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Abstract: Organic peroxides are an important class of compounds for organic synthesis, pharmacolog-
ical chemistry, materials science, and the polymer industry. Here, for the first time, we summarize the
main achievements in the synthesis of organic peroxides by the action of Lewis acids and heteropoly
acids. This review consists of three parts: (1) metal-based Lewis acids in the synthesis of organic
peroxides; (2) the synthesis of organic peroxides promoted by non-metal-based Lewis acids; and
(3) the application of heteropoly acids in the synthesis of organic peroxides. The information covered
in this review will be useful for specialists in the field of organic synthesis, reactions and processes of
oxygen-containing compounds, catalysis, pharmaceuticals, and materials engineering.

Keywords: Lewis acid; heteropoly acid; hydrogen peroxide; organic peroxides; catalysis

1. Introduction

Organic peroxides, due to their unique ability to form O-centered radicals via cleavage
of the O-O bond, are widely used in polymer chemistry. In particular, dicumyl peroxide,
dibenzoyl peroxide, 1,1-di-tert-butyl hydroperoxy cyclohexane, tert-butyl hydroperoxide,
which are convenient in handling, have found application as initiators for low-temperature
polymerization of styrene, butadiene, vinyl chloride, acrylates, ethylene [1,2], and as
reagents for vulcanization of rubbers [3,4]. According to the latest research, the global
organic peroxide market size was around US $2 billion in 2020 [5]. Despite the successful
application of peroxides in the polymer industry, it was believed for a long time that the
application of organic peroxides as drugs was not possible due to their low stability and
the generation of hazardous reactive oxygen species, which can quickly and nonspecifically
interact with biomolecules. Discovery of the natural peroxide Artemisinin (Qinghaosu)
and its outstanding antimalarial activity [6,7] in 1972, showed that cyclic peroxides can
be used in medicine as drugs. In 2015, Youyou Tu was awarded the Nobel Prize “for her
discoveries regarding a new therapy for malaria” [8,9].

Drugs based on Artemisinin and its semisynthetic analogues are recommended by
WHO as one of the most effective agents for the treatment of malaria (Figure 1) [10–12].
To overcome the emerging problem of drug resistance and to further improve the efficacy
of Artemisinin, numerous derivatives of this unique natural product have recently been
designed, synthesized and evaluated for biological activities [13,14].
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overall yield, which prompted the search for synthetic peroxides with antimalarial prop-
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1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. Repre-
sentatives of these families have demonstrated antimalarial [10,11,15], anthelmintic [16–
28], antitumor [29,30], anti-tuberculosis [31–33], growth regulatory [34–36] and fungicidal 
activity [37–40]. In 2012, arterolane (ozonide OZ277) was the first synthetic peroxide to be 
approved for treatment of malaria in medical practice (Figure 1) [41–45]. Ozonide arte-
fenomel (OZ 439) is a second generation clinical candidate against malaria [46]. Very re-
cently, it has been shown that arterolane exhibits in vitro activity against α-coronavirus 
NL63 and β-coronaviruses OC43, and SARS-CoV-2 [47,48]. Artemisinin and its deriva-
tives were also found to be active against SARS-CoV-2 in vitro as well [49]. 

 
Figure 1. Artemisinin, its semi-synthetic derivatives, and synthetic Arterolane. 

Modern approaches to the synthesis of organic peroxides are based upon the use of 
oxygen, ozone, and hydrogen peroxide as sources of the O-O group. The most common 
methods for the construction of the O-O group are the ene reaction of singlet oxygen with 
alkenes [50–52], [4 + 2], the cycloaddition of singlet oxygen to dienes [53,54], the peroxy-
silylation of alkenes by the Isayama-Mukayama reaction [55–62], the cyclization of un-
saturated hydroperoxides by the Kobayashi reaction [63–65], processes with the partici-
pation of destabilized peroxycarbenium ions [66–68], the ozonolysis of alkenes [69–74], 
the nucleophilic addition of hydrogen peroxide to carbonyl compounds and their analogs 
catalyzed by acids [75–91], and the ring opening reaction of Donor–Acceptor cyclopro-
panes with alkyl hydroperoxides [92]. The most affordable starting materials for the syn-
thesis of organic peroxides are carbonyl compounds and hydrogen peroxide. 

This review, which covers the major achievements in the synthesis of organic perox-
ides (Figure 2) using Lewis acids and heteropoly acids, consists of three parts: (1) metal-
based Lewis acids in the synthesis of organic peroxides; (2) synthesis of organic peroxides 
promoted by non-metal-based Lewis acids; (3) application of heteropoly acids in the syn-

Figure 1. Artemisinin, its semi-synthetic derivatives, and synthetic Arterolane.

The growing demand for Artemisinin has pushed scientists to develop its total syn-
thesis. The disadvantage of the available methods for synthesis of Artemisinin is the
low overall yield, which prompted the search for synthetic peroxides with antimalarial
properties. Currently, the most promising classes of synthetic peroxides are 1,2-dioxolanes,
1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. Repre-
sentatives of these families have demonstrated antimalarial [10,11,15], anthelmintic [16–28],
antitumor [29,30], anti-tuberculosis [31–33], growth regulatory [34–36] and fungicidal ac-
tivity [37–40]. In 2012, arterolane (ozonide OZ277) was the first synthetic peroxide to
be approved for treatment of malaria in medical practice (Figure 1) [41–45]. Ozonide
artefenomel (OZ 439) is a second generation clinical candidate against malaria [46]. Very
recently, it has been shown that arterolane exhibits in vitro activity against α-coronavirus
NL63 and β-coronaviruses OC43, and SARS-CoV-2 [47,48]. Artemisinin and its derivatives
were also found to be active against SARS-CoV-2 in vitro as well [49].

Modern approaches to the synthesis of organic peroxides are based upon the use of
oxygen, ozone, and hydrogen peroxide as sources of the O-O group. The most common
methods for the construction of the O-O group are the ene reaction of singlet oxygen
with alkenes [50–52], [4 + 2], the cycloaddition of singlet oxygen to dienes [53,54], the
peroxysilylation of alkenes by the Isayama-Mukayama reaction [55–62], the cyclization of
unsaturated hydroperoxides by the Kobayashi reaction [63–65], processes with the partic-
ipation of destabilized peroxycarbenium ions [66–68], the ozonolysis of alkenes [69–74],
the nucleophilic addition of hydrogen peroxide to carbonyl compounds and their analogs
catalyzed by acids [75–91], and the ring opening reaction of Donor–Acceptor cyclopropanes
with alkyl hydroperoxides [92]. The most affordable starting materials for the synthesis of
organic peroxides are carbonyl compounds and hydrogen peroxide.

This review, which covers the major achievements in the synthesis of organic peroxides
(Figure 2) using Lewis acids and heteropoly acids, consists of three parts: (1) metal-based
Lewis acids in the synthesis of organic peroxides; (2) synthesis of organic peroxides pro-
moted by non-metal-based Lewis acids; (3) application of heteropoly acids in the synthesis



Pharmaceuticals 2022, 15, 472 3 of 63

of organic peroxides. This review provides information that will be useful to specialists in
the field of organic synthesis, catalysis, pharmaceuticals, and the polymer industry.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 3 of 67 
 

 

thesis of organic peroxides. This review provides information that will be useful to spe-
cialists in the field of organic synthesis, catalysis, pharmaceuticals, and the polymer in-
dustry. 

 
Figure 2. Reviewed cyclic and acyclic peroxides. 

2. Metal-Based Lewis Acids as Catalysts in the Synthesis of Organic Peroxides 
Traditionally, strong Bronsted acids play the role of a catalyst in the synthesis of or-

ganic peroxides. The use of metal-based Lewis acids for the synthesis of peroxides is a 
surprising phenomenon. Generally, peroxides decompose or rearrange under the action 
of transition metal salts [93,94]. However, some metal-based Lewis acids, on the contrary, 
promote the assembly of peroxides. In this section, we summarized the approaches on the 
synthesis of 1,2-dioxolanes, 1,2-dioxanes, 1,2-dioxepanes, 1,2-dioxocanes, 1,2,4,5-tetrao-
xanes, 1,2,4,5,7,8-hexaoxonanes, and acyclic peroxides under the action of metal-based 
Lewis acids. 

2.1. Synthesis of Organic Peroxides Catalyzed by SnCl4, Me2SnCl2, SnCl2, and TiCl4 
The first example of selective synthesis of organic peroxide using a metal-based 

Lewis acid SnCl4 as a catalyst goes back to 1950 [95]. Bartlett P. D. et al. carried out the 
nucleophilic substitution of the halogen atom in 1 with hydrogen peroxide in the presence 
of tin (IV) (Scheme 1). The hydroperoxide 2 formed granular crystals of a monohydrate 
melting at 99–101 °C with loss of water. 

Figure 2. Reviewed cyclic and acyclic peroxides.

2. Metal-Based Lewis Acids as Catalysts in the Synthesis of Organic Peroxides

Traditionally, strong Bronsted acids play the role of a catalyst in the synthesis of organic
peroxides. The use of metal-based Lewis acids for the synthesis of peroxides is a surprising
phenomenon. Generally, peroxides decompose or rearrange under the action of transition
metal salts [93,94]. However, some metal-based Lewis acids, on the contrary, promote the
assembly of peroxides. In this section, we summarized the approaches on the synthesis of
1,2-dioxolanes, 1,2-dioxanes, 1,2-dioxepanes, 1,2-dioxocanes, 1,2,4,5-tetraoxanes, 1,2,4,5,7,8-
hexaoxonanes, and acyclic peroxides under the action of metal-based Lewis acids.

2.1. Synthesis of Organic Peroxides Catalyzed by SnCl4, Me2SnCl2, SnCl2, and TiCl4
The first example of selective synthesis of organic peroxide using a metal-based Lewis

acid SnCl4 as a catalyst goes back to 1950 [95]. Bartlett P. D. et al. carried out the nucleophilic
substitution of the halogen atom in 1 with hydrogen peroxide in the presence of tin (IV)
(Scheme 1). The hydroperoxide 2 formed granular crystals of a monohydrate melting at
99–101 ◦C with loss of water.
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In 1959, R. Huttel et al. found that benzyl hydroperoxide 4 is formed by treating
benzyl chloride 3 with an excess of hydrogen peroxide (90% aq. solution) in the presence of
tin (IV) chloride as a catalyst [96]. The yield of benzyl hydroperoxide 4 was 23% (Scheme 2).
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Scheme 2. Synthesis of benzyl hydroperoxide 4.

