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Abstract

LINE1 (L1) retrotransposons are genetic elements that are present in all mammalian genomes.
L1s are active in both humans and mice, and are capable of copying themselves and inserting the
copy into a new genomic location. These de novo insertions occasionally result in disease.
Endogenous L1 retrotransposons can be modified to increase their activity and mutagenic power
in a variety of ways. Here we outline the advantages of using modified L1 retrotransposons for
performing random mutagenesis in rodents and discuss several potential applications.
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Introduction
LINE1 (long interspersed nucleotide element 1 [L1]) elements

are important genome modifiers, altering mammalian

genomes in many ways. L1 elements have contributed to new

gene formation by inserting their own coding sequences into

genes, by shuffling other coding sequences through L1

mediated transduction, and by creating processed pseudo-

genes. They have created deletions both during their

retrotransposition (by their mechanism of integration) and

after insertion through unequal homologous recombination.

They have affected gene expression by altering both trans-

cription and translation of nearby genes. They have

expanded the genome by their continued retrotransposition

and by mediating retrotransposition of non-autonomous

retrotransposons (for reviews [1-6]). L1s have also been a

source of insertional mutagenesis, occasionally inserting

into genes and disrupting their function. In this review, we

discuss a practical application of L1 retrotransposons,

namely harnessing their mutagenic power by modifying

endogenous elements and using them to create mammalian

animal models.

A full-length active L1 retrotransposon is approximately

6,000 nucleotides long and encodes the proteins necessary

to mobilize itself to a new genomic location. The L1 retro-

transposon moves by a ‘copy and paste’ mechanism, which

means that the parent element remains in its original genetic

location, and a copy (de novo insertion) is inserted

somewhere else in the genome (as opposed to the ‘cut and

paste’ mechanism of DNA transposons, in which the parent

element is removed from its original genetic location and

inserted somewhere else). An L1 element is transcribed into

RNA and the bicistronic mRNA is exported from the nucleus

to the cytoplasm, where it is translated into open reading

frame (ORF)1 and ORF2 proteins. At least one L1 RNA

molecule, one ORF2 molecule, and one or more ORF1

molecules may assemble into a ribonucleoprotein (RNP)

complex. Then, both the ORF2 protein and associated L1

RNA must gain access to the nucleus, where the L1 RNA is

reverse transcribed and integrated into a new genomic

location by a process called target primed reverse

transcription (TPRT; Figure 1; for review [6]).

Advantages of using retrotransposons for
performing random mutagenesis
Genes can be disrupted completely and in a stable
manner
Retrotransposons can be used to deliver a gene trap that

efficiently splices into genes and disrupts their function. This

means that up to 30% of insertions (the percentage of the

genome that comprises gene exons and introns) may disrupt



a gene. This is a major improvement on chemical muta-

genesis, which creates point mutations that often do not

affect gene function. Also, unlike DNA transposon insertions,

L1 insertions are permanent and stable, eliminating the

possibility of losing the mutation over time.

Genes are randomly disrupted throughout the entire
genome
A complete genome-wide mutagenesis strategy requires

unbiased gene disruption. Although retrovirus-based muta-

genesis strategies result in ‘hotspots’ of mutation [7], L1

retrotransposons insert into the genome without apparent

site specificity. The L1 element contains an apurinic/

apyrimidinic endonuclease with an inexact target site

preference for 3’-AA/TTTT-5’ [8-10], which allows the L1

retrotransposon to insert randomly throughout the entire

genome. Recent human L1 insertions (within the past few

million years) have been found on every chromosome and

are present in introns, in intergenic regions, and in DNA

regions of high and low GC content [11]. The randomness of

de novo L1 insertions is well established by the study of

recent insertions from the various genome sequencing

projects, and we and others have confirmed random L1

insertion in mouse mutagenesis models [12,13]. Note that

the random pattern of de novo insertions is distinct from the

pattern that occurs after post-insertion selection bias has

taken place, which causes L1 elements to accumulate into

AT-rich and gene-poor regions. Post-insertion selection bias

occurs over millions of years and does not affect the

randomness of mutagenesis systems. Therefore, retro-

transposon based mutagenesis offers a significant advantage

over retrovirus based mutagenesis. It also offers an advan-

tage over insertional mutagenesis using DNA transposons

such as Sleeping Beauty (SB; a member of the Tc1/mariner

transposon family) [14] and piggyback (a DNA transposon

from the cabbage looper moth) [15], which insert non-

randomly when used for in vivo mutagenesis. The majority of

de novo transposon insertions occur within 3 megabases of

their original genomic location and 80% occur on the same

chromosome [16-19], a phenomenon termed ‘local hopping’.

