined
using the Agilent Bioanalyzer. The RIN was compared between samples from the two different time
periods in the OsloVal-cohort, as well as with the Oslo2-cohort, in order to assess tissue integrity.
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Glucose (Glc) 4.67 – 4.64 Taurine (Tau) 3.28 - 3.25
Ascorbate (Asc) 4.54 – 4.52 Glycerophosphocholine (GPC) 3.24 - 3.23
Lactate (Lac) 4.15 – 4.10 Phosphocholine (Pcho) 3.23 - 3.21
Tyrosine (Tyr) 4.02 – 3.97 Choline (Cho) 3.21 - 3.19
Crea�ne (Cr) 3.94 – 3.93 Crea�ne (Cr) 3.03 - 3.02
Glutamate/glutamine (Glu/gln) 3.80 – 3.75 Glutamine (Gln) 2.47 - 2.42
Myo-inositol (M-ino) 3.65 – 3.60 Succinate (Succ) 2.41 - 2.40
Glycine (Gly) 3.57 - 3.55 Glutamate (Glu) 2.37 - 2.32
Myo-inositol (M-ino) 3.55 - 3.52 Glutamine (Gln) 2.16 - 2.11
Taurine (Tau) 3.44 - 3.40 Alanine (Ala) 1.47 – 1.45
Scyllo-inositol (Sc-ino) 3.35 - 3.34 Total choline 3.24 – 3.19

ppm

Figure 6. The mean OsloVal-spectrum after preprocessing, with metabolite annotations. The annotated
lipid peaks were removed for the data analysis. Quantified metabolites with corresponding chemical
shifts are shown in the table.

4.6. Statistical Analysis

All spectral variables were mean centred before multivariate analysis. The data were examined for
natural clusters and outliers by principal component analysis (PCA). Orthogonal partial least squares
discriminant analysis (OPLS-DA) was used to classify samples according to clinical and prognostic
factors. OPLS-DA is a variation of PLS-DA which simplifies model interpretation by capturing the
predictive information in the first component and the remaining components describe variation
orthogonal to the first component. Validation was done by 10-fold cross-validation over 20 iterations.
The average classification error was plotted against an increasing number of components and the first
local minimum in the cross-validation plot was chosen as the optimal number of components. Model
significance was assessed by permutation testing in which the model data were shuffled to give random
classification. This was repeated 1000 times and the p-value is equal to the percentage of permutated
models producing a classification error better than or equal to the model being tested. RIN and FWHM
were compared using Wilcoxon rank sum-tests. When comparing RIN-values, all 100 samples from
the OsloVal-cohort were used, along with all 395 samples from the Oslo2-cohort.
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