The reaction of acetone 5 with hydrogen peroxide in the presence of protic acid leads
to the formation of tetraoxane 6 and hexaoxonane 7. However, the peroxidation of acetone
under the action of SnCl4 allows the obtaining of tetramer 8 in 44% yield (Scheme 3) [97].
Peroxide 8 was identified by molecular weight determination, elemental analysis, FTIR,
NMR, and MS.
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Scheme 3. Synthesis of cyclic peroxides from acetone.

The reaction of H2O2 with 1,2-bis(diphenylphosphino)ethane (dppe) in acetone in the
presence of Me2SnCl2 leads to (bis(diphenylphosphinoyl)ethane)·2(2,2-dihydroperoxypropane)
1:2 adduct 9, stabilized by hydrogen bonds between hydroperoxide groups and oxygen atoms
of phosphorus groups (Scheme 4) [98].
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The synthesis of gem-bishydroperoxides 11 from ketones 10 was successfully carried
out under the action of 30% aq. H2O2 using tin (II) chloride in catalytic amounts under
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mild conditions [91]. As starting substrates, cyclic or acyclic ketones, as well as substituted
acetophenones and aldehydes, can be used. The yield of the peroxides 11 and 13 was
45–95% (Scheme 5).
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Scheme 5. Synthesis of gem-bishydroperoxides 11, 13 from ketones 10 and aldehydes 12.

Substituted oxiranes 14 are easily transformed into the corresponding α-hydroxo-
hydroperoxides 15 in good yield in the presence of a SnCl4-H2O2 system at 0 ◦C (Scheme 6,
Path A) [99]. However, the opening of the oxirane ring at −78 ◦C, using SnCl4 in the
amount of 1.2 eq., with the subsequent addition of an ethereal solution of H2O2 into the
reaction, leads to the formation of geminal 1,1-dihydroperoxides 16. This new pathway
results from SnCl4-catalyzed rearrangement of oxiranes to aldehydes A, which then interact
with hydrogen peroxide to form bishydroperoxides 16 (Scheme 6, Path B).
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Dussault P. et al. developed an approach to the synthesis of allylated peroxides,
peroxyketones, and peroxyesters 18 by SnCl4 or TiCl4-mediated reaction of peroxyacetals
17 with electron-rich alkenes, proceeding via peroxycarbenium ion A. (Scheme 7) [100–102].
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Scheme 7. Synthesis of alkyl peroxides 18.

Allylation of monoperoxyacetals 19, 20 makes it possible to obtain peroxides 21, 22 in
good yield at −78 ◦C in methylene chloride. The reaction is catalyzed by TiCl4 and SnCl4
(Scheme 8) [100].
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The transformation of alkyl peroxides under the action of Lewis acids has been de-
scribed, where 1,2-dioxanes, 1,2-dioxepanes, and 1,2-dioxocanes are formed as target
products [87]. Thus, intramolecular cyclization of peroxyacetals 23, 25, and 27, containing
an electron-rich double bond, occurs with the formation of cyclic peroxides 24, 26, and
28, respectively, under action of 1 equiv. of TiCl4 or SnCl4 at −78 ◦C in CH2Cl2 at the N2
atmosphere (Scheme 9). The size of the peroxide ring depends on the position of the double
bond in the starting alkyl peroxide.

The interaction of allyltrimethylsilane with α-alkoxyhydroperoxides 29, promoted by
SnCl4 and TiCl4, afforded with the formation of substituted 1,2-dioxolanes 30 (Scheme 10) [101].

The reaction mechanism of the formation of 1,2-dioxolane 30 includes the formation
of hydroperoxycarbenium ion A peroxyacetal 29 under the action of SnCl4 or TiCl4 at
the first step. Then hydroperoxycarbenium ion A undergoes nucleophilic attack by al-
lyltrimethylsilane to form cation B, the cyclization of which leads to the 1,2-dioxolane 30
(Scheme 11) [101].
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The above-mentioned approach was used to transform ozonides 31 into 1,2-dioxolanes
32. This reaction proceeds under the action of SnCl4/AllylTMS system in a nitrogen
atmosphere at the temperature range from −78 ◦C to 0 ◦C (Scheme 12) [103].
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In the absence of allyltrimethylsilane, TiCl4 or SnCl4 can catalyze the heterolysis of
the O-O-bond in ozonides. This reaction proceeds with the formation of the corresponding
lactones and ketones (Scheme 13). The transformation of ozonides 31 into 1,2-dioxolanes
32 under the action of SnCl4 in the presence of allyltrimethylsilane proceeds through Path
A and Path B, including the ionization of both C-O and C-OO bonds [104].

The SnCl4 or TiCl4-mediated reaction between peroxyacetals 33 and electron-rich
alkenes results in the formation of functionalized 3,5-disubstituted 1,2-dioxolanes 34
through the formation of a peroxycarbenium ion, which is attacked by the nucleophile.
(Scheme 14) [105].

The interaction of silylperoxyacetals 35 with alkenes 36 promoted by SnCl4 leads
to in the formation of substituted 1,2-dioxolanes 37. This process proceeds through the
formation of the trimethylsilyl peroxycarbenium ion (Scheme 15) [82,106,107]. It was found
that 1,2-dioxolanes 37a and 37b have a high antimalarial activity against P. falciparum [108].

This approach was used for the synthesis of 1,2-dioxalane (OZ78) 40, which exhibits
high activity against Fasciola hepatica (Scheme 16) [109].
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Scheme 16. Synthesis and activity of 1,2-dioxolane (OZ78) 40.

The reaction of peroxyacetal 41 with SKA (trimethylsilylketene acetal) 42 leads to the
formation of peroxide 43, containing ester functional group (Scheme 17) [102]. The best
yield of peroxide 43 was achieved in the case of peroxyacetal 41 where R1 = Ph [110].
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Natural compounds with antitumor activity, such as stereoisomers of plakinic acids
47a,b, were synthesized from peroxide 44 in three steps (Scheme 18). The key 1,2-dioxolane
46 in this sequence was synthesized from α-alkoxydioxolane 44 and O,S-ketene acetal 45
promoted by TiCl4 in 82% yield (Scheme 18). Both isomers of acid 47a,b were isolated in
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individual form [111]. Also it was found that plakinic acids 47 inhibit the growth of the
fungi Saccharomyces cerevisiae and Penicillium atrounenetum [39].
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It was found that the type of peroxidation product of allylic alcohols containing a
lactam ring 48 depends on the amount of Lewis acid. Thus, peroxidation of alcohol 48 with
the use of 0.9 eq. of SnCl4 leads to the formation of both mono- and diperoxides 49 and
50. Increasing the amount of acid to 2.5 eq. with respect to 48 leads to the formation of
epoxyalkyl peroxide 51 (Scheme 19) [112]. Anchimeric assistance of the hydroxyl group
facilitates the addition of tert-butyl hydroperoxide to the double bond. Under the action of
SnCl4, through the formation of a carbocation, the nucleophilic substitution of the hydroxyl
group for tert-butyl peroxide occurs.

Catalysis of the peroxidation reaction of acetylacetone 52 by strong protic acids
(H2SO4, HClO4, HCl) leads to a complex mixture of cyclic and acyclic peroxides. However,
with the use of SnCl2·2H2O and AlCl3·6H2O as a catalyst, the peroxidation of acety-
lacetone 52 proceeds selectively with the formation of dihydroperoxo-1,2-dioxolane 53
(Scheme 20) [113,114]. The reaction was carried out at a room temperature with 5–25 molar
excess of 30% aq. solution of H2O2 and 10–20 mol% LA with respect to 52.

The SnCl2·2H2O/H2O2 system was used in the peroxidation of 2,5-heptadione 54. In
this case, the reaction proceeds with the formation of hydroxyhydroperoxy 1,2-dioxane 55,
but in a low yield of target compound of 15% (Scheme 21) [115]. The reaction was carried
out at a room temperature with 5-fold molar excess of 50% aq. solution of H2O2 and 20
mol. % SnCl2·2H2O with respect to 54.

The reaction of acetals 56 with 1,1′-dihydroperoxydi (cycloalkyl) peroxides 57 cat-
alyzed by SnCl4 afforded with the formation of 1,2,4,5,7,8-hexaoxananes 58. This approach
makes it possible to solve the problem of the synthesis of hexaoxonanes from cycloalka-
nones with ring sizes C6–C8 and C12 (Scheme 22) [88].
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2.2. Peroxidation of Ketones and Aldehydes in the Presence of MeReO3

The proposed mechanism of ketone peroxidation by the H2O2/MeReO3 system is
based on the coordination of hydrogen peroxide with rhenium, which acts as a Lewis
acid with the formation of peroxocomplex 61 (Scheme 23) [116–118]. The resulting per-
oxocomplex 61 interacts with a carbonyl compound with the transfer of a peroxo group.
Furthermore, MeReO3 can react with a carbonyl group, as a Lewis acid to activate the
carbonyl carbon atom.
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Scheme 23. Formation of the peroxo complexes MeReO3.

The addition of HBF4 to the 30% aq. H2O2/MeReO3 system leads to the formation of
symmetric 1,2,4,5-tetraoxanes 63 from cyclic ketones 62, as well as 3,3,6,6-tetraalkyl-1,2,4,5-
tetraoxanes 63 from unsymmetrical ketones 62, respectively (Scheme 24) [119]. 1,2,4,5-
Tetraoxanes 63a–e exhibit antimalarial activity against the chloroquine-resistant strain of
P. falciparum.
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The combination 30% aq. H2O2/MeReO3/HBF4 in TFE is an effective system for
the synthesis of both symmetric 69 and non-symmetric tetraoxanes 66 or 68 from aldehy-
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des 64 in good yields (Scheme 25) [120–122]. It was found that such tetraoxanes exhibit
antimalarial activity in vitro.
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Scheme 25. Synthesis of tetraoxanes 66, 68 and 69 from aldehydes 64.