Genes are disrupted at a high frequency
L1 retrotransposons have no limit on the number of

mutations that they can cause because they replicate by a

‘copy and paste’ mechanism. This is in contrast to DNA

transposons, which move by a ‘cut and paste’ mechanism and

are limited by the number of transposons in the transgenic

founder [20]. In an ideal germline mutagenesis strategy, each

germ cell would contain a single mutation that disrupts a

single gene that leads to a phenotype. Fewer mutations

introduce inefficiency, although more than one mutation per

germ cell is not necessarily ideal because matching mutations

to phenotypes becomes problematic. L1 retrotransposon

based mutagenesis has a high frequency of mutation,

approaching the ideal of one mutation per germ cell.

The genomic locations of mutations are easily mapped
L1 retrotransposons demonstrate cis preference, which

means that the retrotransposition proteins almost exclu-

sively mobilize the RNA that encoded them [21]. Therefore,

when inserting a tagged L1 retrotransposon into an animal,

one can be sure that all de novo insertions will be from

tagged L1 retrotransposons and not from retrotransposition

of other cellular mRNAs. Any new phenotypes will be due to

a tagged insertion that can be easily mapped, as opposed to

an untagged insertion that cannot be easily mapped. Unlike

N-ethyl-N-nitrosourea (ENU) base substitutions, de novo

retrotransposon insertions are large, unique sequences that

are relatively easy to map using inverse polymerase chain

reaction (PCR) or thermal asymmetric interlaced PCR.

Although easy mapping of mutations is a feature shared with

mutagenesis using transposons, the SB system has a

drawback. Recent experiments demonstrated that de novo

SB insertions occasionally occur via multiple sequential

‘hops’ from one chromosomal region to another [22,23], a

process that can result in large deletions. After SB excision

three terminal base pairs of the transposon remain, and

resolution of the double strand break occurs via the

nonhomologous end joining repair pathway, resulting in a

net 3 base pair insertion. Occasionally, through unknown

mechanisms, deletions occur at SB excision sites at lengths

of up to 100 base pairs [24,25]. Deletions created in this

manner are not associated with the transposon that caused

them because the transposon is excised during the event (cut

and paste mechanism), and so these mutations cannot easily

be mapped, which confounds attempts to link interesting

phenotypes with the causative mutation. L1s can cause

genomic deletions at insertion sites [26,27], but these

deletions remain associated with the L1 element that caused

them because the retrotransposon is not subsequently

excised (copy and paste mechanism) and so these mutations

can be identified more easily.
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Figure 1
Steps in L1 retrotransposition. L1, long interspersed nucleotide element 1
(LINE1); ORF, open reading frame; TPRT, target primed reverse
transcription.



Animals that contain disrupted genes can be created
efficiently
Direct mutation in the germline produces offspring with

gene disruptions by natural breeding. This is important

because the use of embryonic stem cells can be costly, time

consuming, and technically impossible in most mammalian

models, including rat [28].

Table 1 provides a summary of the various methods of

mutagenesis in rodents. Many of the advantages of

mutagenesis using retrotransposons are shared with DNA

transposons, except as noted above, and their use is

discussed in other reviews in this supplement.

Mouse mutagenesis using L1 retrotransposons
Germline mutagenesis
The first description of an endogenous L1 causing a disease

in humans by insertional mutagenesis was reported in 1988.

In that instance, an L1 had inserted into the gene encoding

coagulation factor VIII, thereby causing hemophilia A [29].

Since that time, there have been more than 20 descriptions

of disease causing de novo L1 insertions in humans and mice

[2,6]. It is not apparent whether these endogenous L1 inser-

tions integrated directly into the germline during spermato-

genesis or oogenesis, or whether they integrated early

enough in development that they were later incorporated

into the germ cells, where they were passed on to future

generations. However, it is clear from the many instances of

insertional mutagenesis by endogenous L1s and by the

hundreds of thousands of L1 elements that have

accumulated in mammalian genomes that at least some de

novo insertions make their way into the germline and are

stably transmitted to offspring.