Non-symmetric tetraoxanes 72 were synthesized from 4-methyl cyclohexanone 70
and ketone or aldehyde 71 under the action of H2O2 in the presence of 1 eq. of HBF4 and
0.1 mol% of MeReO3 with respect to the starting ketone in TFE medium. (Scheme 26) [122].
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Scheme 26. Synthesis of unsymmetrical 1,2,4,5-tetraoxanes 72.

The interaction of sulfonylpiperide-4ones 73 with ketones 74, 76 promoted by
H2O2/MeReO3/HBF4 in HFIP leads to the formation of non-symmetric 1,2,4,5-tetraoxanes
75 and 77, which exhibit high antimalarial activity (Scheme 27) [123].
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2.3. Sc(OTf)3, Yb(OTf)3, InCl3 and In(OTf)3 in the Synthesis of Organic Peroxides

In 2001, Kobayashi and colleagues developed a new method for the synthesis of alkoxy-
hydroperoxides 79 based on the reaction of the carbonyl group of unsaturated ketones
78 with H2O2·H2NCONH2, catalyzed by Sc(OTf)3. Cyclization of alkyl hydroperoxides
79 leads to 1,2-dioxanes 80 according to the Michael reaction. This method allows for the
obtaining of substituted cyclic peroxides containing various functional groups in their
structure (Scheme 28) [63–65,124].

The system H2O2·H2NCONH2/Sc(OTf)3 was used in the synthesis of peroxyacetal 83,
which under basic conditions undergoes intramolecular cyclization with the formation of
cyclic peroxide 84 (Scheme 29) [125].

Recently, Saha et al. found that the ring opening of Donor–Acceptor (D–A) cyclo-
propanes 85 in the presence of tBuOOH or hydroperoxides 86 under the action of Sc(OTf)3
leads to the formation of various peroxides 87 in 51–91% yield (Scheme 30) [92]. The
reaction can be carried out on a gram scale in 74% yield of the target peroxide.
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The interaction of Donor–Acceptor cyclopropane 88 with tBuOOH and N-halosuccinimides
89, which acts as a source of halogen, provides haloperoxides 90 in moderate to good yields
(Scheme 31) [92].

It is noteworthy that the interaction of cyclopropanes 91 containing one acceptor
substituent with tert-butyl hydroperoxide under the action of 0.5 eq. Sc(OTf)3 leads to
bis-tert-butyl peroxides 92 in 56–72% yields (Scheme 32) [92].



Pharmaceuticals 2022, 15, 472 17 of 63Pharmaceuticals 2022, 15, x FOR PEER REVIEW 18 of 67 
 

 

 
Scheme 30. Synthesis of peroxides 87. 

The interaction of Donor–Acceptor cyclopropane 88 with tBuOOH and N-halosuccin-
imides 89, which acts as a source of halogen, provides haloperoxides 90 in moderate to 
good yields (Scheme 31) [92]. 

 
Scheme 31. Synthesis of haloperoxides 90. 

Scheme 30. Synthesis of peroxides 87.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 18 of 67 
 

 

 
Scheme 30. Synthesis of peroxides 87. 

The interaction of Donor–Acceptor cyclopropane 88 with tBuOOH and N-halosuccin-
imides 89, which acts as a source of halogen, provides haloperoxides 90 in moderate to 
good yields (Scheme 31) [92]. 

 
Scheme 31. Synthesis of haloperoxides 90. Scheme 31. Synthesis of haloperoxides 90.



Pharmaceuticals 2022, 15, 472 18 of 63

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 19 of 67 
 

 

It is noteworthy that the interaction of cyclopropanes 91 containing one acceptor sub-
stituent with tert-butyl hydroperoxide under the action of 0.5 eq. Sc(OTf)3 leads to bis-tert-
butyl peroxides 92 in 56–72% yields (Scheme 32) [92]. 

 
Scheme 32. Synthesis of bis-tert-butyl peroxides 92. 

The use of the H2O2 or TBHP/Sc(OTf)3 system for ring opening of donor-acceptor 
aziridines 92 leads to α-sulfanilamido peroxides 93 and 94 in good yield (Scheme 33) [126]. 
The reaction can be scaled up to the grams in 70% yield. 

 
Scheme 33. Synthesis of peroxides 93 and 94 from donor-acceptor aziridines 92. 
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The use of the H2O2 or TBHP/Sc(OTf)3 system for ring opening of donor-acceptor
aziridines 92 leads to α-sulfanilamido peroxides 93 and 94 in good yield (Scheme 33) [126].
The reaction can be scaled up to the grams in 70% yield.
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In 2002, Dussault et al. [127] demonstrated the ring opening of oxetanes 95 with
an ethereal solution of H2O2, catalyzed by Yb(OTf)3 and Sc(OTf)3 with the formation of
peroxides 96, which act as intermediates in the synthesis 1,2,4-trioxepanes 97 (Scheme 34).

Hydroperoxyoxetane 98 rearranged into endoperoxide 99 in 12% yield and exoperox-
ide 100 in 33% yield under the action of Yb(OTf)3 in methylene chloride (Scheme 35) [74].

The use of catalytic amounts of Sc(OTf)3 or InCl3 in the reaction of endoperoxyacetals
101 with allyltrimethylsilane (AllylTMS) and its derivatives (Nu-TMS) makes it possible to
obtain 3,5-disubstituted-1,2-dioxolanes 102 and 103 by the Sakurai reaction. Sc(OTf)3 or
InCl3 allow the reaction to be carried out under milder conditions than when using SnCl4
and TiCl4 (Scheme 36) [128,129].
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Cyclic peroxides such as spiro 1,2,4-trioxepanes 106 were obtained from hydroperoxides
104 and ketones 105 by using Indium (III) triflate as a catalyst (Scheme 37) [130].

2.4. Mercury Salts in the Synthesis of Peroxides

In a process known as peroxymercuration, alkyl peroxides D, E can be prepared
from alkenes A and alkyl hydroperoxide B in the presence of a suitable mercury (II)
salt (Scheme 38). In this case, mercury salts act as a mild electrophilic reagent. The
interaction of mercury (II) salt with an alkene leads to cationic species, which reacts
with alkyl hydroperoxide to form mercurylalkyl peroxides C. The obtained mercurylalkyl
peroxides C can be demercurated using sodium borohydride or by bromonolysis. Both
peroxymercuration and demercuration occur rapidly under mild conditions.
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Bloodworth A.J. demonstrated a two-stage approach to halogeno-alkyl peroxides 108,
109 (Scheme 39) [131]. At the first stage, peroxymercuration of such unsaturated ketones
107 was carried out with the use of tBuOOH/Hg(OAc)2 system then demercuration of
peroxymercurated product afforded with the formation of target peroxides 108, 109 in
32–84% and 45–79% yields, respectively.
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Phenyl cyclopropane 110 undergoes ring opening under the action of the
tBuOOH/Hg(CF3COO)2 system with the formation of mercurylalkyl peroxide 111 in
a 47% yield. Further reduction 111 leads to alkyl peroxide 112 in a 19% yield [132]. The
same system was applied for the synthesis of peroxide 115 from styrene 113 (Scheme 40).
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In 1976, Bloodworth A. J. and colleagues described a method for the synthesis of
cyclic peroxides 117 by the peroxymercuration of non-conjugated acyclic dienes 116. The
demercuration of 117 under the action of NaBH4 led to peroxides 118 (Scheme 41) [133].
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Scheme 41. Synthesis of cyclic peroxides 117 and 118.

Adam W. et al. presented a method for the regioselective synthesis of bicyclic perox-
ide 120 by the peroxymercuration of non-conjugated cyclic dienes 119 (Scheme 42) [134].
Organo-mercury trifluoroacetates were separated by dissolving their mixture in benzene.
The peroxide 120 did not dissolve in benzene and precipitated as white crystals. Reductive
demercuration of 120 proceeded under mild conditions with the formation of bridged
1,2-dioxepane 124. Bromination of peroxide 120 followed by demercuration led to dibro-
mocycloperoxide 123.
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The peroxymercuration and demercuration of 1,4-cyclooctadiene 125 proceeded in a
similar way with the formation of peroxides 126 and 127 (Scheme 43). Peroxides 126 and
127 were obtained in 38% and 28% yield respectively [135].
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Hydroperoxymercuration of alkenes 130 with the use of aq. H2O2 proceeds with
the formation of hydroperoxide 131 and alcohol 132. The resulting peroxides 131 were
obtained in yield up to 86% (Scheme 45) [137,138].
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Scheme 45. Synthesis of hydroperoxide 131.

Direct demercuration of peroxides 134 is not possible because the hydroperoxide group
is reduced under the action of sodium borohydride. However, the subsequent protection
of hydroperoxy group by 2-methoxypropene, borohydride reduction, and deprotection of
peroxy group led to peroxides 135 in 30–54% yield (Scheme 46) [138].

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 24 of 67 
 

 

Scheme 44. Synthesis of cyclic peroxides 129. 

Hydroperoxymercuration of alkenes 130 with the use of aq. H2O2 proceeds with the 
formation of hydroperoxide 131 and alcohol 132. The resulting peroxides 131 were ob-
tained in yield up to 86% (Scheme 45) [137,138]. 

 
Scheme 45. Synthesis of hydroperoxide 131. 

Direct demercuration of peroxides 134 is not possible because the hydroperoxide 
group is reduced under the action of sodium borohydride. However, the subsequent pro-
tection of hydroperoxy group by 2-methoxypropene, borohydride reduction, and depro-
tection of peroxy group led to peroxides 135 in 30–54% yield (Scheme 46) [138]. 

 
Scheme 46. Synthesis of hydroperoxides 134 and 135. 

Hydroperoxycyclopropanes 136 under the action of Hg(OAc)2 in the presence of per-
chloric acid were transformed into 1,2-dioxolanes 137, the bromodemercuration of which 
led to 1,2-dioxolanes 138 (Scheme 47) [139]. Cyclic peroxides were isolated by column 
chromatography on SiO2 at 0 °C. The target peroxides 138 were obtained in 52–60% yield. 

 
Scheme 47. Synthesis of 1,2-dioxolane 138. 

The first example of the synthesis of diastereomeric saturated analogs of plakinic ac-
ids A, C and D 142 was described in 1996 by Bloodworth A. J. and colleagues [140]. Per-
oxides 142 were obtained in four stages from ketones 139. At one stage of this synthetic 
route, the peroxymercuration of esters 140 was used with the formation of 1,2-dioxolanes 

Scheme 46. Synthesis of hydroperoxides 134 and 135.

Hydroperoxycyclopropanes 136 under the action of Hg(OAc)2 in the presence of
perchloric acid were transformed into 1,2-dioxolanes 137, the bromodemercuration of which
led to 1,2-dioxolanes 138 (Scheme 47) [139]. Cyclic peroxides were isolated by column
chromatography on SiO2 at 0 ◦C. The target peroxides 138 were obtained in 52–60% yield.
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Scheme 47. Synthesis of 1,2-dioxolane 138.

The first example of the synthesis of diastereomeric saturated analogs of plakinic acids
A, C and D 142 was described in 1996 by Bloodworth A. J. and colleagues [140]. Peroxides
142 were obtained in four stages from ketones 139. At one stage of this synthetic route,
the peroxymercuration of esters 140 was used with the formation of 1,2-dioxolanes 141.
Saponification of which led to 1,2-dioxolanes 142 with a free carboxyl group (Scheme 48).
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2.5. Other Metal-Based Lewis Acids

Zhang and Li reported the synthesis of β-hydroperoxy alcohols 144 by the reaction of
epoxides 143 with H2O2, catalyzed by silica-supported antimony trichloride (SbCl3/SiO2)
(Scheme 49) [141]. Interestingly, the authors demonstrated that SbCl3/SiO2 is more active
than unsupported-SbCl3. Under the best conditions, a range of β-hydroxy hydroperoxides
144 was obtained in 72–86% isolated yields.
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Scheme 49. Synthesis of β-hydroperoxy alcohols 144.

Azarifar D. et.al. developed a method for the synthesis of geminal bishydroperox-
ides 146 from aldehydes 145 and hydrogen peroxide under the action of AlCl3·6H2O
(Scheme 50) [114]. SrCl2·6H2O can also be used as a catalyst for the transformation of
aldehydes 145 to the corresponding geminal bishydroperoxides 147. Both catalysts allow
the synthesis of target peroxides 146 and 147 under mild conditions at room temperature
in good yields (Scheme 50) [142].
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Lewis acids such as SrCl3·6H2O [142], cerium ammonium nitrate (CAN) [143],
Bi(OTf)3 [144], and AlCl3·6H2O [114] are effective catalysts for the synthesis of bishy-
droperoxides 149–152 from cyclic and acyclic ketones and aldehydes 148. Peroxidation
proceeds under mild conditions at room temperature with the formation of target perox-
ides in a good yield. All Lewis acids demonstrated approximately equal efficiency in the
peroxidation reaction. The main advantage of these methods is the use of Lewis acids in
catalytic amounts and an inexpensive 30% aqueous H2O2 (Scheme 51).
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Also, bismuth (III) triflate is a good catalyst for the synthesis of 1,2,4,5-tetraoxanes
155. In this case, the target peroxides 152 were obtained in a yield up to 94%. Synthetic



Pharmaceuticals 2022, 15, 472 26 of 63

1,2,4,5-tetraoxane 155a exhibits high activity against helminths Fasciola hepatica and in rats
in vivo (Scheme 52) [144,145].
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Scheme 52. Synthesis of 1,2,4,5-tetraoxanes 155.

The interaction of 1,2,4-trioxolanes (ozonides) 156 with Lewis acid SbCl5 in methylene
chloride led to 1,2,4,5-tetraoxanes 157 (Scheme 53) [146].
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Scheme 53. Synthesis of 1,2,4,5-tetraoxanes 157 from 1,2,4-trioxolanes 156.

The palladium-catalyzed cyclization of unsaturated hydroperoxides 158 afforded with
the formation of 1,2-dioxanes 159 (Scheme 54) [147]. The reaction was carried out in toluene,
1,4-dioxane, or 1,2-dichloroethane at 80 ◦C for 3h. To oxidize Pd(0), which is formed in the
catalytic cycle, p-benzoquinone (BQ) or silver carbonate were used.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 27 of 67 
 

 

Also, bismuth (III) triflate is a good catalyst for the synthesis of 1,2,4,5-tetraoxanes 
155. In this case, the target peroxides 152 were obtained in a yield up to 94%. Synthetic 
1,2,4,5-tetraoxane 155a exhibits high activity against helminths Fasciola hepatica and in rats 
in vivo (Scheme 52) [144,145]. 

 
Scheme 52. Synthesis of 1,2,4,5-tetraoxanes 155. 

The interaction of 1,2,4-trioxolanes (ozonides) 156 with Lewis acid SbCl5 in meth-
ylene chloride led to 1,2,4,5-tetraoxanes 157 (Scheme 53) [146]. 

 
Scheme 53. Synthesis of 1,2,4,5-tetraoxanes 157 from 1,2,4-trioxolanes 156. 

The palladium-catalyzed cyclization of unsaturated hydroperoxides 158 afforded 
with the formation of 1,2-dioxanes 159 (Scheme 54) [147]. The reaction was carried out in 
toluene, 1,4-dioxane, or 1,2-dichloroethane at 80 °C for 3h. To oxidize Pd(0), which is 
formed in the catalytic cycle, p-benzoquinone (BQ) or silver carbonate were used. 

 
Scheme 54. Synthesis of 1,2-dioxanes 159. 

Presumably, the reaction proceeds according to the characteristic Pd-catalyzed cycle, 
which is demonstrated in Scheme 55. Pd (II) is coordinated both with the double bond 
and the peroxide group to form cyclic intermediate A, which is further rearranged into 
endoperoxide B. Then endoperoxide B is converted to the target product 159. 

Scheme 54. Synthesis of 1,2-dioxanes 159.

Presumably, the reaction proceeds according to the characteristic Pd-catalyzed cycle,
which is demonstrated in Scheme 55. Pd (II) is coordinated both with the double bond
and the peroxide group to form cyclic intermediate A, which is further rearranged into
endoperoxide B. Then endoperoxide B is converted to the target product 159.
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Scheme 55. Synthesis of 1,2-Dioxanes 159 from hydroperoxides 158.

Such a Lewis acid as Cu(OTf)2 turned out to be the most effective catalyst for the
synthesis of peroxides 162 by the ring opening reaction of activated aziridines 160 under
the action of various hydroperoxides 161. It was found that electron-neutral or halogenated
substrates 160 provide better results in comparison with substrates containing electron-
withdrawing substituents in an aromatic ring (Scheme 56) [126].
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3. Non-Metal-Based Lewis Acids in the Synthesis of Organic Peroxides

There is great interest in Lewis acids based on non-metals. Their use as a catalyst or
reagent made it possible to discover new classes of peroxides of various structures. This sec-
tion contains data on the synthesis of 1-hydroperoxy-1′-alkoxyperoxides, β-hydroperoxy-
β-peroxylactones, 1,2-dioxanes, 1,2,4-trioxepanes, 1,2,4-trioxocanes, 1,2,4-trioxonanes and
1,2,4,5,7,8-hexaoxananes.

3.1. Application of BF3·Et2O in the Synthesis of Organic Peroxides

The first mentions of the formation of peroxides under the action of boron trifluoride
goes back to the 1950s. A US patent 2,630,456 [148] from 1953 describes a selective method
for producing tert-butyl hydroperoxide 164 from the corresponding alcohol 163 [149]. The
reaction was carried out at room temperature using an equimolar amount of a 50% aqueous
solution of hydrogen peroxide with 0.3 eq. of boron trifluoride etherate (Scheme 57). Since
BF3 can form BF3·H2O complex [150–155], this makes it possible to use BF3·Et2O in the
presence of water.
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In 1956, a method was developed for the synthesis of peroxy acids 166 with the
use of boron trifluoride [156]. The synthesis was based on the interaction of a 90% aq.
solution of hydrogen peroxide with carboxylic acids 166 in the presence of boron trifluoride
monohydrate. The reaction was carried out for 45 min at 50 ◦C (Scheme 58). This approach
was used for the synthesis of butyric, nylon and α-chloroacetic peroxy acids.
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Scheme 58. Synthesis of peroxy acids 166.

The reaction of vinyl esters 167 and hydroperoxides 168 in the presence of gaseous
boron trifluoride leads to the formation of monoperoxyketals 169. The reaction was carried
out in benzene or hexane at temperatures from 0 to 30 ◦C (Scheme 59) [157]. The reaction
proceeds within 5–10 min with a yield of 80–96%. This method is the first way to obtain
monoperoxyacetals in high yields.
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The synthesis of alkyl peroxides 171 was carried out by the reaction of tertiary alkyl-
trichloroacetimides 170 with tert-butyl hydroperoxide in the presence of boron trifluoride
etherate (Scheme 60) [158].
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Scheme 60. Synthesis of alkyl peroxides 171.

A wide range of bishydroperoxides 175 was obtained from acetals 173, enol ethers 174
and hydrogen peroxide in the presence of boron trifluoride etherate (Scheme 61) [159,160].
The developed method allows one to obtain peroxides of various structures. The advantages
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of these reactions are the rapidity and ease of its implementation, and among the disadvan-
tages can be noted the formation of by-products, as well as the impossibility of synthesizing
bishydroperoxides from acetals or enol ethers obtained from aryl-substituted ketones.
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Scheme 61. Synthesis of bishydroperoxides 175.

Presumably, the reaction proceeds according to the following mechanism: BF3·Et2O
and BF3·MeOH equally catalyze the reaction, forming intermediate complexes A and B,
which then interact with hydrogen peroxide with the formation of bishydroperoxide 175
(Scheme 62).
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group has lower electron-withdrawing properties. 

Scheme 62. Mechanism of acetal peroxidation 173.