Proof-of-principle for germline mutagenesis in the mouse

using L1 retrotransposons was demonstrated in animals that

contained a transgene consisting of a highly active human L1

element tagged with a modified version of an enhanced

green fluorescent protein (EGFP) retrotransposition cassette

[30]. Several lines of transgenic mice were created. In some

lines the L1 element used its endogenous promoter for

transcription, and in others the L1 was driven by the

addition of a heterologous promoter. As expected, the endo-

genous L1 promoter was active in the germ cells. The

addition of the heterologous promoter increased transcript

levels in the germ cells and allowed for low levels of

transcription in multiple somatic tissues. Mouse lines that

contained either type of transgene demonstrated retro-

transposition, detected by reverse transcription PCR and

PCR of de novo insertions. Two germline insertions, one of

which had inserted into a gene intron, were cloned from

mice that had the heterologous promoter transgene. How-

ever, the transgenes in these initial mice did not contain

gene traps and were not expected to disrupt genes when

inserting into introns. The frequency of insertion was

estimated at approximately one de novo insertion in every

70 sperm for mice with the heterologous promoter, and

lower for mice containing the transgene that used only the

endogenous promoter. More refined estimates using real-

time PCR have demonstrated that some of these lines have

germline insertion frequencies as high as one insertion in

every 20 sperm.

Subsequent attempts at germline mutagenesis using L1

involved strategies to increase the frequency of retro-

transposition, including the use of a more active human L1

element, a different heterologous promoter, and a more

efficient retrotransposition cassette [13]. The highest repor-

ted frequency of germline transmission of de novo L1

insertions was estimated at one insertion in every three

sperm [12]. These transgenic mice contained a codon opti-

mized mouse L1 [31]. Although L1-based germline muta-

genesis will probably play a role in the creation of a genome-

wide collection of mouse knockouts, the existence of other

already well established methods for creating germline

mutations in mice (knockouts, knockins, and conditional

mutations, among others) may limit its usefulness.

Somatic mutagenesis
L1 elements are also capable of somatic mutagenesis.

However, little is known about the regulation, frequency,

and relevance of such retrotransposition. Two examples of

disease-causing somatic L1 insertions have been described in

humans, one associated with a case of colon cancer and the

other associated with a breast cancer. An L1 insertion into

exon 16 of the APC tumor suppressor, predicted to be an

inactivating mutation, was discovered in a human colon

cancer and was not present in adjacent normal tissue

[32,33]. An L1 insertion between exons 2 and 3 at the myc

locus was also identified in a ductal carcinoma of the breast,

although the functional implication of this mutation was not

determined [34]. These findings indicate that L1 elements

are occasionally active in somatic tissue and are capable of

driving carcinogenesis. However, the relative contribution to

oncogenic transformation is largely unknown. Growing

evidence that L1 elements become hypomethylated within

cancers suggest that L1 expression may be reactivated in
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Table 1

Comparison of gene knockout strategies in rodents

Criteria Retroviral ENU Retrotransposon

Disrupt genes completely Yes No Yes

Random mutation No Yes Yes

High frequency mutation Yes Yes Yes

Quickly map mutations Yes No Yes

Efficiently create knockout animals No Yes Yes

ENU, N-ethyl-N-nitrosourea.



somatic tissue and that retrotransposition may play a signi-

ficant role as an insertional mutagen, thereby contributing to

genomic instability [35-39]. Whether global L1 hypomethy-

lation augments L1 expression and retrotransposition

requires more rigorous investigation.