The possibility to obtain geminal bis(tert-butyl)peroxides 178 of both cyclic and acyclic
structures with a yield of 13% to 89%, respectively, was described from acetals 176 and
enol ethers 177 (Scheme 63) [161]. The reaction of the enol esters 177 with tert-butyl
hydroperoxide, catalyzed by boron trifluoride etherate, is a general approach for the
preparation of geminal bishydroperoxides.
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Scheme 63. Synthesis of germinal bis(tert-butyl) peroxides 178.

1,2-Dioxane 180 was obtained by the reaction of the corresponding acetal 179 with urea
hydrogen peroxide, catalyzed by boron trifluoride etherate (Scheme 64) [162]. Under these
conditions, only one of the two methoxyl groups is exchanged for the hydroperoxide one,
and the intermediate hydroperoxyketal undergoes intramolecular cyclization (according to
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Michael) due to the attack of the hydroperoxide group on the double bond activated by the
nitro group with the formation of 1,2-dioxane in 51% yield.
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Scheme 64. Synthesis of 1,2-dioxane 180.

However, when NO2 was replaced by C(O)OEt, the reaction proceeded with the
formation of bisperoxide 182 (Scheme 65) [163]. This is probably due to the fact that the
ester group has lower electron-withdrawing properties.
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Scheme 65. Synthesis of bishydroperoxide 182.

An efficient and stereoselective method for the synthesis of 1,2,4-trioxanes 185 and 187
has been reported by J.L. Vennerstrom (Scheme 66). Such peroxides were obtained by the in-
teraction of α-hydroxyperoxides 183 with aldehydes 184 and ketones 186 [52,164–167]. The
resulting cyclic peroxides were tested in vitro for antimalarial activity against P. falciparum.
1,2,4-Trioxanes 187 containing an adamantane substituent in their composition exhibit high
antimalarial activity.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 33 of 67 
 

 

 
Scheme 65. Synthesis of bishydroperoxide 182. 

An efficient and stereoselective method for the synthesis of 1,2,4-trioxanes 185 and 
187 has been reported by J.L. Vennerstrom (Scheme 66). Such peroxides were obtained by 
the interaction of α-hydroxyperoxides 183 with aldehydes 184 and ketones 186 [52,164–
167]. The resulting cyclic peroxides were tested in vitro for antimalarial activity against P. 
falciparum. 1,2,4-Trioxanes 187 containing an adamantane substituent in their composition 
exhibit high antimalarial activity. 

EC50 Pf K1, nM
Artemisinin 2,8

Me 4,9
nPr 1,8 

cyclopropyl 1,9
iPr 4,8

R1

OH

OOH

R1

O

O O

R3

R2
CH2Cl2, rt

BF3·Et2O

183

186

187, 12 70%

R1 = Alkyl, Cyclopropyl;
R2 = H; R3 = Alkyl, Ph, 2-ClC6H4; 
R2 = R3 = Adamantyl, (CH2)4 , (CH2)5

R1

O

O O
R2

185, 24 78%

O

O O

R

R = Me, iPr, nPr, cyclopropyl;

184

R1 = Me, Et, nPr, Cyclopropyl, 
R2 = Napthyl

BF3·Et2O

187

R2CHO R2C(O)R3

 
Scheme 66. Synthesis of 1,2,4-trioxanes 185 and 187. 

An unusual method for the synthesis of 1,2-dioxolanes 190 was developed, which is 
based on the reaction of ozonides 188 with olefins 189 in the presence of boron trifluoride 
etherate with a yield of 10% to 70% (Scheme 67) [168]. 

O

O

O

Ph
Ph

R1
H

R2 R3
BF3·Et2O O O

R3
R2

R1
CH2Cl2

0 oC, 20 min

188 189 190, 10 70%

R1 = Amyl, Ph; R2 = R3 = Alkyl, Ph; R2 = R3 = (CH2)4

+

 
Scheme 67. Synthesis of 1,2-dioxolanes 190. 

Presumably, the reaction proceeds along the following route: the first stage of the 
reaction involves the opening of the ozonide cycle in 188 under the action of BF3·Et2O with 

Scheme 66. Synthesis of 1,2,4-trioxanes 185 and 187.



Pharmaceuticals 2022, 15, 472 32 of 63

An unusual method for the synthesis of 1,2-dioxolanes 190 was developed, which is
based on the reaction of ozonides 188 with olefins 189 in the presence of boron trifluoride
etherate with a yield of 10% to 70% (Scheme 67) [168].
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Presumably, the reaction proceeds along the following route: the first stage of the
reaction involves the opening of the ozonide cycle in 188 under the action of BF3·Et2O
with the formation of a BF3-coordinated intermediate A, containing a peroxide fragment.
The attack of intermediate A at the alkene 189 is accompanied by the formation of two
intermediates, B and C, which, in turn, leads to ring closure and gives 1,2-dioxolane.
However, the rate of ring closure is much slower than the rotation of the C-C bond, so the
formation of four isomeric products occurs. The mechanism in Scheme 68 illustrates that
the ratio of (190d + 190e) to (190f + 190g) corresponds to the ratio of the two approaches of
BF3-coordinated intermediate A to alkene.
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BF3·Et2O is an efficient catalyst for the synthesis of 1,1′-bishydroperoxy-(cycloalkyl)
peroxides 192 from geminal bisperoxides 191 in yields of up to 86% (Scheme 69) [89].

Terent’ev et al. developed a method for the synthesis of 1,2,4,5-tetraoxanes 195 from
bishydroperoxides 193 and acetals 194 (Scheme 70) [169]. The reaction was carried out un-
der mild conditions at room temperature using 0.3–0.4 eq. BF3·Et2O. This method is general
to the synthesis of unsymmetrical tetraoxanes from readily available carbonyl compounds.
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Unsymmetrical tetaraoxanes 198 can be obtained from geminal bisperoxides 196 and
cyclic acetals 197 in the presence of boron trifluoride etherate (Scheme 71) [170]. This
method for the synthesis of 1,2,4,5-tetraoxanes is a convenient and simple approach to the
synthesis of both symmetric and asymmetrical 1,2,4,5-tetraoxanes.
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Also, boron trifluoride etherate is efficient for the synthesis of 1,2,4,5-tetraoxanes 201
from gem-bisperoxides 199 and orthoformates 200 (Scheme 72) [170]. The trans-isomer
201 was the major product in all cases as determined by NMR, while the cis-isomer was
found only in trace amounts. The reaction was carried out in dichloromethane at room
temperature. This approach was the first method for the preparation of tetraoxanes cis-201
and trans-201 with an alkoxy substituent.
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In the study on the synthesis of pharmacologically important endoperoxides, peroxide
204 was synthesized from substituted aldehydes 202; boron trifluoride etherate was used
as a catalyst in this reaction. Condensation of peroxide 203 with betulin aldehydes 202
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in the presence of BF3·Et2O led to the assembly of peroxides 204. The yield of the target
peroxide was low, and the resulting diastereoisomers could not be separated. Unfortunately,
mixtures of isomers did not show significant anticancer activity (Scheme 73) [171].
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Scheme 73. Synthesis of 1,2,4-trioxanes 204 from aldehydes 202.

Cyclic peroxides 207 can be obtained from hydroperoxides 205 and ketones 206 in the
presence of boron trifluoride etherate in up to 17% yield (Scheme 74) [130]. The yield of
the target peroxides 207 was in the same range as when using In(OTf)3 as a catalyst (see
Scheme 33). However, BF3·Et2O is less expensive than In(OTf)3.
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Scheme 74. Synthesis of macrocyclic peroxides 207.

The reaction of 1,1′-bishydroperoxy(cycloalkyl)peroxides 209 with ketals 208 in the pres-
ence of BF3·Et2O afforded 1,2,4,5,7,8-hexaoxonanes 210 in up to 94% yields (Scheme 75) [172].
This approach is convenient and simple for the synthesis of 1,2,4,5,7,8-hexaoxonanes, which
significantly expands the structural diversity of these compounds and, in most cases, allows
them to be synthesized in high yield.
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The assembly of bridged 1,2,4-trioxanes 212 and 213 can be accomplished by in-
tramolecular cyclization of peroxyacetals 211 with simultaneous removal of the acetal
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protecting group. Cyclic peroxides were obtained in a yield of 12% to 19% (Scheme 76) [173].

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 37 of 67 
 

 

 
Scheme 76. Synthesis of bridged 1,2,4-trioxanes 212 and 213. 

A convenient, experimentally simple and selective method was developed for the 
synthesis of bridged 1,2,4,5-tetraoxanes based on the reaction of hydrogen peroxide with 
β-diketone 213 catalyzed by strong acids (H2SO4, HClO4, HBF4) with a yield of 49–77% 
(Scheme 77) [37,76]. This process can also proceed with the use of Lewis acid (BF3·Et2O). 
For example, tetraoxane 214 was obtained in 64% yield [76]. 

 
Scheme 77. Synthesis of bridged 1,2,4,5-tetraoxane 214. 

The method for the synthesis of ozonides 216 and 217 from 1,5-diketones 215 and 
hydrogen peroxide, which does not require the use of toxic ozone, was reported (Scheme 
78) [84,174]. It was found that the interaction of 1,5-diketones 215 with H2O2, in the pres-
ence of BF3·Et2O leads to the selective assembly of stereoisomeric ozonides 216 and 217. 
Peroxides 216 and 217 exhibit antimalarial [175] and anticancer [175,176] activity. 

 
Scheme 78. Synthesis of diastereomeric ozonides 216 and 217 from 1,5-diketones 215. 

Recently a new class of peroxides, namely β-hydroperoxy-β-peroxylactones 221, was 
discovered. They were obtained by the peroxidation of β-ketoesters 218 and their deriva-
tives 219 and 220 (silylenol ethers, alkylene ethers, enol acetates, cyclic acetals) with the 
H2O2/BF3·Et2O system. The reaction proceeded with the formation of β-hydroperoxy-β-
peroxylactones in a yield of 30–96% (Scheme 79) [85,177]. These β-peroxylactones are sta-
ble and can be useful for further synthetic transformations. 

Scheme 76. Synthesis of bridged 1,2,4-trioxanes 212 and 213.

A convenient, experimentally simple and selective method was developed for the
synthesis of bridged 1,2,4,5-tetraoxanes based on the reaction of hydrogen peroxide with
β-diketone 213 catalyzed by strong acids (H2SO4, HClO4, HBF4) with a yield of 49–77%
(Scheme 77) [37,76]. This process can also proceed with the use of Lewis acid (BF3·Et2O).
For example, tetraoxane 214 was obtained in 64% yield [76].
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Scheme 77. Synthesis of bridged 1,2,4,5-tetraoxane 214.

The method for the synthesis of ozonides 216 and 217 from 1,5-diketones 215 and hydro-
gen peroxide, which does not require the use of toxic ozone, was reported (Scheme 78) [84,174].
It was found that the interaction of 1,5-diketones 215 with H2O2, in the presence of BF3·Et2O
leads to the selective assembly of stereoisomeric ozonides 216 and 217. Peroxides 216 and 217
exhibit antimalarial [175] and anticancer [175,176] activity.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 37 of 67 
 

 

 
Scheme 76. Synthesis of bridged 1,2,4-trioxanes 212 and 213. 

A convenient, experimentally simple and selective method was developed for the 
synthesis of bridged 1,2,4,5-tetraoxanes based on the reaction of hydrogen peroxide with 
β-diketone 213 catalyzed by strong acids (H2SO4, HClO4, HBF4) with a yield of 49–77% 
(Scheme 77) [37,76]. This process can also proceed with the use of Lewis acid (BF3·Et2O). 
For example, tetraoxane 214 was obtained in 64% yield [76]. 

 
Scheme 77. Synthesis of bridged 1,2,4,5-tetraoxane 214. 

The method for the synthesis of ozonides 216 and 217 from 1,5-diketones 215 and 
hydrogen peroxide, which does not require the use of toxic ozone, was reported (Scheme 
78) [84,174]. It was found that the interaction of 1,5-diketones 215 with H2O2, in the pres-
ence of BF3·Et2O leads to the selective assembly of stereoisomeric ozonides 216 and 217. 
Peroxides 216 and 217 exhibit antimalarial [175] and anticancer [175,176] activity. 

 
Scheme 78. Synthesis of diastereomeric ozonides 216 and 217 from 1,5-diketones 215. 

Recently a new class of peroxides, namely β-hydroperoxy-β-peroxylactones 221, was 
discovered. They were obtained by the peroxidation of β-ketoesters 218 and their deriva-
tives 219 and 220 (silylenol ethers, alkylene ethers, enol acetates, cyclic acetals) with the 
H2O2/BF3·Et2O system. The reaction proceeded with the formation of β-hydroperoxy-β-
peroxylactones in a yield of 30–96% (Scheme 79) [85,177]. These β-peroxylactones are sta-
ble and can be useful for further synthetic transformations. 

Scheme 78. Synthesis of diastereomeric ozonides 216 and 217 from 1,5-diketones 215.

Recently a new class of peroxides, namely β-hydroperoxy-β-peroxylactones 221, was
discovered. They were obtained by the peroxidation of β-ketoesters 218 and their deriva-
tives 219 and 220 (silylenol ethers, alkylene ethers, enol acetates, cyclic acetals) with the
H2O2/BF3·Et2O system. The reaction proceeded with the formation of β-hydroperoxy-
β-peroxylactones in a yield of 30–96% (Scheme 79) [85,177]. These β-peroxylactones are
stable and can be useful for further synthetic transformations.
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Scheme 79. Synthesis of β-hydroperoxy-β-peroxylactones 221.

The three-component cyclization/condensation of β-ketoesters 222, H2O2 UHP, and
alcohols proceeded with the formation of β-alkoxy-β-peroxylactoctones 223 in 25–80%
yield (Scheme 80) [178].
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Scheme 80. Synthesis of β-alkoxy-β-peroxylactones 223.

In continuation of studies in this direction, the BF3·Et2O/H2O2 system was applied to
the γ-ketoesters 224. Peroxidation proceeded with the formation of cyclic γ-hydroperoxy-
γ-peroxylactones 225 in 44–83% yields (Scheme 81) [179].

Tricyclic monoperoxides 227 were obtained by the peroxidation of β,δ′-triketones 226
with the H2O2/BF3·Et2O system (Scheme 82) [81,86]. Peroxidation was carried out under
mild conditions at room temperature for 1 h. Despite the presence of three carbonyl groups,
peroxidation proceeded selectively with the formation of cyclic product 227. The yield of
target peroxides 227 was 48–93%. It was found that the tricyclic monoperoxide exhibits a
high in vitro and in vivo anthelmintic activity against S. mansoni.
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Scheme 82. Synthesis and anthelmintic activity of tricyclic monoperoxides 227.

The first total synthesis of natural bioactive azaperoxides Verruculogen 230a and
Fumitremorgin A 230b was developed in 2015 by the Baran group [180]. The final step
included the catalyzed by BF3·Et2O condensation of aldehyde 229 with peroxide 228
(Scheme 83).
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3.2. Iodine in the Synthesis of Organic Peroxides

Iodine in the synthesis of organic peroxides can act as both a catalyst and a reagent.
The presence of iodine can activate substrates via halogen bonding (acts as Lewis acid),
iodonium(I) species or formation of “hidden” HI Broensted acid [181–187]. The interaction
of alkenes 231 with hydroperoxide in the presence of molecular iodine makes it possible
to obtain vicinal iodoperoxyalkanes 232 (Scheme 84) [188]. This reaction was carried out
with 0.7 eq. iodine and 4 eq. hydroperoxide in diethyl ether or dichloromethane at room
temperature. Depending on the reactivity of the hydroperoxide, the reaction time was from
5 to 72 h.
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Scheme 84. Synthesis of vicinal iodoperoxyalkanes 232.

The mechanism of the formation of iodoperoxyalkanes and iodoalkanols is shown in
Scheme 85. Presumably, the formation of iodoperoxyalkane can proceed along path A or B.
Path A corresponds to the classical scheme of sequential addition of electrophilic iodine
and nucleophilic hydroperoxide to the double bond. Path B is based on experimental
data according to which an increase in the amount of iodine (a nucleophile competing
with tert-butyl hydroperoxide) leads to an increase in the yield of 1-(tert-butylperoxy)-2-
iodocyclohexane, while the expected 1,2-diiodocyclohexane is formed in trace amounts.
Iodoperoxide appears to be formed by pathway B through a previously unknown process.
Initially, the reaction forms 1,2-diiodocyclohexane, which is converted by iodine to interme-
diate Y, which contains a partially positive charge on the carbon atoms. The latter reacts
with hydroperoxide.
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The cyclization of unsaturated hydroperoxyacetal 234 was performed using systems
such as pyridine/I2 or t-BuOK/I2. The use of the latter made it possible to obtain 1,2-
dioxanes 235 in a yield up to 85% (Scheme 86) [189].
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Using 30% aq. H2O2 and iodine as a catalyst, geminal bishydroperoxides 239 were 
obtained from cyclic and acyclic ketones 238 in a yield of 50 to 98% (Scheme 88). All gem-
inal bishydroperoxides 239 exhibit pronounced in vitro antimicrobial and antifungal ac-
tivity against B. cereus, E. coli, P. aeruginosa, S. aureus, C. albicans, and A. niger [190]. 

 

Scheme 86. Cyclization of unsaturated alkoxy hydroperoxide 234.

However, the use of the pyridine/I2 system for unsaturated hydroperoxyacetal 236 did
not provide the assembly of 1,2,4-trioxane 237. The t-BuOK/I2 system, which performed
well in the assembly of 1,2-dioxalane 235 (Scheme 87), led to peroxide 237, but in low
yield. Cyclization 236 under the action of the KH/I2 system also proceeded in a low yield
(Scheme 87) [189].
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Scheme 87. Synthesis of 1,2,4-trioxane 237.

Using 30% aq. H2O2 and iodine as a catalyst, geminal bishydroperoxides 239 were
obtained from cyclic and acyclic ketones 238 in a yield of 50 to 98% (Scheme 88). All geminal
bishydroperoxides 239 exhibit pronounced in vitro antimicrobial and antifungal activity
against B. cereus, E. coli, P. aeruginosa, S. aureus, C. albicans, and A. niger [190].
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This approach was also used in the synthesis of bishydroxyperoxides 241 from ace-
tophenone and benzaldehydes 240. Unfortunately, peroxidation of compounds containing
an electron-withdrawing substituent in the ring did not lead to the target geminal bishy-
droxyperoxides (Scheme 89) [190].
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Scheme 89. Synthesis of geminal dihydroperoxides 241.

The action of iodine as a Lewis acid is based on its interaction with the oxygen atom
of the carbonyl group of 240, which facilitates the nucleophilic attack of hydrogen peroxide
on the neighboring carbon atom. Iodine then eliminates the hydroxy group from the
sp3-carbon atom of intermediate A and the peroxycarbenium ion B is formed, which is
attacked by the second hydrogen peroxide molecule to form the final product 241. The last
stage of this mechanism is irreversible (Scheme 90).
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Scheme 90. The proposed mechanism for the assembly of geminal bisperoxide 241.

The iodine-catalyzed peroxidation of carbonyl compounds 242 (acyclic and cyclic
ketones and aromatic aldehydes), is a simple and effective approach to obtain geminal
hydroperoxides 244 and geminal tert-butyl peroxides 246. A similar reaction in methanol
led to hydroperoxyacetals 243 and tert-butylperoxyacetals 245 (Scheme 91) [90].

The application of I2/H2O2 and I2/TBHP systems to non-aromatic aldehydes al-
lows one to obtain hydroxy-hydroperoxides 248 and tert-butylhydroxyperoxides 249
(Scheme 92) [190].

Iodine-catalyzed peroxidation of enol ethers 250 and 253 in Et2O led to formation
of 2-iodo-1-methoxy hydroperoxides 251 and 254, respectively, with a yield of 32–41%
(Scheme 93) [191]. α-Iodo ketones 252 and 255 were formed as byproducts.