Human and synthetic mouse L1 sequences have proven to

retrotranspose in somatic tissue in transgenic mice

[12,13,40]. In one transgenic model, a highly active human

L1 element (L1RP) [41], which was tagged with an EGFP

retrotransposition cassette [42] and was transcribed using

its endogenous promoter, exhibited somatic retrotrans-

position within neuronal precursors [40]. However, it is not

known whether retrotransposition from endogenous L1

elements occurs in neuronal precursor cells in mice or

humans. In other transgenic mice, a native human L1

element (L1LRE3), tagged with a markerless retrotrans-

position cassette and driven by the mouse Hspa2 promoter,

demonstrated somatic retrotransposition into sites through-

out the genome, including transcriptional units, with 14.6%

of insertions found within RefSeq genes [13]. A synthetic,

codon optimized mouse L1 (ORFeus) tagged with an EGFP

retrotransposition cassette and driven by the CAG promoter

(a hybrid between the human cytomegalovirus immediate

early promoter and chicken β-actin promoter) was also

capable of a high level of somatic retrotransposition in

transgenic mice [12]. Because both high level ubiquitous

expression (with CAG) and codon optimization (ORFeus)

would both probably enhance retrotransposition, the

relative contributions of each of these factors in this trans-

genic mouse is unknown.

The most practical application of L1-based somatic muta-

genesis in mice would be a screen for tumor suppressors and

oncogenes. A tissue specific promoter could direct L1

mediated mutagenesis to a particular organ to drive the

formation of different types of cancers. The incidence of loss

of function mutations could be enhanced by tagging the L1

with a gene trap cassette containing strong splice acceptors.

For some trapped tumor suppressors a loss of heterozygosity

may be rate limiting for carcinogenesis, but could be

expedited by using a Blm mutant background. Germline

mutations in the RecQ-like helicase Blm causes a profound

increase in sister chromatid exchange, which is mediated by

homologous recombination, resulting in widespread cancer

[43]. Blm inactivation causes accelerated loss of hetero-

zygosity of the wild-type Apc allele in Apcmin/+ mice, causing

nearly four times as many polyps [43]. Because Blm appears

to repress cancer in multiple tissues, Blm mutants may be

useful for somatic mutagenesis in many different cell types.

Rat mutagenesis
Without question, the mouse is and will continue to be an

important animal model for performing functional

genomics. However, there are circumstances in which mouse

models are limited. The great majority of common human

diseases remain un-modeled in the mouse. Published knock-

outs exist for approximately 10% of mouse genes. Although

efforts are now underway to create publicly available

genome-wide collections of mouse knockouts, it will take

many years to achieve this goal, and it seems unlikely that

every gene in the mouse will be amenable to disruption

[44,45]. Furthermore, there are many instances in which

disrupting a gene in the mouse leads to no observable

phenotype. Rat models are an alternative to mice that may

enable the creation of new gene disruptions that are

unavailable in the mouse, and that can complement existing

transgenic mouse models. The evolutionary distance

between rats and mice, some 12 to 24 million years [46,47],

is about the same as that between humans and new world

monkeys [48]. Comparing mouse and rat models with

known human diseases can allow the distinction between

rodent specific phenotypes and those that may be general to

all mammals.

In many applications the rat is a better animal model for

human disease. Although mice have been the animal model

of choice for most geneticists, the rat has traditionally been

favored by physiologists and pathologists. Their larger size

make rats more conducive to study by instrumentation, and

facilitates manipulations such as blood sampling, studying

nerve conduction, or performing surgery. In many ways, rats

are physiologically more similar to humans than are mice.

For example, rats have a heart rate similar to that of

humans, whereas mice have a heart rate nearly ten times as

fast [28]. Rats have been used as important models for

human cardiovascular disease, diabetes, arthritis, and many

other autoimmune and behavioral disorders [28]. Rat

models are superior to mouse models for testing the

pharmacodynamics and toxicity of potential therapeutic

compounds, partially because the number and type of many

of their detoxifying enzymes are very similar to those in

humans [49].

Most techniques for genetic manipulation, including random

mutagenesis with a gene trap (both retrovirus-based and

non-retrovirus-based), gene knockouts, gene knockins, and

conditional mutations, depend upon embryonic stem (ES)

cells [50]. However, for unknown technical reasons, rat ES

cells cannot be isolated and used to create a viable organism

[51]. Consequently, many genetic manipulation techniques

widely used in the mouse have not been possible in the rat.