Peroxidation of monocyclic enol ethers 256 under the action of the I2/H2O2 system
proceeded with the formation of iodo-hydroperoxides 257 and α-iodo hemiacetals 258,
while the reaction with I2/ROOH led only to iodoperoxides 259 (Scheme 94) [192].
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Scheme 94. Synthesis of iodoperoxides 257 and 259.

Bicyclic enol esters were converted to vicinal iodoperoxides 261 under the action of
I2/H2O2 system in 40–82% yield. However, the use of t-BuOOH instead of H2O2 led to
the formation of peroxides 262 without iodine in their composition with a yield of 66–89%
yield (Scheme 95) [192].
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Scheme 95. Synthesis of vicinal iodoperoxides 261 and peroxides 262.

The previously unknown 1-hydroperoxy-1′-alkoxyperoxides 265 were synthesized in
45–64% yield by iodine-catalyzed reaction of geminal bishydroperoxides 263 with acetals
264 (Scheme 96) [193]. The nature of the solvent has a decisive influence on the yield of
the target peroxides. Good results were obtained in such solvents as Et2O and THF. The
formation of cyclic peroxides was not observed. 1-Hydroperoxy-1′-alkoxyperoxides 265
were readily isolated from the reaction mixture by column chromatography.



Pharmaceuticals 2022, 15, 472 43 of 63

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 45 of 67 
 

 

formation of peroxides 262 without iodine in their composition with a yield of 66–89% 
yield (Scheme 95) [192]. 

 
Scheme 95. Synthesis of vicinal iodoperoxides 261 and peroxides 262. 

The previously unknown 1-hydroperoxy-1′-alkoxyperoxides 265 were synthesized 
in 45–64% yield by iodine-catalyzed reaction of geminal bishydroperoxides 263 with ace-
tals 264 (Scheme 96) [193]. The nature of the solvent has a decisive influence on the yield 
of the target peroxides. Good results were obtained in such solvents as Et2O and THF. The 
formation of cyclic peroxides was not observed. 1-Hydroperoxy-1′-alkoxyperoxides 265 
were readily isolated from the reaction mixture by column chromatography. 

 
Scheme 96. Synthesis of 1-hydroperoxy-1′-alkoxyperoxides 265. 

Also, 1-hydroperoxy-1′-alkoxyperoxides 265 are formed by the interaction of 
bishydroperoxides 263 with enol ethers 266 in the presence of molecular iodine (Scheme 
97) [193]. 

 
Scheme 97. Synthesis of 1-hydroperoxy-1′-alkoxyperoxides 265. 

Initially, iodine, which is probably in the form of a complex with diethyl ether (or 
tetrahydrofuran), interacts with the oxygen atom of the methoxy group of acetal 264. Then 
the geminal bishydroperoxide 263 attacks the electrophilic center that is formed at the 
quaternary carbon atom A. Finally, the elimination of methanol proceeds with the for-
mation of target peroxide 265 (Scheme 98). 

Scheme 96. Synthesis of 1-hydroperoxy-1′-alkoxyperoxides 265.

Also, 1-hydroperoxy-1′-alkoxyperoxides 265 are formed by the interaction of bishy-
droperoxides 263 with enol ethers 266 in the presence of molecular iodine (Scheme 97) [193].
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Scheme 97. Synthesis of 1-hydroperoxy-1′-alkoxyperoxides 265.

Initially, iodine, which is probably in the form of a complex with diethyl ether (or
tetrahydrofuran), interacts with the oxygen atom of the methoxy group of acetal 264.
Then the geminal bishydroperoxide 263 attacks the electrophilic center that is formed at
the quaternary carbon atom A. Finally, the elimination of methanol proceeds with the
formation of target peroxide 265 (Scheme 98).
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Scheme 98. The proposed mechanism for the assembly of 1-hydroperoxy-1′-alkoxyperoxides 265.

Peroxidation of 2-allyl-1,3-diketones 267 under the action of the I2/H2O2 led to the
formation of diastreoisomeric bicyclic peroxides 269 and 270 (Scheme 99) [194]. The reaction
was carried out under mild conditions in dichloromethane at 20–25 ◦C with the use of
a five-fold molar excess of H2O2 and a two-fold excess of I2 with respect to the starting
diketone. It should be noted that the expected bridged tetraoxanes were not found during
the peroxidation of 1,3-diketones 267. Diastereomeric iodine peroxides 269 and 270 were
obtained as a mixture of diastereoisomers with a yield of 50 to 81%. The interaction of
ketones 267 containing an aromatic ring adjacent to the carbonyl group with the I2/H2O2
system led to the formation of iodides 268 with a yield of 11–24%, but not to the bicyclic
peroxides 269 and 270.
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Scheme 99. Synthesis of diastereomeric bicyclic peroxides 269 and 270.

The first stage involves the interaction of iodine with a double bond to form the
iodonium cation A, which undergoes cyclization to the intermediate tetrahydrofuran B,
stabilized by the anomeric effect [66–68] (Scheme 100). Then H2O2 attacks B with the
formation of iodoperoxide C, which undergoes cyclization with the formation of 269 + 270.
In the case of compounds containing an aryl substituent at the carbonyl group, peroxide C
is protonated with the formation of D, which undergoes Baeyer-Villiger rearrangement to
form cation E, which is iodinated by HI to form 268.
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A method was proposed for the synthesis of 1,2,4,5,7,8-hexaoxananes 273, based on
the I2-catalyzed reaction of acetals 271 with 1,1′-dihydroperoxydi(cycloalkyl) peroxides
272 (Scheme 101) [195]. This method allows for the obtaining of cyclic triperoxides in good
yields from 51 to 82%.



Pharmaceuticals 2022, 15, 472 45 of 63

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 47 of 67 
 

 

 
Scheme 100. The proposed mechanism for the assembly of bicyclic peroxides 269 and 270. 

A method was proposed for the synthesis of 1,2,4,5,7,8-hexaoxananes 273, based on 
the I2-catalyzed reaction of acetals 271 with 1,1′-dihydroperoxydi(cycloalkyl) peroxides 
272 (Scheme 101) [195]. This method allows for the obtaining of cyclic triperoxides in good 
yields from 51 to 82%. 

+ O
O

HOO

OOH

MeO

R1

OMe

R2

I2

MeCN or THF, 
0 25 oCn n

O
O

O
O

OO

R1 R2

nn

272271 273, 51 82%

n = 2, 3, 8; R1 = Me, iBu, nBu; R2 = iBu, nBu, (CH2)7CH3;
R1 = R2 = (CH2)2CH(CH3)(CH2)2 , (CH2)2CH(tBu)(CH2)2 ;  

Scheme 101. Synthesis of 1,2,4,5,7,8-hexaoxananes 273. 

3.3. Synthesis of Peroxides Promoted by TMSOTf and TBDMSOTf 
A convenient method has been developed for the synthesis of symmetric 1,2,4,5-

tetraoxanes 276 from carbonyl compounds 274 and peroxidizing agent bis(trimethylsilyl) 
peroxide 275 in the presence of 1 equiv. of TMSOTf. The reaction was carried out at 0 °C 
in acetonitrile or at −70 °C in CH2Cl2 (Scheme 102) [196]. The in vitro and in vivo studies 
demonstrated that these types of cyclic peroxides are active against P. falciparum [197]. 
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3.3. Synthesis of Peroxides Promoted by TMSOTf and TBDMSOTf

A convenient method has been developed for the synthesis of symmetric 1,2,4,5-
tetraoxanes 276 from carbonyl compounds 274 and peroxidizing agent bis(trimethylsilyl)
peroxide 275 in the presence of 1 equiv. of TMSOTf. The reaction was carried out at 0 ◦C
in acetonitrile or at −70 ◦C in CH2Cl2 (Scheme 102) [196]. The in vitro and in vivo studies
demonstrated that these types of cyclic peroxides are active against P. falciparum [197].
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Scheme 102. Synthesis and activity of 1,2,4,5-tetraoxanes 276.

Peroxidation of carbonyl compounds with the use of Me3SiOOSiMe3/TMSOTf system
allows one to obtain steroidal tetraoxanes 278 (Scheme 103) [198]. The reaction was carried
out at 0 ◦C in acetonitrile using a 1.5-fold molar excess of Me3SiOOSiMe3 and TMSOTf
with respect to ketone 277.

The synthesis of unsymmetrical 1,2,4,5-tetraoxanes 282 proceeds through the interac-
tion of geminal bis(trimethylsilyl)peroxides 280 with carbonyl compounds 281 in the pres-
ence of TMSOTf. 1,2,4,5-Tetraoxanes 282 are formed in yields up to 53% (Scheme 104) [197].
Corresponding bis(trimethylsilyl) peroxides 280 were obtained by the interaction of geminal
bishydroperoxides 279 with BSA (N, O-bis (trimethylsilyl) acetamide) in 50–67% yield.

In addition, TMSOTf is used as a catalyst in the synthesis of 1,2,4,5-tetraoxepanes
286 by the reaction of 1,2-bis (trimethylsilyl) peroxide 284 with carbonyl compounds 285
(Scheme 105) [197,199]. Silyl peroxide 284 was synthesized by reaction of BSA (N, O-bis
(trimethylsilyl) acetamide) on 1,2-dihydroperoxide 283 in 56% yield.
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Scheme 105. Synthesis of 1,2,4,5-tetraoxepanes 286.

In 2002, Dussault et al. [111,127] demonstrated the oxetane ring opening in 287 with an
ether solution of H2O2, catalyzed by Yb(OTf)3, with the formation of 3-hydroxyhydroperoxide
288, which act as an intermediate in the synthesis of 1,2,4-trioxepanes 289. However, the use
of TMSOTf in some cases led to a better result (Scheme 106).
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Scheme 106. Synthesis of 1,2,4-trioxepanes 289.

The developed system TMSOTf/H2O2 for oxetane ring opening in 290 was suc-
cessfully used at one of the stages in the total synthesis of plakinic acid A cis-292 and
trans-292, a natural compound with antitumor activity (Scheme 107) [111]. Opening
of the oxetane ring in 290 by TMSOTf resulted in the formation of readily separable 3-
hydroxyhydroperoxides 291 and epi-291. Then, in several steps, cyclic peroxides cis-292
and trans-292 were obtained from epi-291.

Cyclic peroxolactones (1,2,4-trioxan-5-ones) 295 were obtained by the reaction of
carbonyl compounds 293 with silyl peroxides 294 under the action of TfOSiMe3. This
reaction does not proceed in the absence of TfOSiMe3. The synthesis was carried out in
methylene chloride at a temperature of −78 ◦C (Scheme 108) [200,201].
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The TMSOTf-catalyzed interaction of endoperoxides 296 and 299 with ketones 297
and 300 proceeds with the formation of above-mentioned substituted 1,2,4-trioxanes 298
and 301 with moderate to good yields (Scheme 109) [202–204].
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1,2,4-Trioxanes 304 were obtained by the reaction of diketone 303 with containing
alkyl substituents endoperoxides 302 (Scheme 110) [205]. Unfortunately, the yield of target
peroxides did not exceed 10%.
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Trimethylsilyl peroxide 306, which was obtained by the reaction of BSA (N,O-bis
(trimethylsilyl) acetamide) with hydroperoxide 305, intramolecularly reacts with the oxirane
ring under the action of TMSOTf to form 1,2,4-trioxane 307 in 34% yield (Scheme 111) [206].
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The use of TMSOTf in the reaction of endoperoxide 308 with cyclic diene 309 opened
access to tetrasubstituted 1,2-dioxanes 310 (Scheme 112) [207].
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At the first step, the interaction of endoperoxide 308 with TMSOTf leads to the forma-
tion of carbocation A. The subsequent attack of 1,4-diphenyl-1,3-cyclodiene B on carboca-
tion A occurs in a regio- and diastereospecific manner. The intramolecular attack of the
peroxysilyl function on the carbocation in C leads to product 310 (Scheme 113).

The reaction of allyltrimethylsilane 312 with endoperoxides 311 in the presence of
catalytic amounts of TMSOTf resulted in bicyclic 1,2-dioxanes 313 with a yield of 10% to
60% (Scheme 114) [208].

The use of TMSOTf/Et3SiH system in the reaction with bicyclic peroxides 314 and
316 led to unusual results. Substituted 1,2-dioxane 314 was transformed into 1,2-dioxane
315. But in the case of a 7-membered cyclic peroxide 316, the main product was bicyclic
peroxide containing ozonide cycle 317 (Scheme 115) [209].
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In a study [213] on the synthesis of cyclic peroxides 322 and 323 with high antimalar-
ial activity, TMSOTf was used as a catalyst at the stage of peroxide cycle assembly (Scheme 
117). Peroxoacetals 322 and 323 were obtained from substrate 321 in 41% yield. The anti-
malarial activity of peroxides 322 and 323 is comparable to the antimalarial activity of 
Artemisinin. 
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It has been shown that triethylsilyl hydrotrioxide 319 (Et3SiOOOH), obtained in situ
from ozone and triethylsilane, is a mild and effective dioxetane-forming reagent from
vinyl ethers and vinyl thioethers on a relatively small (50–100 mg) scale. A number of
studies have demonstrated that the interaction of TBDMSOTf with dioxetane A leads to its
rearrangement into 1,2,4-trioxanes 320. Such peroxides exhibit in vitro antimalarial activity,
which is not inferior to peroxides like Artemisinin (Scheme 116) [210–212].
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In a study [213] on the synthesis of cyclic peroxides 322 and 323 with high antimalarial
activity, TMSOTf was used as a catalyst at the stage of peroxide cycle assembly (Scheme 117).
Peroxoacetals 322 and 323 were obtained from substrate 321 in 41% yield. The antimalarial
activity of peroxides 322 and 323 is comparable to the antimalarial activity of Artemisinin.
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4. Heteropoly Acids in the Synthesis of Organic Peroxides

In recent years, great interest has been paid to heteropoly acids as catalysts in the
synthesis of organic peroxides. Heteropoly acids such as phosphomolybdic (PMA) and
phosphotungstic (PTA) acids have a unique ability to form peroxo complexes with hydrogen
peroxide and transfer the peroxide function to the substrate [37,214–216]. The deposition
of heteropoly acids on a support allows them to be reused after regeneration [37,216].
This section covers approaches on the synthesis of bisperoxides, 1,2,4-trioxolanes, 1,2,4,5-
tetraoxanes, and tricyclic monoperoxides with the use of heteropoly acids.

The use of the tBuOOH/H6P2W18O62 system allows one to obtain dialkyl peroxides
325 from alcohols 324 in good yield (Scheme 118) [217]. In the case of secondary alcohols,
the formation of an ether was observed in the reaction, which led to a decrease in the yield of
the target peroxide. No by-product formation was observed in the case of tertiary alcohols.
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Scheme 118. Synthesis of peroxides 325.

Supported phosphotungstic acid (PTA) on zeolite (NaY) allows the synthesis of a wide
range of geminal bisperoxides 327 under heterogeneous conditions with a yield of 8 to
97% (Scheme 119) [216]. Such a system (H2O2, PTA/NaY) is effective for the synthesis of
1,2,4,5-tetraoxanes 329. Target products 329 were obtained in 71% to 92% yield.
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In 2009, the group of Wu et. al. reported the application phosphomolybdic acid (PMA)
as a catalyst for the ring-opening of epoxides with H2O2. This method gives the opportunity
to obtain β-hydroperoxy alcohols 331 at ambient temperature (Scheme 120) [218]. For all
tested substrates the ring-opening of epoxides 330 is highly regioselective to give the
hydroperoxyl group at the quaternary carbon.
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In 2014, Han et. al. performed the ring opening of oxetane 332 with hydrogen peroxide
in the presence of phosphomolybdic acid (PMA). This interaction resulted in a mixture of
two peroxides 333 and 334 (Scheme 121) [219].
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The ability of heteropoly acids to form peroxo complexes and coordinate with the
carbonyl group allows the peroxidation of ketones and their derivatives under milder
conditions. For example, peroxidation of 1-aryl-2-allylalkane-1,3-diones 335 with I2/H2O2
system proceeds with the formation of iodinated ketoesters 336. The addition of catalytic
amounts of PMA to the I2/H2O2 system facilitates the assembly of bicyclic peroxides 337
and 338 (Scheme 122) [220].
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Phosphomolybdic (PMA) and phosphotungstic (PTA) acids efficiently catalyze the 
peroxidation reaction of β-diketones 341, including easily oxidized diketones, with the 
formation of bridged 1,2,4,5-tetraoxanes 342 (Scheme 124) [214]. Peroxides can be obtained 
in grams. The bridged 1,2,4,5-tetraoxane 342 containing an adamantane substituent in its 
composition exhibit a high activity (IC50: 0.3 μM) in vitro and in vivo (worm burden re-
duction was 75%) against S. mansoni [16]. 
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Scheme 122. Synthesis of bicyclic peroxides 337 and 338.

Ozonide 340 was obtained in one step by peroxidation of ketoacetal 339 with a yield
of 74%. Phosphoromolybdic acid (PMA) was used as a catalyst in the amount of 0.02 equiv.
with respect to 339. (Scheme 123) [218].
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Scheme 123. Synthesis of ozonide 340.

Phosphomolybdic (PMA) and phosphotungstic (PTA) acids efficiently catalyze the
peroxidation reaction of β-diketones 341, including easily oxidized diketones, with the
formation of bridged 1,2,4,5-tetraoxanes 342 (Scheme 124) [214]. Peroxides can be obtained
in grams. The bridged 1,2,4,5-tetraoxane 342 containing an adamantane substituent in
its composition exhibit a high activity (IC50: 0.3 µM) in vitro and in vivo (worm burden
reduction was 75%) against S. mansoni [16].

The reaction of β,δ’-triketones 343, containing a benzyl substituent in the α-position,
with an ethereal solution of H2O2, catalyzed by heteropoly acids (PMA, PTA) in a polar
aprotic solvent, proceeds along three paths with the formation of three classes of peroxides:
tricyclic monoperoxides 344, bridged tetraoxanes 345 and a pair of stereoisomeric ozonides
346 and 347 (Scheme 125) [215,221]. The reaction is unusual in that bridged tetraoxanes
and ozonides with a free carbonyl group were formed. The synthesis of ozonides from
ketones and H2O2 is a unique process in which ozonide is formed with the participation of
two carbonyl groups. Bridged ozonides exhibit high in vitro cytotoxicity against androgen
dependent prostate cancer cell lines DU145 and PC3. In some cases the anticancer activity
of ozonides is higher than that of doxorubicin, cisplatin, and etoposide [222].
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More recently, an efficient catalyst H3+xPMo12-x
6+ Mox

5+O40/SiO2 was developed for
the synthesis of bridged ozonides 349, 350 and 1,2,4,5-tetraoxanes 352 under heterogeneous
conditions (Scheme 126) [37] The synthesis of peroxides under heterogeneous conditions
is a rare process and presents a challenge in this area of chemistry, as peroxides tend to
decompose on the catalyst surface. The yield of diastereoisomeric bridged ozonides 349,
350 was up to 90%, and of bridged 1,2,4,5-tetraoxanes 352 wasup to 86%.
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5. Summary and Outlook

This review summarizes approaches to the synthesis of organic peroxides under the
action of Lewis acids and heteropoly acids. The possibility of Lewis acids to coordinate
with the oxygen atom of the carbonyl group, as well as to generate a peroxycarbenium ion
in the starting compounds, allows for the expansion of the potential of the peroxidation
reaction of carbonyl compounds.

The possibility of metal-containing compounds such as PMA, PTA, and MeReO3 to
form peroxo complexes with hydrogen peroxide makes it possible to transfer the peroxide
function to the substrate. This transfer of peroxide groups, mediated by metal complexes,
makes it possible to obtain organic peroxides under heterogeneous conditions.

Analysis of the literature allows us to conclude that in the next decade the vector in
peroxide chemistry will shift towards the use of the Lewis acid/peroxidizing agent system.
This system is promising and its use will open up new horizons in peroxide chemistry for
the chemical and medical industries.
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