There are currently only two technologies that can be used to

produce rat models of human disease: cloning and chemical

mutagenesis using ENU. Although cloning could be used to

create rats with specific genetic modifications, by first

creating mutations in mitotic cells and then using the

mutated cells to clone a rat, this approach is extremely

inefficient. The first published attempt at cloning a rat had a

success rate of less than 1% [52]. Alternatively, ENU

mutagenesis is a common random mutagenesis gene knock-
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out strategy in the mouse that can also be used in the rat.

However, only a very small number of the total mutations

created by ENU mutagenesis have an observable phenotype

[53], and mapping mutations responsible for interesting

phenotypes is typically difficult and time consuming.

There is a need for new techniques that can rapidly create

and map gene knockouts in rats for the creation of new

models of human disease. Mutagenesis using transposable

elements is an attractive option. Indeed, a recent report

demonstrated the feasibility of using SB for mutagenesis in

rats [54]. We recently showed the feasibility of using L1 for

mutagenesis in the rat (Sprague-Dawley strain) and

demonstrated a high level of somatic retrotransposition with

occasional germline transmission of de novo insertions

(Kano H, Ostertag EM, Kazazian HH Jr, unpublished data).

Factors affecting the frequency and tissue
specificity of retrotransposition
When designing an L1 mutagenesis system, it is important to

consider the factors that will determine the frequency and

tissue specificity of retrotransposition. The following are

important considerations.

Choice of L1 element
At present, the human genome contains 80 to 100 endo-

genous full-length active L1s. Although they have similar

nucleic acid sequence, they are known to exhibit very

different levels of activity. A recent survey of the retro-

transposition capability of elements in the human genome

demonstrated there are just a few elements with very high

activity. These elements were called ‘hot’ L1s [55]. Another

study found that more active elements tend to insert larger

amounts of DNA during retrotransposition [56]. Therefore,

hot L1 elements such as L1RP and L1LRE3 are a good choice for

use in random mutagenesis because they are highly active

and better equipped to deliver gene traps. The L1RP element

was used in the initial studies of mouse models of L1

retrotransposition [30,57] and in a transgenic mouse model

that demonstrated somatic retrotransposition in neuronal

precursor cells [40]. A more recent study that demonstrated

L1 retrotransposition events at relatively high frequency and

characterized more than 50 de novo L1 insertions used the

L1LRE3 element [13].

Most mouse L1 elements cloned to date have exhibited poor

retrotransposition activity in a cultured cell assay when

compared with the hot human elements [58,59]. However,

the poor retrotransposition capability of mouse L1 elements

in cultured cells may be due to poor translation [60]. To

overcome this problem, Han and Boeke [31] designed a

synthetic mouse L1 that codon optimized the open reading

frames of an endogenous mouse L1 element without

changing the amino acid sequence. The codon optimized L1

(ORFeus) was used to create transgenic mice, in which it

demonstrated high activity [12]. In this model, all transgene

positive progeny demonstrated somatic insertions and some

insertions were passed through the germline.

Choice of retrotransposition cassette
The L1 element may be tagged with a retrotransposition

cassette to facilitate detection of de novo L1 insertions.

Retrotransposition cassettes are disrupted by an intron

sequence and are cloned into the 3’ untranslated region of an

L1 element. The intron is removed by splicing during a

retrotransposition event, allowing the differentiation

between a de novo L1 insertion and the L1 element(s)

present in the transgene. The cassette can contain a gene

that is disrupted by the intron and activated upon

retrotransposition, thereby allowing positive or negative

selection. For example, the EGFP cassette allows detection

of cells that contain a retrotransposition event by fluore-

scence [30,42]. A negative selection strategy could rescue

cells that would otherwise die by the expression of a rescue

gene upon retrotransposition. There are also cassettes that

contain no selectable marker. In these ‘markerless’ cassettes,

retrotransposition can be detected by PCR detection of loss

of the intron [13]. The main advantage of using a markerless

cassette is that it facilitates detection of smaller insertions.

The majority of L1 insertions are 5’ truncated during the

integration process. Therefore, a smaller cassette permits

detection of more insertions. Recent L1 transgenic mouse

studies demonstrated that more than 90% of de novo

insertions were 5’ truncated, and some of them were less

than 500 nucleotides [12,13].

Gene trapping technology can be used to maximize the rate

at which retrotransposition insertions interrupt coding

exons. Only about 1% of the genome is composed of exons.

Therefore, only one in every 100 random insertions is

expected to disrupt the coding sequence of a gene. A gene

trap that disrupts the normal splicing sequence of genes

during transcription can be included in the L1 retro-

transposon, such that retrotransposons that land within

gene introns in the correct orientation will disrupt gene

expression. Because approximately 30% of the mouse genome

consists of exons and introns [61], and new insertions are

likely to be in the correct orientation 50% of the time, this

strategy should increase the incidence of gene disruptions

resulting from retrotransposition events from 1% to

approximately 15%. To increase this rate of disruption even

further, we designed a unique bi-directional gene trap that

disrupts gene expression when inserted into an intron in

either orientation (and that can therefore be expected to

increase the rate of gene disruptions to approximately 30%

of all retrotransposition events) [13]. The gene trap that we

chose utilizes the very strong splice acceptor from the

human BCL2 gene, which is able to splice into exons located

more than 100 kilobases away without alternative splicing

[62]. This particular gene trap demonstrated 100% efficiency

(complete disruption of a gene with no alternative splicing)
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when tested in a cultured cell system [63] and has success-

fully been used to disrupt genes in the mouse [64]. We have

demonstrated an L1 element tagged with the bi-directional

gene trap retrotransposition cassette can disrupt genes in

cultured cells and have used the cassette in transgenic

animals [13].

Choice of promoter
L1 elements contain an endogenous promoter [65], which is

sufficient to direct expression of the L1 transgene during

spermatogenesis and oogenesis in transgenic animals [30].

Transcripts produced by the endogenous promoter are

integrated either in the germline or early during

development, so the endogenous promoter can be used for

germline mutagenesis. The endogenous promoter has also

been used in transgenic mice that demonstrated retrotrans-

position in neuronal precursor cells [40]. Because L1

retrotransposition appears to be limited by the steady-state

levels of the processed L1 mRNA [66], a reasonable method

to increase retrotransposition frequency is by incorporating

a strong heterologous promoter. We and others have

demonstrated that a heterologous promoter can boost

retrotransposition for both germline [30] and somatic

mutagenesis [12,13].

A feasible somatic mutagenesis screen in mice would hinge

on robust and reliable expression in the desired tissues. This

can be achieved by removing the endogenous L1 promoter

and adding a strong tissue specific promoter. Unless the

promoter possesses a locus control region, expression of the

tagged L1 transgene may be affected significantly by the

genomic integration site. Ideally, L1 transgenes designed for

mutagenesis should have a promoter/enhancer that is

resistant to position effect silencing, such as the albumin,

α-fetoprotein, elastase, or β-globin promoters [67-72].

Alternatively, L1 transgenes can be targeted to specific loci in

mouse ES cells to recapitulate the tissue-specific expression

of that gene entirely. Recombinase mediated cassette

exchange is a useful method that is increasingly being used

to target particular loci, such as the β-actin locus [73].

Another alternative would be the incorporation of insulators

into the transgene, such as a chicken β-globin insulator [74-76].

Choice of genetic background
Mouse strain
From the large number of endogenous long terminal repeat

(LTR) retrotransposons that have inserted in mice, such as

intracisternal A particles (IAP) and early transposons (ETn),

it is known that mouse strain can affect the activity of LTR

retrotransposons [6,77]. Most IAP insertions have been

identified in C3H mice. ETn elements tend to retrotranspose

in A/J, SELH/Bc, and MRL/MpJ mice. It is unknown whether

genetic background is also important for L1 retrotrans-

position, because the number of endogenous L1 insertions

characterized in mice is much fewer than LTR retro-

transposon insertions. Characterized L1 insertions include

the spastic mouse in the SPE strain [78,79], the Orleans

reeler mouse in BALB/c [80], the black eyed white mouse in

C3H [81], the Chediak-Higashi mouse in C3H (with radiation

treatment) [82], the med mouse in PCT [83], and the retinal

degeneration mouse (strain not specified) [84]. All the L1

transgenic mice created to date were created in hybrid

strains, such as B6SJLF1 [12,13,30,57] and B6D2F1 [40].

Host factors
Little is known about the mechanisms by which the host

genome suppresses L1 retrotransposition, but several have

been reported as possibly involved. The L1 transgene on the

background of a mouse with retrotransposon defense

mechanisms knocked out or knocked down could potentially

produce more insertions.

DNA methylation has been proposed to be a major defense

mechanism against transposable elements, not only

inhibiting transcription but also assembling sequences into

the condensed state to prevent recombination [85]. Both

human and mouse L1s contain CpG islands in the 5’

untranslated region, which contains the L1 promoter activity

[65,86]. It is believed that the CpG island of L1 is maintained

in heavily methylated status most of the time. It is

noteworthy that the human L1 promoter is heavily methy-

lated even in the mouse genome, and the retrotransposition

activity of human L1 transgene seems to be correlated with

its methylation status (Kano H, Ostertag EM, Kazazian HH

Jr, unpublished data). The L1 transgene flanked by an

insulator sequence retains unmethylated CpGs in its 5’

untranslated region and shows higher retrotransposition

activity than that of methylated L1 transgene without the

insulator sequence (Kano H, Ostertag EM, Kazazian HH Jr,

unpublished data).

DNA methyltransferase 3L (encoded by Dmnt3L) is required

for the de novo methylation of retrotransposons. Dnmt3L is

expressed in testis, and Dnmt3L knockout in mice causes

high levels of transcription of retrotransposons in spermato-

gonia and spermatocytes [87]. Male mice that are homo-

zygous for the Dnmt3L knockout allele are unable to

produce sperm. Therefore, mutagenesis in Dnmt3L deletion

males would need to be performed by using conditional

mutations of Dnmt3L or by using a retrotransposition

cassette that expresses a copy of Dnmt3L upon retro-

transposition, which might restore spermatogenesis only in

those spermatogonia that contain a de novo insertion.

Lymphoid-specific helicase (Lsh) is a member of the SNF2

family of chromatin remodeling proteins. Contrary to the

retrotransposon reactivation in male germ cells of Dnmt3L

knockout, Lsh knockout mice exhibit demethylation and

transcriptional reactivation of repetitive elements in the

female germline. Lsh is essential in epigenetic silencing of

retrotransposons in the female meiosis [88,89]. Lsh deletion

mice exhibit severe oocyte loss and lack of ovarian follicle

formation, making mutagenesis on this background difficult.
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In humans, the apolipoprotein B mRNA editing complex

(APOBEC) family consists of APOBEC1, APOBEC2, and

APOBEC3A, B, C, D/E, F, G, and H. Among them, APOBEC3G

is the best characterized and is known to catalyze C to U

deamination of the minus strand during reverse trans-

cription. Thus, APOBEC3G produces inactivated copies of

LTR retrotransposons, but not L1, by introducing mutations.

APOBEC3A, B, C, and F have been reported to inhibit L1

retrotransposition in the cultured cells [90-92]. However,

the precise mechanism of L1 suppression by these APOBECs

is not well understood, because they do not increase the

number of mutations in retrotransposed copies of L1. Mice

and rats have the APOBEC1 and APOBEC2 genes and only a

single APOBEC3 gene. The mouse APOBEC3 may not be

involved in repression of retrotransposons because the

APOBEC3 knockout mouse unexpectedly demonstrated

normal development, survival, and fertility. In addition,

wild-type mice exhibit poor expression of APOBEC3 in testis

[93]. Therefore, it is unclear at this point whether the

APOBEC genes affect L1 retrotransposition in vivo or

whether the APOBEC knockout mice could be used to boost

retrotransposition from an L1-containing transgene.

Conclusion
Endogenous L1 elements have caused both germline

transmissible and somatic insertions in humans and mice.

We and other groups have demonstrated that modified L1

elements can be used to perform random mutagenesis in

mice or rats. Depending on the promoter used to drive

transcription, either germline or somatic mutagenesis is

feasible. Given the urgent need for rat models of human

diseases and the limited methods for performing

mutagenesis in rats, L1 based mutagenesis is an attractive

option. When designing an L1 transgene for mutagenesis, it

is important to consider the activity of the retrotransposon,

the type of retrotransposition cassette used to detect

insertions, the strength and tissue specificity of the promoter

used to drive transcription of the L1, and the genetic

background of the animal model.
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